JPS63194849A - Continuous production of metal fine wire - Google Patents

Continuous production of metal fine wire

Info

Publication number
JPS63194849A
JPS63194849A JP2673587A JP2673587A JPS63194849A JP S63194849 A JPS63194849 A JP S63194849A JP 2673587 A JP2673587 A JP 2673587A JP 2673587 A JP2673587 A JP 2673587A JP S63194849 A JPS63194849 A JP S63194849A
Authority
JP
Japan
Prior art keywords
drum
cooling water
molten metal
wire
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2673587A
Other languages
Japanese (ja)
Other versions
JPH0642981B2 (en
Inventor
Shoji Okamoto
昭二 岡本
Tetsuo Soshiroda
十代田 哲夫
Masaaki Katsumata
勝亦 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62026735A priority Critical patent/JPH0642981B2/en
Publication of JPS63194849A publication Critical patent/JPS63194849A/en
Publication of JPH0642981B2 publication Critical patent/JPH0642981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably take out a metal fine wire from a discharging hole by injecting molten metal to cooling water layer formed on an inner circumferential face of rotating drum through a nozzle and solidifying, and specifying the ratio of the drum circumferential velocity to the molten metal jet flow velocity at the time of taking out as the metal fine wire. CONSTITUTION:While rotating the cylindrical drum 1, the cooling water is supplied in the drum 1 and the cooling water layer 2 is formed along the inner circumferential face of the drum by centrifugal force. To this cooling water layer 2, the molten metal is injected from the inside through the nozzle 3, and solidified and guided toward the discharging hole 14 by the centrifugal force and the metal solidified wire W is continuously taken out of the drum 1 from the discharging hole 14 together with the cooling water. In this case, molten metal is injected, so as to satisfy the conditional inequality among the drum circumferential velocity VD, the molten metal jet flow velocity VJ, angle thetaof the molten metal jet injected on the cooling water surface to the tangential line at contacting point and angle PSI from point A, which the molten metal jet is brought into contact with the cooling water surface to point B of the discharging hole 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属細線、特にアモルファス線材の連続製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for continuously manufacturing thin metal wires, particularly amorphous wires.

(従来技術およびその問題へ) アモルファス線材は、補強材や各種センサーと゛して実
用化されつつあり、今後の需要が期待され、金属溶湯か
ら直接極細線を連続的に製造する実用的技術が望まれて
いる。
(To the prior art and its problems) Amorphous wire rods are being put into practical use as reinforcing materials and various sensors, and future demand is expected, and a practical technology to continuously manufacture ultrafine wires directly from molten metal is desired. It is rare.

溶湯金属から直接、断面が円形な細線を得る方法として
、ノズルから噴出した溶融金属を冷却液層を形成する回
転体中に導き、冷却固化させた後、回転体の内壁に連続
的に巻取る方法がある(特開昭56〜165016号公
報など)。しかし、この方法によると、必ずバッチ運転
となり、工業化規模での連続生産運転は非常に惟し′、
)という欠点がある。
As a method of obtaining a thin wire with a circular cross section directly from molten metal, the molten metal ejected from a nozzle is guided into a rotating body that forms a cooling liquid layer, cooled and solidified, and then continuously wound around the inner wall of the rotating body. There are methods (such as Japanese Patent Application Laid-open No. 165016/1983). However, this method always requires batch operation, making continuous production operation on an industrial scale extremely difficult.
).

この欠点は、冷却液体層を遠心力によって回転円筒内に
推持し、しから冷却固化した金属フィラメントを回転円
筒内壁に連続して集積・巻取るという方法そのものに起
因するものだとして、回転体を用いず噴出ノズルあるい
は溝付ベルトコンベアによって帯状冷却体で冷却させる
方法も考案されている(特開昭58−119440号公
報、特開昭58−173059号公報)。この方法にお
いては、冷却液体層を安定にすることが非常に難しく、
また水層移動速度を大きくできないという欠点がある。
This drawback is attributed to the method itself, in which a cooled liquid layer is pushed inside a rotating cylinder by centrifugal force, and then the cooled and solidified metal filament is continuously accumulated and wound around the inner wall of the rotating cylinder. A method has also been devised in which the cooling material is cooled by a belt-shaped cooling body using a jet nozzle or a grooved belt conveyor (Japanese Patent Application Laid-open Nos. 58-119440 and 1987-173059). In this method, it is very difficult to stabilize the cooling liquid layer.
Another drawback is that the water layer movement speed cannot be increased.

