JPS63195248A - Intermetallic compound precipitation strengthening-type high-strength high-cr steel - Google Patents

Intermetallic compound precipitation strengthening-type high-strength high-cr steel

Info

Publication number
JPS63195248A
JPS63195248A JP62028922A JP2892287A JPS63195248A JP S63195248 A JPS63195248 A JP S63195248A JP 62028922 A JP62028922 A JP 62028922A JP 2892287 A JP2892287 A JP 2892287A JP S63195248 A JPS63195248 A JP S63195248A
Authority
JP
Japan
Prior art keywords
steel
martensite
strength
creep rupture
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028922A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
博幸 内田
Masayuki Fujiwara
優行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62028922A priority Critical patent/JPS63195248A/en
Publication of JPS63195248A publication Critical patent/JPS63195248A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain the titled high-Cr steel whose structure when hardened from a high temp. is a specific structure and which is excellent in strength at high temp., ductility, and toughness and particularly suitable for clad pipes for a fast reactor, by providing a composition containing, besides C and Cr, respectively prescribed amounts of Mo or/and W and Ni or/and Mn. CONSTITUTION:A high-grade high-Cr steel has a composition further containing, by weight, besides <=0.03% C and 5-13% Cr, 6-15% Mo or/and 8-25% W (where Mo+1/2W=6-15% is satisfied at the time of combined addition) and also containing Ni or/and Mn so that Ni+1/2Mn=1.0-9.0% is satisfied. In this high-Cr steel, a structure when hardened from a temp. as high as >=900 deg.C is a two-phase structure of ferrite and martensite or a single-phase structure of martensite. The high-Cr steel of this invention is an intermetallic compound precipitation strenghtening-type steel in which defects of conventional ferritic steels are obviated and embrittlement during use can be prevented and which combines superior creep rupture strength with excellent workability and weldability.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高温強度、延性及び靭性に優れ、特に高速炉燃
料被覆管用に適する金属間化合物析出強化壁高Cr1l
に関する。 (従来の技術及び解決しようとする問題点)実用期の高
速炉では、経済的の向上のため、炉心燃料の取替期間を
できるだけ長く延ばすことが望まれており、この燃料の
長寿命化のためには、長期間の使用に耐える燃料被覆管
材料の開発が要望されている。 ところで、燃料被覆管の寿命は、主にクリープ強度と中
性子照射に対する耐スエリング性とによって支配される
ものである。開発初期の高速炉の場合、燃料被覆管材料
として316ステンレス鋼等のオーステナイト系鋼が使
用されていたが、オーステナイト系鋼は優れたクリープ
強度を有するもののスエリングが大きいため、これを用
いて燃料の長寿命化を図ることは困薙である。 一方、フェライト系鋼は、オーステナイト系鋼に比べ、
スエリングが著しく小さいため、長寿命用の被覆管材料
として有望視されている。しかし、一般にフェライト系
鋼はオーステナイト系鋼よりもクリープ強度が低いので
、この点を改善することがフェライト系鋼を燃料被覆管
材料として実用化し、燃料の長寿命化を図る上での重要
課題となっている。 従来より、フェライト系鋼のクリープ強度を改善する方
法として、■炭窒化物による析出強化法、■金属間化合
物による析出強化法、■酸化物粒子を予め分散させるこ
とによる強化法、或いはこれらの■乃至■を組み合わせ
る強化方法などが検討されている。このうち、■による
金属間化合物析出強化型鋼は、■による炭化物析出強化
型鋼に比へで優れたクリープ破断強度が得られ、また析
出物を固溶されたままで加工できるので、■による酸化
物分散強化型鋼に比べて加工性に優れ。 溶接性も優れているなどの特長を有している。しかし、
このタイプの材料は使用中に金属間化合物が析出して延
性、靭性を劣化させるという欠点がある。 例えば1本出願人が先に特公昭54−27203号で提
案した耐熱鋼は、C≦o、oos%、Cr:2〜3o%
及びMoニア〜15%を含有し、残部がFe及び不純物
からなるフェライト鋼、或いはC≦o、o o s%、
Cr:2〜30%、Mo: 7〜15%及びNi55%
を含有し、残部がFe及び不純物からなるフェライト鋼
であり、第1表に示すように、焼入れままでは優れた伸
び、絞りを有し、クリープ破断強度も優れているが、6
50℃×1000hr加熱後の常温での伸び、絞りはは
7零になってしまい、また衝撃値も零近くまで低下する
ため、燃料被覆管用材料として使用するには問題がある
(Industrial Application Field) The present invention has excellent high-temperature strength, ductility and toughness, and is particularly suitable for fast reactor fuel cladding tubes, with a wall height of Cr1l due to intermetallic compound precipitation.
