JPS63195147A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS63195147A
JPS63195147A JP62027350A JP2735087A JPS63195147A JP S63195147 A JPS63195147 A JP S63195147A JP 62027350 A JP62027350 A JP 62027350A JP 2735087 A JP2735087 A JP 2735087A JP S63195147 A JPS63195147 A JP S63195147A
Authority
JP
Japan
Prior art keywords
core
optical fiber
refractive index
glass
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62027350A
Other languages
Japanese (ja)
Inventor
Shuichi Shibata
修一 柴田
Masaharu Horiguchi
堀口 正治
Takao Edahiro
枝広 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62027350A priority Critical patent/JPS63195147A/en
Publication of JPS63195147A publication Critical patent/JPS63195147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical fiber having low loss and excellent stability with hardly any Rayleigh scattering, by using quartz glass prepared by simultaneously adding a lighter element than Si and F thereto as a core or clad. CONSTITUTION:Glass, having a refractive index equal to or lower than that of quartz glass and consisting essentially of SiO2 is used as a core and quartz glass prepared by simultaneously adding at least one element, such as Al, Mg, Na, Be, Li, etc., having a lower atomic weight than that of Si and F thereto is used as the core or a clad to constitute an optical fiber from the cover having a high refractive index and clad having a lower refractive index than that of the core. Thereby the aimed optical fiber of low loss is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は低損失な光ファイバに関し、特にガラスの固有
損失であるレーリ散乱損失が小さく、しかも安定性にす
ぐれた光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-loss optical fiber, and more particularly to an optical fiber that has low Rayleigh scattering loss, which is an inherent loss of glass, and has excellent stability.

[従来の技術] 光ファイバは、低損失であること、ガラスとしての安定
性にすぐれること等から石英系ガラスを中心として発展
し、現在は、0.2d[178m以下の光損失も実現さ
れている0石英系ガラスファイバでは導波構造を形成す
るため、GeO*、PzOs等、S10□の屈折率を増
加させるドーパントをコア部に添加するか逆にF、[1
,0,のように5io2の屈折率を低下させるドーパン
トをクラッドに添加することにより屈折率分布を形成し
ている。
[Prior art] Optical fibers have been developed mainly using silica glass because of their low loss and excellent stability as glass, and currently optical fibers with optical losses of less than 0.2 d [178 m] have been realized. In order to form a waveguide structure in the 0 silica glass fiber, a dopant that increases the refractive index of S10□, such as GeO* or PzOs, is added to the core part, or conversely, F, [1
, 0, etc., which lowers the refractive index of 5io2, is added to the cladding to form a refractive index distribution.

0.2dD/km以下の光損失は、純石英系ガラスをコ
アにして製造されている。これはガラスが有している固
有損失要因(紫外吸収、赤外吸収、レーリ散乱)のうち
レーり散乱が光損失の最低値を決める主要因であること
に起因している。すなわち、純石英系ガラスの固有レー
り散乱値が低いことに対応している。このためより低い
光損失値を実現するには純石英ガラスよりもさらに低い
レーリ散乱値を有するガラスをコアにする必要がある。
Optical loss of 0.2 dD/km or less is manufactured using pure silica glass as a core. This is because among the inherent loss factors (ultraviolet absorption, infrared absorption, Rayleigh scattering) possessed by glass, Rayleigh scattering is the main factor that determines the lowest value of optical loss. In other words, this corresponds to the low intrinsic Ray scattering value of pure silica glass. Therefore, in order to achieve a lower optical loss value, it is necessary to use glass having a lower Rayleigh scattering value than pure silica glass as the core.

レーリ散乱係数α1は、次の式であられされる。The Rayleigh scattering coefficient α1 is expressed by the following formula.

a 、 m −rt 3(n ” −1) ”BKTg
n:屈折率 B:等温圧縮率 に:ボルツマン定数 T8ニガラス転穆温度 レーリ散乱係数を石英系ガラスよりも低い値にするため
には、上式において屈折率(n)9等温圧縮率(B)お
よびガラス転移温度(Tg)が石英よりも小さなガラス
系を選択することが必要にな−ってくる。
a, m -rt 3(n''-1)''BKTg
n: Refractive index B: Isothermal compressibility: Boltzmann constant T8 Nigaras inversion temperature In order to make the Rayleigh scattering coefficient a value lower than that of silica glass, in the above equation, refractive index (n) 9 Isothermal compressibility (B) It is also necessary to select a glass whose glass transition temperature (Tg) is lower than that of quartz.