溶融金属より直接、金属細線を得ろ際に製造条件上重要
な因子の1つとして、溶融ジェット流速Vj&ドラム周
速VDの速、変化を適切な値にするという点がある。V
D/V;が最適範囲を:よずれて小さくなると、1立状
のものあ4いは形の不規則な不連続の線ができるか、連
続線になっても形のよれたものになってしまい、また逆
にVD/Vjが最適範囲をこえて大きくなると、連続し
た細線は得られにくく、短い繊維状のものしか得られな
い。例えば、回転体中に線材を取り出すことなく連続的
に巻取るという、特開昭56−165016号公報に記
載された方法においては、できた細線がドラム内面に拘
束されるため、最終的に固化、冷却が完了した線材の速
度と、ドラム周速は完全に一致している。ジェット流速
とドラム周速の変動差は、固化しつつあろ溶湯ジェット
流の断面積の減少等で吸収し得ろが、連続した長い細線
を得ろVD/Vjの条件は非常にせまいものと考えられ
る。
When obtaining a thin metal wire directly from molten metal, one of the important factors in terms of manufacturing conditions is to set the speed and change of the molten jet flow velocity Vj and drum circumferential velocity VD to appropriate values. V
When D/V; deviates from the optimum range and becomes smaller, a vertical line or irregularly shaped discontinuous line will be formed, or even if it becomes a continuous line, it will become distorted. On the other hand, if VD/Vj exceeds the optimum range and increases, it is difficult to obtain continuous thin wires, and only short fibrous wires can be obtained. For example, in the method described in JP-A-56-165016, in which the wire is continuously wound into a rotating body without being taken out, the formed thin wire is restrained on the inner surface of the drum, so it eventually solidifies. , the speed of the wire after cooling completely matches the peripheral speed of the drum. Although the fluctuation difference between the jet flow velocity and the drum peripheral speed can be absorbed by reducing the cross-sectional area of the solidifying molten metal jet flow, etc., it is considered that the conditions of VD/Vj to obtain a continuous long thin line are extremely narrow.

このVD/Vjについて、前記公報(特開昭56−16
5016号公報、特開昭58−119440号公報、特
開昭58173059号公報)は1゜05 <VO/ 
V3< I 、 30ノ狭い範囲を提示している。
Regarding this VD/Vj, the above-mentioned publication (Unexamined Japanese Patent Publication No. 56-16
5016, JP 58-119440, JP 58173059) is 1°05 <VO/
V3<I, presenting a narrow range of 30 mm.

一方、まっf二<違った金属細線の連続製造方法・装置
として、特開昭6]−253148号公報に示したもの
がある。この方法では、円筒状ドラムを回転させつつ該
ドラム内に冷却水を供給して遠心力によりドラム内周面
に沿って冷却水1mを形成し、溶ln金属をノズルを介
して冷却水層に向けて噴射して凝固させ、遠心力により
取出口(放水口)に向けて案内し、該取出口から冷却水
ととらに金属凝固線を連続的に放出し、金属細線をドラ
ム外に取り出す。すなわち、ドラム内面に細線を堆積さ
せずに、取出口より冷却水と共に放出させる。
On the other hand, there is a method and apparatus for continuously manufacturing thin metal wires of different types as shown in Japanese Patent Application Laid-open No. 6/253148. In this method, cooling water is supplied into the drum while rotating a cylindrical drum, and 1 m of cooling water is formed along the inner peripheral surface of the drum by centrifugal force, and the molten metal is poured into the cooling water layer through a nozzle. The metal coagulation wire is injected toward the drum, solidified, and guided by centrifugal force toward the outlet (water outlet), where the metal coagulation wire is continuously discharged into the cooling water and tub, and the fine metal wire is taken out of the drum. That is, the thin wires are discharged from the outlet along with the cooling water without being deposited on the inner surface of the drum.

(発明が解決しようとする問題点) この方法においては、できた細線はある助走距離をおい
たのち、ドラム内面に拘束されろことなく、冷却液体と
共に放出されるため、必ずしも同化・冷却の完了した細
線とドラム周速は一致していな円すなわち、冷却水の進
入考の細線の運動挙動がはじめの方法とまったく異なる
(Problem to be solved by the invention) In this method, after a certain run-up distance, the formed thin wire is released together with the cooling liquid without being restrained by the inner surface of the drum, so assimilation and cooling are not necessarily completed. The thin wire and drum peripheral speed do not match, that is, the motion behavior of the thin wire when cooling water enters is completely different from the first method.