Regarding. (Conventional technology and problems to be solved) In commercial fast reactors, it is desired to extend the core fuel replacement period as long as possible in order to improve economics. Therefore, there is a need to develop fuel cladding materials that can withstand long-term use. Incidentally, the life of a fuel cladding tube is mainly controlled by creep strength and swelling resistance against neutron irradiation. In the case of fast reactors in the early stages of development, austenitic steels such as 316 stainless steel were used as fuel cladding materials, but austenitic steels have excellent creep strength but have large swelling, so they were used to improve fuel cladding. It is difficult to extend the lifespan. On the other hand, compared to austenitic steel, ferritic steel has
Because of its extremely low swelling, it is seen as a promising material for long-life cladding. However, ferritic steels generally have lower creep strength than austenitic steels, so improving this point is an important issue in putting ferritic steels into practical use as fuel cladding materials and extending the life of fuel. It has become. Conventionally, methods for improving the creep strength of ferritic steel include: ■ Precipitation strengthening method using carbonitrides, ■ Precipitation strengthening method using intermetallic compounds, ■ Strengthening method by predispersing oxide particles, or these methods. Strengthening methods that combine (2) through (2) are being considered. Among these, the intermetallic precipitation strengthened steel produced by ■ has superior creep rupture strength compared to the carbide precipitation strengthened steel produced by Excellent workability compared to reinforced steel. It has features such as excellent weldability. but,
This type of material has the disadvantage that intermetallic compounds precipitate during use, deteriorating ductility and toughness. For example, the heat-resistant steel previously proposed by the applicant in Japanese Patent Publication No. 54-27203 has C≦o, oos%, Cr: 2 to 3o%.
and ferritic steel containing ~15% of Mo and the remainder consisting of Fe and impurities, or C≦o, o s%,
Cr: 2-30%, Mo: 7-15% and Ni 55%
It is a ferritic steel containing Fe and impurities with the balance being Fe and impurities, and as shown in Table 1, it has excellent elongation and area of area as-quenched, and has excellent creep rupture strength.
After heating at 50° C. for 1000 hours, the elongation and aperture at room temperature are 7 zero, and the impact value is also reduced to nearly zero, so there are problems in using it as a material for fuel cladding tubes.

【以下余白】[Left below]

本発明は、上記提案に係るフェライト鋼の欠点を解消し
、使用中の脆化を防止でき、しかもクリープ破断強度が
優れていると共に加工性、溶接性に優れている金属間化
合物析出強化型鋼を提供することを目的とするものであ
る。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、まず、先の提案
に係る耐熱鋼がフェライト鋼であり、使用中に金属間化
合物の析出が生ずることに鑑みて、該鋼中のNi量の添
加量を変えてマルテンサイト量を変化させ、マルテンサ