[発明が解決しようとする問題点] 本発明は、石英ガラスと同等か、それより低い屈折率を
有するSiO2を主成分とするガラスをコアに用いた光
ファイバを実現し、より低損失化を可能とすることを目
的とする。
[Problems to be Solved by the Invention] The present invention realizes an optical fiber whose core is made of glass whose main component is SiO2, which has a refractive index equal to or lower than that of quartz glass, and which achieves lower loss. The purpose is to make it possible.

[問題点を解決するための手段] このような目的を達成するために、本発明は屈折率の高
いコアと、コアより低い屈折率のクラッドからなる5i
o2を主成分とする光ファイバにおいて、コアの屈折率
がSiO2の屈折率より大きくなく、コアおよびクラッ
ドの少なくとも一方を構成するガラスがSiよりも小さ
な原子量を有する元素である八ft 、Mg、Na、B
e、Liのうちの少なくとも一種とフッ素とを同時に添
加したStO,ガラスからなることを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a 5i core consisting of a core with a high refractive index and a cladding with a refractive index lower than that of the core.
In an optical fiber mainly composed of O2, the refractive index of the core is not greater than the refractive index of SiO2, and the glass constituting at least one of the core and the cladding is an element having an atomic weight smaller than Si, Mg, Na. , B
It is characterized by being made of StO and glass to which at least one of e and fluorine and at least one of lithium and fluorine are added simultaneously.

[作用] 本発明によれば、Stより軽い元素とフッ素とを同時に
添加した石英ガラスをコアまたはクラッドに用いて光フ
ァイバを4’l成するので、光ファイバの屈折率、ガラ
ス転移温度が小さいため、固有散乱損失であるレーり散
乱を小さく、従来の光ファイバより光損失値の低い光フ
ァイバが得られる。
[Function] According to the present invention, since the optical fiber is formed by using quartz glass to which an element lighter than St and fluorine are simultaneously added for the core or cladding, the refractive index and glass transition temperature of the optical fiber are small. Therefore, it is possible to obtain an optical fiber with low Ley scattering, which is an inherent scattering loss, and a lower optical loss value than conventional optical fibers.

このようにSiよりも軽い元素を添加すると、5io2
ガラスよりも小さなレーリ散乱が得られる理由は、以下
のように考えられる。
When an element lighter than Si is added in this way, 5io2
The reason why Ley scattering is smaller than that of glass is thought to be as follows.

レーリ散乱は、高温時に存在する統計力学的ゆらぎが低
温まで凍結されたものであるが、本発明が対象とする多
成分系では組成変動および密度変動に起因するゆらぎが
あり、これが屈折率のゆらぎとしてレーり散乱をひき起
こしている0例えば、Sin、に添加した時、Stより
も重い元素は、1原子当りの屈折率への寄与も大きく同
じ組成変動に対して、より大きなゆらぎを与えることに
なる。従って、Siよりも軽い元素が、小さなレーリ散
乱を示すのは、密度0組成両方に依存する散乱が減少す
るためで、屈折率、ガラス転B温度等とあわせて考える
と、うなずけるところである。
Rayleigh scattering is the result of statistical mechanical fluctuations that exist at high temperatures frozen down to low temperatures, but in the multicomponent system targeted by this invention, there are fluctuations due to compositional fluctuations and density fluctuations, which are caused by fluctuations in the refractive index. For example, when added to Sin, an element heavier than St makes a large contribution to the refractive index per atom and gives a larger fluctuation for the same composition variation. become. Therefore, the reason why elements lighter than Si exhibit small Rayleigh scattering is because the scattering that depends on both density and composition is reduced, which makes sense when considered together with the refractive index, glass transition B temperature, etc.