■D/Vjの最適製造条件が装置固有の製造因子によっ
て変化・限定されるために、この方法において新たにそ
の関係を把握する必要がある。
(2) Since the optimum manufacturing conditions for D/Vj change and are limited by manufacturing factors specific to the device, it is necessary to newly grasp the relationship in this method.

本発明の目的は、回転体を用い、かつ、内壁にできた細
線を堆積させることなく冷却液体と共に放出される金属
細線製造方法において、連続線を安定して取り出せろ条
件を備えた方法を提供することである。
An object of the present invention is to provide a method for producing thin metal wires that uses a rotating body and that allows the thin wires formed on the inner wall to be discharged together with a cooling liquid without depositing the thin wires, with the conditions that a continuous wire can be taken out stably. It is to be.

(問題点を解決するための手段) 本発明に係る金属細線の連続製造方法は、円筒状ドラム
を回転させつつ該ドラム内に冷却水を供給して遠心力に
よりドラム内周面に沿って冷却水層を形成し、該冷却水
層内方から溶湯金属をノズルを介して冷却水層に向けて
噴射して凝固さけ、遠心力により取出口に向けて案内し
、該取出口から冷却水とともに金属凝固線を連続的に放
出し、金属細線をドラム外に取り出す金属細線の連続製
造方法において、ドラム周速VD、溶湯ジェット流速V
j、冷却水表面に進入する溶湯金属のジェットが鉛直線
となす角度θ、および、溶湯ジェットが冷却水′表面に
着地した点から取出口の位置までの角度ψとの間の関係
式 を満たすようにして製造することを特徴とする。
(Means for Solving the Problems) The method for continuously producing thin metal wires according to the present invention involves supplying cooling water into the drum while rotating a cylindrical drum, and cooling water along the inner peripheral surface of the drum by centrifugal force. A water layer is formed, and the molten metal is injected from inside the cooling water layer through a nozzle toward the cooling water layer to avoid solidification, and guided by centrifugal force toward the outlet, and from the outlet along with the cooling water. In a continuous manufacturing method for thin metal wire, in which the metal solidified wire is continuously discharged and the thin metal wire is taken out of the drum, the drum circumferential speed VD, the molten metal jet flow speed V
j, satisfies the relational expression between the angle θ between the molten metal jet entering the cooling water surface and the vertical line, and the angle ψ from the point where the molten metal jet lands on the cooling water surface to the position of the outlet It is characterized in that it is manufactured in this manner.

(作 用) 上記の条件の下で、安定して連続的に金属細線を製造で
きろ。
(Function) Under the above conditions, thin metal wires can be produced stably and continuously.

(実施例) 以下、添付の図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

(a)製造条件 本発明に係る金属細線の連続製造方法(特開昭61−2
53147号公報参照)では、第1図に示すように、円
筒状ドラムlを回転させつつ該ドラム内に冷却水を供給
して遠心力によりドラム内周面に沿って冷却水層2を形
成し、該冷却水層2の内方から溶湯金属Mをノズル3を
介して下方冷却水層2に向けて噴射して凝固させ、遠心
力により、取出口14に向けて案内し、該取出口14か
ら冷却水とともに金属凝固線Wをドラムl外に連続して
取り出す。回転ドラムからの取り出しを内側から行うと
機構的に連続取り出しが難しいが、それに対して冷却水
層を形成する回転ドラムに溶湯金属を噴射するノズル3
に対向して取り出し開口14を設けると、冷却水によっ
て凝固した金属細線Wをそれに負荷される外力に逆らう
ことなく、極自然に取り出すことができる。
(a) Manufacturing conditions Continuous manufacturing method of thin metal wire according to the present invention (JP-A-61-2
53147), as shown in Fig. 1, a cooling water layer 2 is formed along the inner peripheral surface of the drum by centrifugal force by supplying cooling water into the cylindrical drum 1 while rotating the drum. , the molten metal M is injected from inside the cooling water layer 2 through the nozzle 3 toward the lower cooling water layer 2, solidified, guided toward the outlet 14 by centrifugal force, and The metal coagulation wire W is continuously taken out of the drum l together with the cooling water. Mechanically, continuous extraction is difficult if extraction from the rotating drum is performed from the inside, but nozzle 3 injects molten metal onto the rotating drum that forms a cooling water layer.
By providing the take-out opening 14 opposite to the opening 14, the fine metal wire W solidified by the cooling water can be taken out quite naturally without resisting the external force applied thereto.