イト十フェライトの2相又はマルテンサイト単相組織と
することを試みた。 第1図はその一例を示したもので、前記フェライト鋼の
一例である9%Cr−7%Mo鋼にNiを0〜9%まで
添加し、マルテンサイト量を変化させ、550℃、65
0 ’C加熱後の常温での引張性質を調べた結果である
。それによれば、フェライト単相(Ni:0%)の場合
、550℃加熱材では脆性破壊を生じ、伸び及び絞りは
はゾ零になる6しかし、Ni量を増すとマルテンサイト
量が増加し。 脆性破壊が生じなくなり、マルテンサイト量が40%以
上になると加熱材の伸び及び絞りの値は殆ど変わらなく
なる。 この結果を第1表に示した供試材Nα3.4と比較する
と明らかなように、フェライト単相の場合には、Niを
添加しても加熱脆性に対して殆ど効果はない。これらの
ことから、単にNiを増加させれば加熱後の脆性破壊が
抑制されるのではなく。 Ni添加の意味はマルテンサイトを生成させるに必要な
量を添加することにあることが判明した。 なお、Niに置き替えてMnを添加した実験を行ったと
ころ、同様の結果が得られた。 これは、前記提案に係る鋼ではNjは必要に応じて添加
される元素であり、フェライト地に固溶し、特に低温、
短時間の強度を改善する効果と靭性を改淳する目的で添
加されており、I−Tv218以下を満足する必要があ
ることから、Ntはフェライト単相の範囲で添加されて
いるためである。 また、前記提案のフェライト鋼でNjを添加すると、ク
リープ破断強度が低下することがある(第2図、第3図
参照)。しかし、フェライト+マルテンサイト鋼でマル
テンサイト量を増加するとクリープ破断強度が改善され
ることが判明した(第3図)。 以上の知見に基づき、本発明者は、更に化学成分、組織
等について詳細に実験研究を重ね、ここに本発明をなし
たものである。 すなわち、本発明は、C50,03%及び0r=5〜1
3%を含有し、更にMo:6〜15%及びW:8〜25
%のうちの1種又は2種(但し、複合添加のときは6%
≦Mo+1/2W≦15%)を含有すると共に、Ni及
びMnのうちの1種又は2種を1.0%≦Ni+1/2
Mn≦9.0%で含有し、残部がFe及び不可避的不純
物からなり、900℃以上の高温から焼入れた時の組織
がフェライト+マルテンサイトの2相組織又はマルテン
サイト単相組織であることを特徴とする金属間化合物析
出強化型高強度鋼Cr鋼を要旨とするものである。 以下に本発明を更に詳細に説明する。 まず1本発明鋼における化学成分限定理由を示す。 の Cは低いほどマルテンサイト、フェライトの靭性を良好
にするので、C量は可能な限り低い方が良い。もっとも
、前記提案鋼はどに下げる必要はないが、焼入れ後の硬
さがC量が増すにつれて増加し、靭性が低下するので、
0.02%以下が好ましい。一方、C量が0.03%を
超えると衝撃値、伸び及び絞りが著しく低下するので、
clの上限は0.03%とする6 Cr: 燃料被覆管の製造中若しくは組立時に錆が発生しないこ
とはメンテナンス上重要な問題であり、そのためにはC
rjJlが多いほど錆発生が低減される。またCr1t
の増加はFe2Moの固溶限を下げるため、析出するF
e2Moの凧が増加し、クリープ破断強度が改善される
。例えば、2.25%Cr −10%Mo含有鋼では6
50℃X]03hrのクリープ破断強度は24 kgf
 / nuo”であるが、9%Cr−10%Mo鋼では
30 、5 kgf/+sm”となる、これらのことか
らも、Cr量の下限は5%とする。一方、Cr量の上限
を13%とするのは、13%を超えると、後述の(Mo
+1/2W)量が6%以上の場合、NiやMnを添加し
てもマルテンサイト組織が得られなくなるためである。 Mo、W: MoやWを添加すると、Fe、Mo、Fe、Wの析出に
よりクリープ破断強度が著しく増大する。金属間化合物
は上記以外にも様々あるが、高いクリープ破断強度を得
るにはMo、Wを添加するのが最も有効である。そのた
めには、Mo、Wを単独で添加する場合には、Mo量が
6%以上、W量が8%以上必要であり、複合添加の場合
には、M o +1/2Wとして6%以上必要である。 一方、Mo、Wを単独で添加する場合の上限をそれぞれ
15%。 25%とし、複合添加の場合の上限を15%とするのは
、それ以上添加してもクリープ破断強度の増大が飽和す
る傾向にあり、高価になること、更にNi又はMnを添
加してもマルテンサイト組織が得られなくなることによ
る。なお、マルテンサイトが含まれる組織の場合、Mo
単独添加の場合にはクリープ破断曲線の傾きがやや大き
いが、Wを添加するとその傾きが小さくなる効果がある
。 Ni、 Mn: Ni、Mnは熱処理(900℃以上の高温からの焼入れ
)によりマルテンサイト組織を出現させる目的で単独又
は複合で添加されるもので、添加量はCr量、Mo量又
はW量により異なるが、Ni+1/2Mnとして最低で
1.0%必要である。しかし、Ni+1/ZMn量が9
%を超えると、全成分範囲でオーステナイトが出現して
スエリングを増すことになるので、これを防止するため
に9%を上限とする。 なお、以上の元素を必須元素とするが、通常、高Cr鋼
に不純物として含まれる他の元素も不純物範囲内で許容
される0例えば、Ti、Nbなどの1%以下での含有は
、Cの固定又は結晶粒の微細化のために利用されている
が、これも本発明の本質を侵すものではない、また金属
間化合物の形態。 粒界析出物の形態等を変化させると考えられるP。 B、Zr等の添加も一般によく知られているが。 これらの元素の含有も本発明の本質を侵すものではない
。 本発明は、以上の化学成分を有する高Cr鋼において金
属間化合物の析出を利用するものであるので、少なくと
も900℃以上の高温から焼入れを施す必要があり、こ
れにより、フェライト+マルテンサイトの2相組織又は
マルテンサイト単相組織とするものである。マルテンサ
イト社は、前述の第1図に例示したように、5%程度か
ら伸び及び絞りが改善される傾向が現われ、この程度で
も効果はあるが、望ましくは10%以上が好ましい、な
お、焼入れ温度を900℃以上の高温とするのは、これ
以下の温度では未固溶の金属間化合物が多くなって延性
、靭性を低下させるためである。 上記焼入れによる本発明鋼は、焼入れままで使用するこ
とができ、或いは焼入れ後、650〜850”Cでの時
効処理を施して使用してもよい。なお、時効処理温度が
この範囲であれば、比較的短時間でピーク硬さが得られ
る。 (実施例) 次に本発明の実施例を示す。 失凰五↓ 7%Cr、8%Mo及び6%Niを含み、C量を0.1
%以下で変えた組成の鋼につき、1100”CX30m
1nの溶体化処理後水焼入れし、マルテンサイト90%
、フェライト10%のフェライト+マルテンサイトの2