[実施例] 以下に本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

夾直週ユ 5t(OCzHs)<をアルコールで希釈した溶液に、
0.01mof!、〜0.1moJ2/ 11の濃度の
アンモニア水を11□o7s iモル比が約4になるよ
うに添加して加水分解し、アルコール溶媒の沸点以下の
温度約60〜80℃に保持して、比表面積200〜3Q
Qm’/gの微粒子を含有するS10.ゾル溶液を準備
した。これにアルコールで希釈した八りのアルコキシド
八fL (OCllh)コまたは八fL(OC4119
)3を添加し、さらに希釈したSi (OC21111
) 3Fを添加した。八1の添加量は^120sの5i
n2に対するモル比として3モル%以下であり、Fの添
加量はF/Si= 0.07 (モル比)である。
In a solution diluted with alcohol,
0.01mof! , ~0.1 moJ2/11 aqueous ammonia is added so that the molar ratio of 11□o7s i is about 4, and the mixture is hydrolyzed and maintained at a temperature of about 60 to 80 °C below the boiling point of the alcohol solvent. Specific surface area 200~3Q
S10. containing fine particles of Qm'/g. A sol solution was prepared. Add to this alkoxide diluted with alcohol, 8 fL (OCllh) or 8 fL (OC4119).
)3 and further diluted Si (OC21111
) 3F was added. The amount of addition of 81 is ^120s of 5i
The molar ratio to n2 is 3 mol% or less, and the amount of F added is F/Si=0.07 (molar ratio).

このゾルを、温度60℃でロッド状にゲル化させ、引き
続き乾燥、高温ガラス化して透明なガラスロッドな得た
This sol was gelatinized into a rod shape at a temperature of 60° C., followed by drying and high temperature vitrification to obtain a transparent glass rod.

第1図にこのようなガラスの比屈折率差(Δn(%))
をAl1の添加量に対して示した。Δnは、純石英ガラ
スを標準にして、空間フィルタリング法で測定したもの
である。八1の添加は、屈折率を増加させるため、A1
添加量が増大するにしたがって−0,3%からプラスの
値までΔnが変化していくことがわかる。このガラスロ
ッドのうち、Δnがほぼ純石英と一致する組成(第1図
では、Δf12032.9モル%、 F/5i−0,0
7)のガラスを用い、その外周にVAD法でF添加S1
0.ガラスを形成して、光フアイバ母材とした。第2図
にこの母材の屈折率分布を示す。
Figure 1 shows the relative refractive index difference (Δn (%)) of such glasses.
is shown with respect to the amount of Al1 added. Δn is measured using a spatial filtering method using pure silica glass as a standard. The addition of A1 increases the refractive index.
It can be seen that as the amount added increases, Δn changes from -0.3% to a positive value. This glass rod has a composition in which Δn almost matches that of pure quartz (in Figure 1, Δf12032.9 mol%, F/5i-0,0
Using the glass of 7), F addition S1 is applied to the outer periphery using the VAD method.
0. A glass was formed to serve as an optical fiber matrix. Figure 2 shows the refractive index distribution of this base material.

カーボン炉を用いて、約2000℃に加熱し、母材の線
引きを行りた。純石英コア光ファイバ(フッ素ドープ石
英クラッド)を別に用意し、波長0.63μm(He−
Neレーザ)において散乱損失を評価したところ、純石
英コアを1として約0.8の値が得られた。また(波長
)−4に対して損失をプロットし、レーリ散乱損失を求
めたところ、レーリ係数が、純石英コアの場合の約80
%に減少していることがわかった。
Using a carbon furnace, the base material was heated to approximately 2000°C and wire-drawn. A pure silica core optical fiber (fluorine-doped quartz cladding) was prepared separately, and a wavelength of 0.63 μm (He-
When the scattering loss was evaluated using a Ne laser), a value of about 0.8 was obtained, with the pure quartz core being 1. In addition, when the loss was plotted against (wavelength) -4 and the Rayleigh scattering loss was determined, the Rayleigh coefficient was approximately 80 for the pure silica core.
It was found that it decreased by %.