この方法では、ノズルより噴出された溶湯は、A点で液
体層2に進入した際、溶湯ジェット流速Vjと、液体J
i7i2の速度の噴出方向成分の〜’DCO3θの差に
より、溶湯流に動圧がかかり、その流イtが乱される。
In this method, when the molten metal ejected from the nozzle enters the liquid layer 2 at point A, the molten metal jet flow velocity Vj and the liquid J
Due to the difference of ~'DCO3θ in the ejection direction component of the velocity of i7i2, dynamic pressure is applied to the molten metal flow, and the flow t is disturbed.

この乱れが小さい場合は問題なく、液体層2内にて固化
しfこ線〜■はトラム内面より助走距離りをちって取出
口14より放出される。しかし、動圧か大きいと、乱れ
か大きくなり、固化した線Wらその乱れの影響をうけ、
ストレートな線ではなく、よれた線になる。このよれの
程度が大きいと、取出口14でその線〜■に抵抗がかか
り、放出が不可能になり、ドラム内面にてきた線が堆積
し、運転が不可能になる。
If this turbulence is small, there is no problem; the particles solidify in the liquid layer 2 and are discharged from the outlet 14 at a run-up distance from the inner surface of the tram. However, when the dynamic pressure is large, the disturbance becomes large, and the solidified line W is affected by the disturbance,
Instead of a straight line, it becomes a twisted line. If the degree of twist is large, resistance will be applied to the wires through the outlet 14, making it impossible to discharge the drum, and the wires will accumulate on the inner surface of the drum, making operation impossible.

本発明において、後に例を示すように、動圧の程度を決
めるノエソト流速V、七液体層速度成分V  cosθ
の差が、Vjに対する一定の割合をこえると、放出が不
可能となることを見いたした。
In the present invention, as shown in an example later, the flow velocity V determines the degree of dynamic pressure, and the seven liquid layer velocity components V cos θ
It has been found that when the difference in Vj exceeds a certain ratio, release becomes impossible.

すなわち、進入角度をθとした時、 を満たしていればよいことがねかっLoまた、この方法
では、ノズル3より噴出された溶湯ジェットは、A点で
液体層2に進入し、固化・冷却された細線Wは、ドラム
内壁に達する。ここで、ドラム内壁に沿って、ある一定
の助走距離りをおいたのち、拘束されないうちに取出口
I4より細線Wが放出される。
In other words, when the approach angle is θ, it is sufficient that the following is satisfied.In addition, in this method, the molten metal jet ejected from the nozzle 3 enters the liquid layer 2 at point A, solidifies and cools. The thin wire W thus formed reaches the inner wall of the drum. Here, after a certain run-up distance along the inner wall of the drum, the thin wire W is discharged from the outlet I4 without being restrained.

したがって、固化・冷却された細線Wの速度とドラム周
速は完全に一致していない。細線にかかる力は、その速
度差によって生じる細線とドラム間のすべり摩擦であり
、その大きさは助走区間りに比例する。本発明では、後
に示すように、ノズル噴出位置Aと取出口位置Bの間の
角度ψによっである。この条件を満たさないと、すべり
摩擦によって生ずる力が大きくなり、その力をうけて細
線がきれてしまい連続線が得られなくなる。
Therefore, the speed of the solidified and cooled thin wire W and the peripheral speed of the drum do not completely match. The force applied to the thin wire is the sliding friction between the thin wire and the drum caused by the speed difference, and its magnitude is proportional to the run-up section. In the present invention, as will be shown later, this is due to the angle ψ between the nozzle ejection position A and the outlet position B. If this condition is not met, the force generated by sliding friction will increase, and the thin wire will break due to this force, making it impossible to obtain a continuous line.