相組織を得た。 この焼入れまま材について、−10℃での衝撃値とC量
の関係を調べ、第4図の結果を得た。同図より、C量が
0.03%以下、好ましくは0.02%以下であれば衝
撃値の低下を効果的に防止することができることがわか
る。 失胤莢主 0.01%C15%Cr、6%Niを含み、Mo及び/
又はWttMo+1/2W量で16%まで添加した組成
の鋼につき、1050℃X 30 winの溶体化処理
後水焼入れし、マルテンサイト単相組織、フェライト+
マルテンサイト2相組織又はフェライト+オーステナイ
ト2相組織を得た。焼入れ後、引張クリープ破断試験を
行い、650℃×103hrのクリープ破断強度とMo
+1/2W量の関係を調べた。 その結果は、第5図に示すとおり、Mo、Wの単独添加
の場合はMo量が6%、W量が8%よりも多くなると急
激にクリープ破断強度が増大し。 MoとWの複合添加の場合はMo+1/2W量が6%以
上で同様の傾向を示し、添加量と共にクリープ破断強度
が著しく改善される。 失胤五且 0.01%C19%Cr、3%Niを含む組成の鋼でM
oとWの添加効果を調べるため、7%MO114%Wの
単独添加鋼或いは3%Mo+8%Wの複合添加鋼につき
、1050’CX30+minの溶体化処理後水焼入れ
し、フェライト60%、マルテンサイト40%のフェラ
イト+マルテンサイト組織を得た。焼入れ後、試験温度
650℃でクリープ破断試験を行い、破断時間と応力と
の関係を調べた。その結果は、第6図に示すとおり、W
を単独添加することにより、Mo単独添加よりもクリー
プ破断曲線の傾きが小さくなり、WをMoと複合添加し
てもその効果があることがわかる。いずれも前記提案の
フェライトI(9%Cr−7%Mo)の場合よりも改善
されている。 失庭五土 0.01%G、9%Cr、8%Mo、6%Niを含む鋼
につき、1050℃X30m1nの溶体化処理後水焼入
れし、フェライト10%、マルテンサイト90%のフェ
ライト+マルテンサイト組織を得た。焼入れ後、加熱温
度及び時間を変えて時効処理を施し、ピーク硬さを得る
処理条件を調べた。 その結果は、第7図に示すとおり、加熱温度が650〜
850℃の範囲であれば、Hv310以上のピーク硬さ
を0.5hr以下の如く比較的短時間で得られる。 失庭但互 C:0.004〜0.015%、Cr:5〜9%。 Mo: 6〜15%又はW:8〜25%、Ni:1.5
〜9%を含む本発明範囲内の鋼を950〜1050℃か
ら焼入れしたフェライト+マルテンサイト2相組織又は
マルテンサイト単相組織の焼入れまま材について、試験
温度650℃でクリープ破断曲線を調べた。その結果を
第8図に示す、なお、比較のため、HT−9及びMod
、9%Cr−1%M。 系の炭化物析出強化至高Crフェライト鋼と、燃料被覆
管として開発された酸化物分散強化型フェライト鋼DT
2203YO5鋼(13%Cr−1゜5%Mo−2,2
%Ti−0.5%Y、03)(Nucl。 Tech、、70(1985)p、215参照)につい
ても併記した。 同図より、本発明鋼(図中斜線部)は従来の炭化物析出
強化型の高Crフェライト鋼であるHT−9やMod、
9%Cr−1%Mo鋼に比べて優れたクリープ破断強度
を有するばかりでなく、酸化物分散強化型のDT220
3YO5鋼にも匹敵する優れたクリープ破断強度を有し
ていることがわかる。 (発明の効果) 以上詳述したように、本発明鋼は、特定の化学成分を有
するフェライト+マルテンサイト2相組織又はマルテン
サイト単相組織の金属間化合物析出強化型銅とするので
、先に提案したフェライト鋼に比べて使用中の脆化が少
なく、またクリープ破断強度も改善することができる。 就中、クリープ破断強度は酸化物分散強化型フェライト
鋼に匹敵する程優れており、かつ加工性、溶接性は遥か
に優れ、製造コストも安い利点がある。したがって、本
発明鋼は高速炉燃料被覆管材料として長期間の使用に十
分耐え、炉心燃料の取替回数を少なくできるので、経済
的効果は非常に大きい。勿論。 本発明鋼はその優れた高温強度、延性、靭性を活かし、
燃料被覆管材料以外の化学工業等々の高温装置材料とし
ても使用できることは云うまでもない。
The present invention eliminates the drawbacks of the ferritic steel proposed above, and provides an intermetallic precipitation-strengthened steel that can prevent embrittlement during use, has excellent creep rupture strength, and has excellent workability and weldability. The purpose is to provide (Means for Solving the Problems) In order to achieve the above object, the present inventors first considered that the heat-resistant steel according to the above proposal is a ferritic steel, and that precipitation of intermetallic compounds occurs during use. Therefore, an attempt was made to change the amount of Ni added in the steel to change the amount of martensite to create a two-phase structure of martensite and ferrite or a single-phase martensite structure. Figure 1 shows an example of this, in which Ni was added to 9%Cr-7%Mo steel, which is an example of the ferritic steel mentioned above, and the amount of martensite was varied, at 550°C and 65%.