立直■ユ 実施例1と同様にして作製した5t02ゾル溶液に八1
のアルコキシドAJ! (OCJe)コ、 Naのアル
コキシドNa(OCzlls)およびSL (OC2H
8) sFを添加し、SiO2−八ILzo3− Na
2OF系ガラス(^A 、0. (2モル%) 、 N
a20(1モル%) 、 F/5i=0.07)を作製
した。 Naを添加することにより、 AJ!20s添
加の時、よく見られる結晶化が抑制され、ガラスとして
の安定性が増加した。Δnは、F添加により、はぼΔn
αOの値となった。このガラスをコアに光ファイバを作
製した。 Na、Oの添加は、屈折率を増加する。ここ
でl 203は3モル%以下の量であるが、結晶化の抑
制には、Na、OO,1モル%でも効果が現われ、はぼ
^120.とほぼ等しいモルまで、この効果は続くこと
がわかった。Naの代わりにLl、 Mgを用いても同
様に安定なガラスになり、光ファイバを作製することが
できた。
81 was added to the 5t02 sol solution prepared in the same manner as in Example 1.
Alkoxide AJ! (OCJe), Na alkoxides Na (OCzlls) and SL (OC2H
8) Add sF, SiO2-8ILzo3-Na
2OF glass (^A, 0. (2 mol%), N
a20 (1 mol%), F/5i=0.07) was prepared. By adding Na, AJ! When added for 20 seconds, crystallization, which is often seen, was suppressed and stability as a glass increased. By adding F, Δn becomes almost Δn
It became the value of αO. An optical fiber was fabricated using this glass as a core. Addition of Na and O increases the refractive index. Here, the amount of l203 is 3 mol% or less, but even 1 mol% of Na, OO, and 1 mol% are effective in suppressing crystallization. It was found that this effect lasts up to a molar value approximately equal to . Even if Ll or Mg was used instead of Na, a similarly stable glass could be obtained and an optical fiber could be produced.

夫五±ユ 気相で作製した粒子径0.1μm以下の^JZF3微粒
子粉末をSin、ゾル溶液に添加しくAfL約3 mo
f1%)、超音波で分散した後、ゲル化を促進するため
、さらにSi (OC211s) 3Fを用いてフッ素
添加(F15I= 0.1)を行い、均一なゾルを得た
。これを円柱状の容器に入れてゲル化後、乾燥、高温ガ
ス化して透明なガラスロッドを得た。Δnは約−0,1
%であった。これをコアに用い、外側にF添加石英ガラ
スをVAD法で形成してクラッドとしくΔnw−0,3
%)、この母材を線引きして光ファイバを得た。実施例
1と同様に0.63μ雷で散乱(レーリ散乱)を測定1
ノたところ〜純石英コアを1とすると約0.7の値が得
られた。
JZF3 microparticle powder with a particle size of 0.1 μm or less prepared in the gas phase was added to the Sin and sol solution at approximately 3 mo AfL.
f1%), and after ultrasonic dispersion, fluorine addition (F15I = 0.1) was further performed using Si (OC211s) 3F to promote gelation to obtain a uniform sol. This was placed in a cylindrical container, gelled, dried, and gasified at high temperature to obtain a transparent glass rod. Δn is approximately -0,1
%Met. This is used as the core, and F-doped silica glass is formed on the outside by VAD method to form the cladding Δnw-0,3
%), this base material was drawn to obtain an optical fiber. Measurement of scattering (Leley scattering) by 0.63 μ lightning as in Example 1 1
As a result, a value of about 0.7 was obtained, assuming that the pure quartz core is 1.

衷五■1 実施例1と同様にして作製した約300m27Hの比表
面積を有する微粒子を含有するゾル溶液に、水溶液化と
かしたBeFを添加しゲル化を促進するため、さらにア
ルコールで希釈した5i(OC211@)3Fを添加し
てロッド状ゲル体を得た。これを乾燥し、塩素系ガスを
数%含む)Ieガス雰囲気下でガラス化して、透明なガ
ラスロッドを得た。Δnは−0,15%であった。Be
はSiに対して約3モル%となるように添加量を選んで
あるが、フッ素は分解揮発等によ−リ、必ずしも正確な
添加量は求まらなかった。
衷五■1 5i ( OC211@)3F was added to obtain a rod-shaped gel body. This was dried and vitrified in an Ie gas atmosphere (containing several percent of chlorine gas) to obtain a transparent glass rod. Δn was −0.15%. Be
The amount of fluorine to be added was selected to be about 3 mol % relative to Si, but the exact amount of fluorine to be added could not always be determined due to decomposition and volatilization.