以上のことから、特開昭61−253148号公報の方
法を用いて、連続細線を安定して取出口であることがわ
かった。すなわち、連続線を安定して取り出すための条
件をVD/Vjに関してその下限と上限を装置に固有な
関数として見出し、数式化できた。
From the above, it has been found that continuous thin wire can be stably extracted using the method disclosed in Japanese Patent Application Laid-Open No. 61-253148. That is, the conditions for stably extracting a continuous line were found and expressed mathematically by finding the lower and upper limits of VD/Vj as functions specific to the device.

(シ)金属細線の連続製造装置 第2図は、本実施例に用いた金属細線の連続製造装置の
平面図で、第3図はその立面図、第4図はその側面図、
第5図はその側面断面図である。
(iii) Continuous manufacturing device for thin metal wires FIG. 2 is a plan view of the continuous manufacturing device for thin metal wires used in this example, FIG. 3 is an elevation view thereof, and FIG. 4 is a side view thereof.
FIG. 5 is a side sectional view thereof.

第3図において、円筒状ドラム1は、周面三方を固定軸
受21.・・・で支持され、周面に巻回された駆動ヘル
ド22を駆動プーリ25により駆動して、水平中心軸の
周りに回転させるようになっている。
In FIG. 3, the cylindrical drum 1 has fixed bearings 21 on three sides of its circumference. The drive heald 22, which is supported by... and wound around its circumferential surface, is driven by a drive pulley 25 and rotated around a horizontal central axis.

この駆動ベルト22は、電動モータ23にてVベルト2
4を介して作動される。なお、駆動ベルト22は、取出
ロブーリ26.26にて支持され、かつ、テンション用
プーリ27にて外方に広がるように張設されている。し
たがって、取出ロブーリ26.26の間に開口である取
出口14が形成され、回転ドラム1の取出口I4而方に
細線W取出用の空間を確作ずろ。後に説明するように、
取出口14から冷却水とと乙に金属細線Wが取り出され
る。
This drive belt 22 is connected to the V-belt 2 by an electric motor 23.
4. The drive belt 22 is supported by the take-out robot pulleys 26 and 26, and is stretched outwardly by a tension pulley 27. Therefore, an opening 14, which is an opening, is formed between the take-out Roburis 26 and 26, and a space for taking out the thin wire W is ensured at the take-out port I4 of the rotating drum 1. As explained later,
The cooling water and the thin metal wire W are taken out from the outlet 14.

回転ドラム1は、第4図と第5図に示すように給水側ド
ラム部11と加熱側ドラム部12とをその間にスリット
■3が形成されるように対設し、該スリットI3を塞ぐ
ように駆動ベルト22を巻回し、前述したように、両放
水ロブーリ26.26間に駆動ベルト22が存在せず、
取出口14を形成する。もちろん、回転ドラム1の駆動
とスリット状円周開口の封鎖用ベルト22とは別個の乙
のとしてしよく、別途、中心軸等の駆動手段を配設して
もよい。
As shown in FIGS. 4 and 5, the rotating drum 1 has a water supply side drum part 11 and a heating side drum part 12 arranged opposite each other so that a slit 3 is formed therebetween, and the slit I3 is closed. As mentioned above, the drive belt 22 is not present between the two water discharge robots 26 and 26,
An outlet 14 is formed. Of course, the drive of the rotary drum 1 and the belt 22 for sealing the slit-shaped circumferential opening may be separate devices, and a drive means such as a central shaft may be provided separately.

給水パイプ4は、給水トラム部開口16から回転ドラム
1内に先端が挿入され、取出口I4の下方に配設された
受水博(図示しない)からフィルター・12を介してポ
ンプ43により取出口から放水される冷却水を回転ドラ
ムl内に再び循環供給して、一定の厚さの冷却水層2を
形成する。
The tip of the water supply pipe 4 is inserted into the rotary drum 1 through the water supply tram opening 16, and is taken out from a water receiving hole (not shown) disposed below the outlet I4 by a pump 43 via a filter 12. The cooling water discharged from the rotary drum 1 is circulated and supplied again into the rotating drum 1 to form a cooling water layer 2 of a constant thickness.