These are the results of examining the tensile properties at room temperature after heating at 0'C. According to this, in the case of a single phase of ferrite (Ni: 0%), brittle fracture occurs when the material is heated to 550°C, and the elongation and reduction of area become zero.6 However, as the amount of Ni increases, the amount of martensite increases. When brittle fracture no longer occurs and the martensite content reaches 40% or more, the elongation and area of area of the heating material hardly change. As is clear from comparing this result with the sample material Nα3.4 shown in Table 1, in the case of a single ferrite phase, even if Ni is added, there is almost no effect on heat embrittlement. From these facts, brittle fracture after heating is not suppressed simply by increasing Ni. It has been found that the purpose of adding Ni is to add the amount necessary to generate martensite. Note that when an experiment was conducted in which Mn was added in place of Ni, similar results were obtained. This is because in the steel according to the above proposal, Nj is an element that is added as necessary, and is dissolved in solid solution in the ferrite base, especially at low temperatures.
This is because Nt is added for the purpose of improving short-term strength and improving toughness, and because it is necessary to satisfy I-Tv of 218 or less, Nt is added within the range of a single ferrite phase. Furthermore, when Nj is added to the proposed ferritic steel, the creep rupture strength may decrease (see FIGS. 2 and 3). However, it has been found that increasing the amount of martensite in ferrite + martensitic steel improves the creep rupture strength (Figure 3). Based on the above findings, the present inventor further conducted detailed experimental research on chemical components, structures, etc., and has hereby accomplished the present invention. That is, the present invention provides C50.03% and 0r=5-1
Contains 3%, further Mo: 6-15% and W: 8-25
1 or 2 of % (however, 6% in case of combined addition)
≦Mo+1/2W≦15%) and one or two of Ni and Mn at 1.0%≦Ni+1/2
Contains Mn≦9.0%, the remainder consists of Fe and unavoidable impurities, and the structure when quenched at a high temperature of 900°C or higher is a two-phase structure of ferrite + martensite or a single-phase martensite structure. This article focuses on intermetallic compound precipitation-strengthened high-strength steel Cr steel. The present invention will be explained in more detail below. First, the reason for limiting the chemical composition in the steel of the present invention will be explained. The lower the C content, the better the toughness of martensite and ferrite, so it is better to keep the C content as low as possible. However, the proposed steel does not need to be lowered to a certain degree, but the hardness after quenching increases as the C content increases, and the toughness decreases.
It is preferably 0.02% or less. On the other hand, if the C content exceeds 0.03%, the impact value, elongation, and area of area will decrease significantly.