このガラスロッドにΔnが約−0,4%になるようにク
ラッド層を形、成して(コアとクラッドの比屈折率差は
、0.25%である)母材とし、光ファイバに線引きし
た。この光ファイバでもSiO2コア光フアイバより小
さなレーリ散乱を示すことが確認された。 5i(hに
単独で、Li、Na、Mg等を添加すると、一般には、
結晶化が起き、光ファイバに線引きできる程の安定なガ
ラスは得られない。Beも単独ドープでは結晶化を生じ
たが、BeF2の形で添加することにより、ファイバ化
が可能になった。これは、BeF、が5io2と同様の
ネットワーク構造を持つためと推測され、また、510
2ガラス中でもBeの近傍にFが存在するためと思われ
る。
A cladding layer is formed on this glass rod so that Δn is about -0.4% (the relative refractive index difference between the core and the cladding is 0.25%), and it is used as a base material, and an optical fiber is drawn. did. It was confirmed that this optical fiber also exhibited smaller Rayleigh scattering than the SiO2 core optical fiber. When Li, Na, Mg, etc. are added alone to 5i (h, generally,
Crystallization occurs, and a glass that is stable enough to be drawn into optical fiber cannot be obtained. Although Be alone caused crystallization, addition in the form of BeF2 made it possible to form a fiber. This is presumed to be because BeF has a network structure similar to 5io2, and 510
This is thought to be due to the presence of F in the vicinity of Be in the two glasses.

火族■互 コアを純石英ガラスより構成し、クラッドをΔnam 
−Q 、 2%とするようにlとFの添加量を選択した
。具体的には、八1は約1モル%、F/S iはモル比
で0.07である。光は主としてコア部を伝わるが、シ
ングルモード光ファイバであるためパワー分布の広がり
が大きく約20%のパワーがクラッド部にしみ出してい
ることが考えられる。
Fire group: The core is made of pure silica glass, and the cladding is made of Δnam.
The amounts of l and F added were selected so that -Q was 2%. Specifically, 81 is about 1 mol%, and F/S i is 0.07 in molar ratio. Light mainly travels through the core, but since it is a single mode optical fiber, the power distribution is wide and approximately 20% of the power is thought to seep into the cladding.

純石英をコアにフッ素を5702に添加したガラスをク
ラッドにする光ファイバのレーり散乱値な1とすると約
0.95の値が得られた。なお実施例では、コアまたは
クラッドにSiよりも小さな原子量を有する元素とフッ
素をコドーブして屈折率分布を形成した光ファイバが小
さなレーリ散乱損失を示すことはもちろんである。
If the Ray scattering value of an optical fiber having a pure quartz core and a fluorine-doped glass cladding is 1, then a value of approximately 0.95 was obtained. In the examples, it goes without saying that an optical fiber whose core or cladding is codoped with an element having an atomic weight smaller than Si and fluorine to form a refractive index distribution exhibits a small Rayleigh scattering loss.

Siより軽い元素^1 、Mg、Na、Be、Llおよ
びF等はSiO□中に添加することは一般には困難であ
るが、上述した実施例におけるようにゾルゲル法を適用
して、これらの元素を有効に添加することができる。
It is generally difficult to add elements lighter than Si^1, Mg, Na, Be, Ll, F, etc. into SiO□, but these elements can be added by applying the sol-gel method as in the above example. can be effectively added.

[発明の効果] 以上説明したように、本発明のStよりも軽い元素とフ
ッ素とを同時に添加した石英ガラスをコアまたはクラッ
ドに用い光ファイバを構成することにより、光フアイバ
用ガラスとしては今まで最も低いレーリ散乱を示すこと
で知られていた純石英ガラスよりも、さらに小さなレー
リ散乱の光ファイバを提供することができる。
[Effects of the Invention] As explained above, by constructing an optical fiber by using the quartz glass of the present invention to which an element lighter than St and fluorine are added at the same time for the core or cladding, it is possible to overcome the conventional glass for optical fibers. It is possible to provide an optical fiber with even lower Rayleigh scattering than pure silica glass, which is known to exhibit the lowest Rayleigh scattering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフッ素添加量を一定にして、 ^Lの添加量を
変化した場合の比屈折率差の変化を示す図、 第2図は八にとFを同時にSiO2に添加したガラスを
コアに、Fを5XO2に添加したガラスをクラッドに光
ファイバを構成した時の屈折率分布を示す図である。
Figure 1 shows the change in the relative refractive index difference when the amount of fluorine added is kept constant and the amount of L added is changed. , is a diagram showing the refractive index distribution when an optical fiber is constructed with a cladding made of glass in which 5XO2 is doped with F.