また、第5図に示すように、回転ドラム1内には支持軸
I5から溶湯金属噴射ノズル3を上記冷却水層2に一定
の角度を乙って指向するように配設する。該ノズル3に
はそれを取り巻くように高周波コイル32が配設され、
噴射する金属溶7nMを加熱溶融するようになっている
。該ノズルにおいては、第2図に示ずArボンベ31か
ら供給される圧縮ガスにより溶湯金属Mを噴射する。
Further, as shown in FIG. 5, a molten metal injection nozzle 3 is disposed within the rotating drum 1 so as to be directed from the support shaft I5 to the cooling water layer 2 at a constant angle. A high frequency coil 32 is arranged around the nozzle 3,
The sprayed metal melt of 7nM is heated and melted. In this nozzle, molten metal M is injected by compressed gas supplied from an Ar cylinder 31 (not shown in FIG. 2).

取出口14から取り出される凝固した金属細線Wは、第
1図に示すネット状ベルトコンベア5上に落下させ、ス
パイラル状にし、コンベア端でコイル状に巻取るのがよ
い。なお、6はブロワ−である。
The solidified thin metal wire W taken out from the outlet 14 is preferably dropped onto the net-like belt conveyor 5 shown in FIG. 1, formed into a spiral shape, and wound into a coil shape at the end of the conveyor. Note that 6 is a blower.

本装置の運転にあたっては、ドラムIを回転させつつ、
供給パイプ4から冷却水をドラム内に供給し、ドラム内
周面に沿って冷却水層2を形成する。ついで、ノズル3
から溶融金属Mを噴射すると、溶aMは冷却水層中に進
入して、冷却凝固すると同時に冷却水の回転方向に朋げ
られ、遠心力によりドラム内周面に着地する。生成した
凝固細線〜■は、スリブ)・状円周開口13上を冷却水
とと乙に取出口14に向けて進行し、冷却水の遠心力に
よって放出される際の流体圧とそれ自体に作用する遠心
力によって放水口プーリ間の開口部(取出口)14から
ドラム外に放出される。
When operating this device, while rotating drum I,
Cooling water is supplied into the drum from the supply pipe 4 to form a cooling water layer 2 along the inner peripheral surface of the drum. Next, nozzle 3
When the molten metal M is injected from the drum, the molten metal M enters the cooling water layer, cools and solidifies, and at the same time is pulled away in the rotational direction of the cooling water and lands on the inner peripheral surface of the drum due to centrifugal force. The generated solidified fine wires proceed toward the outlet 14 on the sleeve)-shaped circumferential opening 13 with the cooling water, and are released by the centrifugal force of the cooling water due to the fluid pressure and themselves. Due to the acting centrifugal force, the water is discharged to the outside of the drum through the opening (takeout port) 14 between the water outlet pulleys.

(c)例 次に示す条件でアモルファス金属細線を製造した。(c) Example An amorphous metal thin wire was manufactured under the following conditions.

細線材質    アモルファスFe−5i−B線径  
    φ120μR(±lOμR)ドラム回転数  
        305 rpmドラム周速     
    7.98m/sガイド材質       透明
塩化ビニールガイド部分長さ          15
0mm取出ロスリット巾          1mm取
出口長さ             30mmガイド仮
と接線方向のなず角度    0゜噴出圧力     
3.  f)−4,0kgf/’mm’ドラム内径  
    φ300〜800mm表に種々のVD/V3.
θ、ψの条件の下での製造結果を示す。
Fine wire material Amorphous Fe-5i-B wire diameter
φ120μR (±lOμR) Drum rotation speed
305 rpm drum peripheral speed
7.98m/s Guide material Transparent vinyl chloride Guide length 15
0mm take-out loss slit width 1mm take-out port length 30mm Nose angle between temporary guide and tangential direction 0° Ejection pressure
3. f) -4,0kgf/'mm' drum inner diameter
Various VD/V3.
The manufacturing results under the conditions of θ and ψ are shown.

ここに、VDはドラム周速(m/s)であり、■、はノ
ズルロ径、溶湯噴出重量、溶湯密度、噴出時間より算出
した溶湯ジェット流速(m/s)であり、θは溶湯ジェ
ット流が、冷却液体表面に進入する時に、表面の着地点
における接線と、鉛直方向のなす角変(進入角度)であ
り、ψは溶湯ジェットが冷却液体表面に着地した点から
、ドラムの回転方向から測定した取出口の位置までの角
度(90°≦ψ≦300°)である。
Here, VD is the drum peripheral speed (m/s), ■ is the molten metal jet flow velocity (m/s) calculated from the nozzle diameter, molten metal ejection weight, molten metal density, and ejection time, and θ is the molten metal jet flow is the angular change (approach angle) between the tangent at the surface landing point and the vertical direction when the molten metal jet enters the cooling liquid surface, and ψ is the angle from the point where the molten metal jet lands on the cooling liquid surface, from the rotational direction of the drum. This is the measured angle to the position of the outlet (90°≦ψ≦300°).