The upper limit of Cl is 0.03% 6 Cr: It is an important maintenance issue to prevent rust from occurring during the manufacturing or assembly of fuel cladding tubes, and for this purpose, C
The more rjJl there is, the more rust generation is reduced. Also Cr1t
Since the increase in F lowers the solid solubility limit of Fe2Mo, the precipitated F
The e2Mo kite increases and the creep rupture strength is improved. For example, in steel containing 2.25%Cr-10%Mo, 6
Creep rupture strength at 50°C x] 03hr is 24 kgf
/nuo'', but in the case of 9%Cr-10%Mo steel, it becomes 30.5 kgf/+sm''. Based on these facts, the lower limit of the Cr amount is set to 5%. On the other hand, the reason for setting the upper limit of the Cr content to 13% is that if it exceeds 13%, the (Mo
This is because if the amount of +1/2W) is 6% or more, a martensitic structure cannot be obtained even if Ni or Mn is added. Mo, W: When Mo or W is added, the creep rupture strength increases significantly due to the precipitation of Fe, Mo, Fe, and W. Although there are various intermetallic compounds other than those mentioned above, it is most effective to add Mo and W to obtain high creep rupture strength. For this purpose, when adding Mo and W alone, the amount of Mo must be 6% or more and the amount of W must be 8% or more, and in the case of combined addition, 6% or more as Mo + 1/2 W is required. It is. On the other hand, when Mo and W are added alone, the upper limit is 15% each. The reason for setting the upper limit in the case of composite addition to 15% is that even if more than that is added, the increase in creep rupture strength tends to be saturated, making it expensive, and even if Ni or Mn is added. This is due to the inability to obtain martensitic tissue. In addition, in the case of a tissue containing martensite, Mo
When W is added alone, the slope of the creep rupture curve is somewhat large, but adding W has the effect of reducing the slope. Ni, Mn: Ni and Mn are added singly or in combination for the purpose of producing a martensitic structure through heat treatment (quenching from a high temperature of 900°C or higher), and the amount added depends on the amount of Cr, Mo, or W. Although different, a minimum of 1.0% of Ni+1/2Mn is required. However, when the amount of Ni+1/ZMn is 9
%, austenite will appear in the entire component range and increase swelling, so to prevent this, the upper limit is set at 9%. Although the above elements are considered essential elements, other elements that are normally included as impurities in high Cr steel are also allowed within the impurity range.For example, the content of Ti, Nb, etc. at 1% or less is However, this does not violate the essence of the present invention, and is also in the form of an intermetallic compound. P is thought to change the morphology of grain boundary precipitates. The addition of B, Zr, etc. is also generally well known. The inclusion of these elements does not violate the essence of the present invention. Since the present invention utilizes the precipitation of intermetallic compounds in high Cr steel having the above chemical composition, it is necessary to perform quenching at a high temperature of at least 900°C or higher. A phase structure or a martensitic single phase structure. As illustrated in Figure 1 above, Martensite tends to improve its elongation and reduction from about 5%, and although it is effective even at this level, it is preferably 10% or more. The reason why the temperature is set to a high temperature of 900° C. or higher is that at a temperature lower than this, the amount of undissolved intermetallic compounds increases, reducing ductility and toughness. The above-quenched steel of the present invention can be used as is, or after quenching, it may be used after being subjected to aging treatment at 650 to 850"C.If the aging treatment temperature is within this range, , a peak hardness can be obtained in a relatively short time. (Example) Next, an example of the present invention will be shown. 1
1100”CX30m for steel with composition changed by less than %
Water quenched after 1N solution treatment, resulting in 90% martensite
, 10% ferrite + martensite 2
The phase structure was obtained. Regarding this as-quenched material, the relationship between the impact value at -10° C. and the amount of C was investigated, and the results shown in FIG. 4 were obtained. The figure shows that if the C content is 0.03% or less, preferably 0.02% or less, the impact value can be effectively prevented from decreasing. Contains 0.01% C, 15% Cr, 6% Ni, Mo and /