Claims (1)

【特許請求の範囲】[Claims] 屈折率の高いコアと、該コアより低い屈折率のクラッド
からなるSiO_2を主成分とする光ファイバにおいて
、コアの屈折率がSiO_2の屈折率より大きくなく、
前記コアおよびクラッドの少なくとも一方を構成するガ
ラスがSiよりも小さな原子量を有する元素であるAl
、Mg、Na、Be、Liのうちの少なくとも一種とフ
ッ素とを同時に添加したSiO_2ガラスからなること
を特徴とする光ファイバ。
In an optical fiber mainly composed of SiO_2, which consists of a core with a high refractive index and a cladding with a lower refractive index than the core, the refractive index of the core is not larger than the refractive index of SiO_2,
The glass constituting at least one of the core and the cladding is Al, which is an element having an atomic weight smaller than Si.
, Mg, Na, Be, and Li and at least one of Li and fluorine are added to the SiO_2 glass.
JP62027350A 1987-02-10 1987-02-10 Optical fiber Pending JPS63195147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62027350A JPS63195147A (en) 1987-02-10 1987-02-10 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027350A JPS63195147A (en) 1987-02-10 1987-02-10 Optical fiber

Publications (1)

Publication Number Publication Date
JPS63195147A true JPS63195147A (en) 1988-08-12

Family

ID=12218591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027350A Pending JPS63195147A (en) 1987-02-10 1987-02-10 Optical fiber

Country Status (1)

Country Link
JP (1) JPS63195147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915065A1 (en) * 1996-07-16 1999-05-12 Toyota Jidosha Kabushiki Kaisha Ultralow-loss silica glass and optical fibers made using the same
WO2005021455A3 (en) * 2003-08-29 2005-09-01 Corning Inc Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US7426327B2 (en) 2005-11-23 2008-09-16 Corning Incorporated Low attenuation non-zero dispersion shifted optical fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915065A1 (en) * 1996-07-16 1999-05-12 Toyota Jidosha Kabushiki Kaisha Ultralow-loss silica glass and optical fibers made using the same
EP0915065A4 (en) * 1996-07-16 1999-09-29 Toyota Motor Co Ltd Ultralow-loss silica glass and optical fibers made using the same
US6153546A (en) * 1996-07-16 2000-11-28 Toyota Jidosha Kabushiki Kaisha Ultralow-loss silica glass and optical fibers using the same
WO2005021455A3 (en) * 2003-08-29 2005-09-01 Corning Inc Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
JP2013006764A (en) * 2003-08-29 2013-01-10 Corning Inc Optical fiber containing alkali metal oxide and method and apparatus for manufacturing the same
JP2013014505A (en) * 2003-08-29 2013-01-24 Corning Inc Optical fiber containing alkali metal oxide and method for manufacturing the same and apparatus
US8798412B2 (en) 2003-08-29 2014-08-05 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US9250386B2 (en) 2003-08-29 2016-02-02 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US7426327B2 (en) 2005-11-23 2008-09-16 Corning Incorporated Low attenuation non-zero dispersion shifted optical fiber

Similar Documents

Publication Publication Date Title
US4339173A (en) Optical waveguide containing P2 O5 and GeO2
US6128430A (en) Composition for optical waveguide article and method for making continuous clad filament
US6690868B2 (en) Optical waveguide article including a fluorine-containing zone
KR970028622A (en) Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof
EP1404624A1 (en) Method of manufacture of an optical waveguide article including a zone with an elevated fluorine-content
US4804247A (en) Quartz glass optical fiber
Simpson et al. Optical fibres with an Al2O3-doped silicate core composition
US4830463A (en) Article comprising silica-based glass containing aluminum and phorphorus
JPS63195147A (en) Optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS62116902A (en) Wide-band low dispersion optical fiber
JPS6313946B2 (en)
JPS61132531A (en) Production of optical fiber
JPS61251539A (en) Optical fiber
JPH0129220Y2 (en)
JPS63281106A (en) Dispersion plat type optical fiber
JP3514406B2 (en) Optical fiber preform for optical amplification and method of manufacturing the same
JPH0717735A (en) High dispersion optical fiber and manufacture thereof
US20120308187A1 (en) Low Loss Aluminum Doped Optical Fiber for UV Applications
JPS61281046A (en) Optical fiber
JPS58125621A (en) Production of preform for optical fiber
Aggarwal et al. Optical waveguide containing P 2 O 5 and GeO 2
JPH06219765A (en) Production of preform for optical fiber
JPS6227014B2 (en)
JPH0525821B2 (en)