No、 I −No、 6では、進入角度060°、取
出口角度ψ240°で固定し、噴出圧力を変えてVD/
Vjを変化させる。
In No., I-No. 6, the approach angle was fixed at 060° and the outlet angle was fixed at ψ240°, and the ejection pressure was changed to obtain VD/
Change Vj.

条件式(1)の範囲内のNo、 l −No、 3では
ストレート連続線の取出に成功した。その他では、よれ
た線が取出口14でつまったり、断線がおこる。
For No., 1-No., and 3 within the range of conditional expression (1), straight continuous lines were successfully extracted. In other cases, twisted wires may become clogged at the outlet 14 or breakage may occur.

No、 7〜No、 10では、進入角度030°にし
て、−V O/ V 3を変化させろ。条件式(1)に
従い製造条件は拡がるが、やはり範囲がはずれると(N
o、 9 、No、10)、うまくいかない。
For No. 7 to No. 10, set the approach angle to 030° and change -V O/V 3. The manufacturing conditions expand according to conditional expression (1), but if the range is out of range (N
o, 9, No, 10), it doesn't work.

No、lI〜No、 l 3ては、取出口位置ψを変化
させる。ψにより条件式(1)の上限が変化するか、こ
の条件をこえたしのは、途中で断線がおこる。
No, lI to No, l3, the outlet position ψ is changed. The upper limit of conditional expression (1) changes depending on ψ, or if this condition is exceeded, a disconnection occurs midway.

No、14では、進入r旬度065°、取出口位置ψ2
40°にすると、製造条件が極度にU゛まくなり、途中
でつまってしまった。
For No. 14, the entry angle is 065° and the exit position is ψ2.
When the angle was set to 40°, the manufacturing conditions became extremely U゛, and the process stalled midway.

(発明の効果) 最適製造条件を見い出したことにより、安定した連続線
の製造が可能になり1為 また、本発明はアモルファス線材の製造に適するだけで
なく、他の金属の極細線を溶湯から直接製造する技術に
も適用することができるので、その実用性は極めて高い
ものである。
(Effects of the invention) By finding the optimum manufacturing conditions, it has become possible to manufacture stable continuous wires1. Furthermore, the present invention is not only suitable for manufacturing amorphous wires, but also for producing ultrafine wires of other metals from molten metal. Since it can also be applied to direct manufacturing technology, its practicality is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属細線の連続製造方法を図式的に示す断面図
である。第2図は本発明に係る金属細線の連続製造装置
の平面図、第3図はその立面図、第4図はその側面図、
第5図は第3図のV −V線断面図である。 ■・・・回転ドラム 、    2・・冷却水、3・・
・溶湯金属噴出ノズル、4・・・給水パイプ、5 ・ベ
ルトコンベア、  14・・取出口。
FIG. 1 is a cross-sectional view schematically showing a continuous manufacturing method for thin metal wires. FIG. 2 is a plan view of a continuous manufacturing apparatus for thin metal wires according to the present invention, FIG. 3 is an elevation view thereof, and FIG. 4 is a side view thereof.
FIG. 5 is a sectional view taken along the line V--V in FIG. 3. ■...Rotating drum, 2...Cooling water, 3...
- Molten metal spout nozzle, 4... Water supply pipe, 5 - Belt conveyor, 14... Outlet.

Claims (1)