Or, steel with a composition in which up to 16% of WttMo+1/2W is added is subjected to water quenching after solution treatment at 1050°C x 30win to form a martensitic single phase structure, ferrite +
A martensite two-phase structure or a ferrite+austenite two-phase structure was obtained. After quenching, a tensile creep rupture test was conducted to determine the creep rupture strength at 650°C x 103 hr and the Mo
The relationship between +1/2W amount was investigated. As shown in FIG. 5, the results show that when Mo and W are added alone, the creep rupture strength increases rapidly when the Mo content exceeds 6% and the W content exceeds 8%. In the case of combined addition of Mo and W, a similar tendency is shown when the amount of Mo+1/2W is 6% or more, and the creep rupture strength is significantly improved as the amount added increases. M
In order to investigate the effect of addition of O and W, steel with 7% MO and 114% W or composite steel with 3% Mo + 8% W was water quenched after solution treatment for 1050'C % ferrite + martensitic structure was obtained. After quenching, a creep rupture test was conducted at a test temperature of 650°C to examine the relationship between rupture time and stress. The results are shown in Figure 6, W
By adding W alone, the slope of the creep rupture curve becomes smaller than when Mo alone is added, and it can be seen that even if W is added in combination with Mo, the same effect is obtained. Both are improved over the proposed Ferrite I (9% Cr-7% Mo). A steel containing 0.01% G, 9% Cr, 8% Mo, and 6% Ni was water-quenched after solution treatment at 1050°C x 30 m1 to form a mixture of ferrite + marten with 10% ferrite and 90% martensite. Got the site organization. After quenching, aging treatment was performed by varying the heating temperature and time, and the treatment conditions for obtaining peak hardness were investigated. As shown in Figure 7, the results showed that the heating temperature was 650~
If the temperature is in the range of 850°C, a peak hardness of Hv310 or more can be obtained in a relatively short time such as 0.5 hr or less. Lost Garden C: 0.004-0.015%, Cr: 5-9%. Mo: 6-15% or W: 8-25%, Ni: 1.5
Creep rupture curves were investigated at a test temperature of 650°C for as-quenched materials with a ferrite + martensite two-phase structure or a martensite single-phase structure, which were quenched from 950 to 1050°C with steel within the range of the present invention containing ~9%. The results are shown in Figure 8.For comparison, HT-9 and Mod
, 9%Cr-1%M. carbide precipitation-strengthened supreme Cr ferritic steel and DT oxide dispersion-strengthened ferritic steel developed for fuel cladding.
2203YO5 steel (13%Cr-1゜5%Mo-2,2
%Ti-0.5%Y, 03) (see Nucl. Tech, 70 (1985) p. 215) is also described. From the same figure, the steel of the present invention (the shaded area in the figure) is the conventional carbide precipitation strengthened high Cr ferritic steel HT-9, Mod,
Not only does it have superior creep rupture strength compared to 9%Cr-1%Mo steel, but it also has oxide dispersion strengthened DT220.
It can be seen that it has an excellent creep rupture strength comparable to that of 3YO5 steel. (Effects of the Invention) As detailed above, the steel of the present invention is intermetallic compound precipitation strengthened copper having a ferrite + martensite two-phase structure or a martensite single-phase structure having a specific chemical composition. Compared to the proposed ferritic steel, it has less embrittlement during use and can also improve creep rupture strength. In particular, it has the advantage of having creep rupture strength comparable to that of oxide dispersion strengthened ferritic steel, far superior workability and weldability, and low manufacturing cost. Therefore, the steel of the present invention can withstand long-term use as a fast reactor fuel cladding material, and the number of times the core fuel needs to be replaced can be reduced, so it has a very large economic effect. Of course. The steel of the present invention takes advantage of its excellent high-temperature strength, ductility, and toughness,
Needless to say, it can also be used as a material for high-temperature equipment in the chemical industry, etc., in addition to fuel cladding material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9%Cr−7%Mo鋼にNiを添加してマルテ
ンサイト量を変化させた場合の焼入れ材。 550℃及び650℃加熱材の常温での機械的性質を示
す図、 第2図は従来の0.005%C−0%Cr−LO%Mo
−3%Niフェライト鋼及び0.005%C−9%Cr
−10%Moフェライト鋼のクリープ破断強度に及ぼす
Niの影響を示す図、 第3図は9%Cr−7%Mo鋼のクリープ破断強度に及
ぼすNiの影響を示す図。 第4図は7%Cr−8%−6%Ni鋼の衝撃値に及ぼす
(4の影響を示す図、 第5図は5%Cr−6%Ni鋼における650℃X 1
03hrクリ一プ破断強度に及ぼすMo、Wの影響を示
す図、 第6図は9%Cr−3%Ni鋼の650’Cでのクリー
プ破断強度に及ぼすMo、Wの影響を示す図、第7図は