【特許請求の範囲】[Claims] (1)円筒状ドラムを回転させつつ該ドラム内に冷却水
を供給して遠心力によりドラム内周面に沿って冷却水層
を形成し、該冷却水層内方から溶湯金属をノズルを介し
て冷却水層に向けて噴射して凝固させ、遠心力により取
出口に向けて案内し、該取出口から冷却水とともに金属
凝固線を連続的に放出し、金属細線をドラム外に取り出
す金属細線の連続製造方法において、 ドラム周速V_D、溶湯ジェット流速V_j、冷却水表
面に進入する溶湯金属のジェットが鉛直線となす角度θ
、および、溶湯ジェットが冷却水表面に着地した点から
取出口の位置までの角度ψとの間の関係式 0.5/cosθ≦V_D/V_j≦1.38−0.2
5ψ/300を満たすようにして製造することを特徴と
する金属細線の連続製造方法。
(1) Cooling water is supplied into the drum while rotating the cylindrical drum, a cooling water layer is formed along the inner peripheral surface of the drum by centrifugal force, and molten metal is poured from inside the cooling water layer through a nozzle. The thin metal wire is injected toward the cooling water layer to solidify, is guided by centrifugal force toward the outlet, and the metal coagulated wire is continuously discharged from the outlet along with the cooling water, and the thin metal wire is taken out of the drum. In the continuous manufacturing method of
, and the angle ψ from the point where the molten metal jet lands on the cooling water surface to the position of the outlet: 0.5/cos θ≦V_D/V_j≦1.38-0.2
1. A continuous manufacturing method for a thin metal wire, characterized in that the manufacturing method satisfies 5ψ/300.
JP62026735A 1987-02-07 1987-02-07 Continuous production method for fine metal wires Expired - Lifetime JPH0642981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026735A JPH0642981B2 (en) 1987-02-07 1987-02-07 Continuous production method for fine metal wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026735A JPH0642981B2 (en) 1987-02-07 1987-02-07 Continuous production method for fine metal wires

Publications (2)

Publication Number Publication Date
JPS63194849A true JPS63194849A (en) 1988-08-12
JPH0642981B2 JPH0642981B2 (en) 1994-06-08

Family

ID=12201566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026735A Expired - Lifetime JPH0642981B2 (en) 1987-02-07 1987-02-07 Continuous production method for fine metal wires

Country Status (1)

Country Link
JP (1) JPH0642981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870463A (en) * 2022-12-01 2023-03-31 宁波磁性材料应用技术创新中心有限公司 Continuous preparation device for amorphous alloy wire and use method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165016A (en) * 1980-04-17 1981-12-18 Takeshi Masumoto Preparation of metal filament
JPS61253147A (en) * 1985-05-01 1986-11-11 Kobe Steel Ltd Method and apparatus for continuous production of fine metallic wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165016A (en) * 1980-04-17 1981-12-18 Takeshi Masumoto Preparation of metal filament
JPS61253147A (en) * 1985-05-01 1986-11-11 Kobe Steel Ltd Method and apparatus for continuous production of fine metallic wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870463A (en) * 2022-12-01 2023-03-31 宁波磁性材料应用技术创新中心有限公司 Continuous preparation device for amorphous alloy wire and use method thereof

Also Published As

Publication number Publication date
JPH0642981B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US3436792A (en) Apparatus for producing strands or granules from liquid material
KR101990787B1 (en) Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
US4982780A (en) Method of producing metal filament and apparatus materializing same
US3409938A (en) Apparatus for producing fine fibers
JPS63194849A (en) Continuous production of metal fine wire
JPS61253147A (en) Method and apparatus for continuous production of fine metallic wire
JPS61165257A (en) Pouring device in continuous casting device
JPS6315055B2 (en)
JPS61119354A (en) Method and device for production of fine metallic wire
JP3061182B2 (en) Method and apparatus for producing monofilament crimped yarn
KR810000849B1 (en) Orifice plate for use in glass fiber spinning hearth
JPS61264109A (en) Production of solidified matter
JP2877742B2 (en) Method and apparatus for producing rapidly solidified metal powder
JPS62231008A (en) Discharge control in centrifugal spinning apparatus of molten pitch and apparatus therefor
JPH04270148A (en) Method and device for changing direction of gaseous stream around periphery of liquid convering agent applicator
JPH07246668A (en) Production of element member for micro-machine
JPH04182044A (en) Nozzle for injecting molten metal and manufacture of alloy fine wire using the same
RU2268951C1 (en) Method of forming coat from melt on surfaces of cylindrical articles
JPS63165050A (en) Method and apparatus for producing metallic fine wire
KR20010008882A (en) An apparatus for producing metal wire
JPH0651220B2 (en) Spinning wire winding method
JPS62162651A (en) Production of optical fiber coated with thermoplastic resin and apparatus therefor
JPH02153007A (en) Method and apparatus for manufacturing metal short fiber
JPS60154853A (en) Production of fine metallic wire
JPS5854099B2 (en) Equipment for manufacturing fibers made from thermosoftening substances