9%Cr−8Mo−6%N1jlの時効処理条件とピー
ク硬さの関係を示す図、 第8図は本発明鋼と従来鋼とをクリープ破断強度につい
て比較して示す図である。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚 第1図 石L   f汀   シ1  間   (hr)Ni 
−i  (wtZ) 第4図 (9−(wt7.) 如※f吟F−’l (hr) 第5図 MoドアzW  (wty、1 庄t カ (kうf/搾り
Figure 1 shows quenched materials obtained by adding Ni to 9%Cr-7%Mo steel to change the amount of martensite. A diagram showing the mechanical properties of materials heated at 550°C and 650°C at room temperature. Figure 2 shows the conventional 0.005%C-0%Cr-LO%Mo
-3%Ni ferritic steel and 0.005%C-9%Cr
- A diagram showing the influence of Ni on the creep rupture strength of 10% Mo ferritic steel. FIG. 3 is a diagram showing the influence of Ni on the creep rupture strength of 9% Cr-7% Mo steel. Figure 4 shows the influence of (4) on the impact value of 7%Cr-8%-6%Ni steel. Figure 5 shows the effect of 650℃
Figure 6 is a diagram showing the influence of Mo and W on the creep rupture strength of 9%Cr-3%Ni steel at 650'C. Fig. 7 is a diagram showing the relationship between aging treatment conditions and peak hardness for 9%Cr-8Mo-6%N1jl, and Fig. 8 is a diagram showing a comparison of creep rupture strength between the steel of the present invention and conventional steel. Patent Applicant: Kobe Steel, Ltd. Patent Attorney Hisashi Nakamura
-i (wtZ) Fig. 4 (9-(wt7.) Like*fginF-'l (hr) Fig. 5 Mo door zW (wty, 1 shot ka (kuf/shibori)

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C≦0.03%及びC
r:5〜13%を含有し、更にMo:6〜15%及びW
:8〜25%のうちの1種又は2種(但し、複合添加の
ときは6%≦Mo+1/2W≦15%)を含有すると共
に、Ni及びMnのうちの1種又は2種を1.0%≦N
i+1/2Mn≦9.0%で含有し、残部がFe及び不
可避的不純物からなり、900℃以上の高温から焼入れ
た時の組織がフェライト+マルテンサイトの2相組織又
はマルテンサイト単相組織であることを特徴とする金属
間化合物析出強化型高強度高Cr鋼。
(1) In weight% (the same applies hereinafter), C≦0.03% and C
Contains r: 5 to 13%, further Mo: 6 to 15% and W
: Contains one or two of 8 to 25% (however, in the case of combined addition, 6%≦Mo+1/2W≦15%), and one or two of Ni and Mn. 0%≦N
Contains i+1/2Mn≦9.0%, the remainder consists of Fe and unavoidable impurities, and the structure when quenched at a high temperature of 900°C or higher is a two-phase structure of ferrite + martensite or a single-phase martensite structure. An intermetallic compound precipitation strengthened high strength high Cr steel.
JP62028922A 1987-02-10 1987-02-10 Intermetallic compound precipitation strengthening-type high-strength high-cr steel Pending JPS63195248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028922A JPS63195248A (en) 1987-02-10 1987-02-10 Intermetallic compound precipitation strengthening-type high-strength high-cr steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028922A JPS63195248A (en) 1987-02-10 1987-02-10 Intermetallic compound precipitation strengthening-type high-strength high-cr steel

Publications (1)

Publication Number Publication Date
JPS63195248A true JPS63195248A (en) 1988-08-12

Family

ID=12261895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028922A Pending JPS63195248A (en) 1987-02-10 1987-02-10 Intermetallic compound precipitation strengthening-type high-strength high-cr steel

Country Status (1)

Country Link
JP (1) JPS63195248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel

Similar Documents

Publication Publication Date Title
US4957701A (en) High-strength high-Cr ferritic heat-resistant steel
US5069870A (en) High-strength high-cr steel with excellent toughness and oxidation resistance
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
US4917738A (en) Steam turbine rotor for high temperature
US4049431A (en) High strength ferritic alloy
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
US4428781A (en) Welded steel chain
JP3534413B2 (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
US3378367A (en) Weldable, corrosion-resisting steel
US4049430A (en) Precipitation hardenable stainless steel
JPS63195248A (en) Intermetallic compound precipitation strengthening-type high-strength high-cr steel
US3473973A (en) Process of treating stainless steels
JPS625986B2 (en)
US3475164A (en) Steels for hydrocracker vessels containing aluminum,columbium,molybdenum and nickel
KR100708616B1 (en) Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
JPS6362848A (en) Low-alloy heat-resistant steel having high strength
JP2921324B2 (en) High-strength and high-toughness martensitic stainless steel for welded structures and method for producing the same
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JPS63434A (en) High strength ferrite steel for atomic reactor
JPS58199850A (en) Martensitic stainless steel for acidic oil well
Klueh et al. Thermal stability of manganese-stabilized stainless steels
JPH0741909A (en) Stainless steel for oil well and manufacture therefor
JPH0377268B2 (en)