JPS6319472B2 - - Google Patents

Info

Publication number
JPS6319472B2
JPS6319472B2 JP58111489A JP11148983A JPS6319472B2 JP S6319472 B2 JPS6319472 B2 JP S6319472B2 JP 58111489 A JP58111489 A JP 58111489A JP 11148983 A JP11148983 A JP 11148983A JP S6319472 B2 JPS6319472 B2 JP S6319472B2
Authority
JP
Japan
Prior art keywords
oxide
weight
sintering
silicon nitride
aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58111489A
Other languages
Japanese (ja)
Other versions
JPS605076A (en
Inventor
Yoshinobu Okumura
Koji Kitamura
Jiro Tsuchida
Takuya Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58111489A priority Critical patent/JPS605076A/en
Publication of JPS605076A publication Critical patent/JPS605076A/en
Publication of JPS6319472B2 publication Critical patent/JPS6319472B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、靭性および強度にすぐれた窒化けい
素焼結体の製造法に関する。 窒化けい素(Si3N4)焼結体は、高温域での強
度・耐摩耗性等にすぐれ、熱膨張係数が小さく、
かつ化学的にも安定なことから、昨今内燃機関、
ガスタービン、ラジアントチユーブ、その他の高
温用途において従来の耐熱合金に代る新材料とし
て注目されている。窒化けい素粉末はそれ自体で
は焼結性に乏しいので、焼結体の製造には焼結助
剤を配合するのが一般である。これまでにも焼結
の促進、焼結体の高温強度改善等を目的として焼
結助剤の配合組成について種々研究がなされてお
り、例えば、イツトリウム酸化物(Y2O3)、マグ
ネシア(MgO)、あるいはアルミナ(Al2O3)な
どが有用な助剤として知られている。 しかるに、一般にセラミツクは構成原子の結合
が主として共有結合またはイオン結合(通常はこ
れらの結合の混成)であるため、高弾性率、高強
度を有する反面、結晶構造が複雑で、空間的に隙
間の多い構造を有する。このため一般のセラミツ
クは金属と異なり低温での転位の移動が不可能
で、脆性と呼ばれる挙動を示すのが大きな欠点と
なつている。この脆性に対しては、例えば焼結体
内に不均質相を形成させておけば、外部からの応
力によるクラツク進展の際に、分散する不均質相
によつて破壊エネルギーが吸収され破壊靭性値の
向上をみる、との見解も発表されており、また添
加剤の配合による脆性改善のこころみもなされて
いる。 しかしながら、窒化けい素焼結体については、
これまで靭性向上について充分な成果をみるに到
らず、その破壊靭性値(KIC)は6MN・m-3/2
越えず、通常3〜4MN・m-3/2程度にとどまつて
いるのが実情である。 本発明は、窒化けい素焼結体の破壊靭性値を改
善し、かつ強度を高めるためになされたものであ
る。 本発明の窒化けい素焼結体の製造法は、窒化け
い素粉末に、焼結助剤として、 イツトリウム酸化物(Y2O3)〔以下、「A助剤」
と称する〕と、 ランタン・ネオジム・プラセオジム複酸化物も
しくはランタン酸化物・ネオジム酸化物・プラセ
オジム酸化物混合物(以下、「B助剤」と称する)
と、 ジルコニウム酸化物(ZrO2)もしくは部分安
定化ジルコニウム酸化物(以下、「C助剤」と称
する)とを、A助剤は2〜13重量%、B助剤は2
〜18重量%、A助剤とB助剤の合計量は5〜28重
量%、およびC助剤は7〜30重量%となるように
窒化けい素粉末に配合し、成形・焼結するもので
ある。 焼結助剤として配合されるA助剤およびB助剤
は焼結の促進および焼結体の強度改善等の効果を
有する。この添加効果を十分に得るためには、少
くともA助剤は2重量%、B助剤は2重量%で、
両者の合計量は5重量%であることを要する。好
ましくは、A助剤は3重量%以上、B助剤は4重
量%以上であつて、その合計量は7重量%以上で
ある。 B助剤であるランタン・ネオジム・プラセオジ
ム複酸化物もしくは酸化物混合物は、焼結体の品
質の点から、酸化物換算値で、20〜80重量%のラ
ンタン酸化物(La2O3)、20〜50重量%のネオジ
ム酸化物(Nd2O3)および3〜20重量%のプラセ
オジム酸化物(Pr6O11)からなり、不純物とし
て付随するセリウム酸化物(CeO)は15重量%以
下、その他の希土類酸化物は5重量%以下である
ものが好ましく使用される。このものは、天然に
産出するランタニド系列希土類(酸化物)からセ
リウム(酸化物)を除去することにより得られる
ものであり、希土類単金属の酸化物よりも安価に
製造することができる。の複酸化物もしくは酸化
物混合物にセリウム(酸化物)が含まれること
は、焼結体の品質上好ましくないが、酸化物換算
で15重量%以下であれば実害はなく、またサマリ
ウム(Sm)その他の希土類元素の残留も5重量
%以下なら差支えない。 C助剤は、焼結促進のほかに、焼結体の破壊靭
性値の向上に奏効する助剤であり、このためには
少くとも7重量%を必要とする。更に好ましくは
9重量%以上配合される。なお、C助剤であるジ
ルコニウム酸化物を部分安定化ジルコニウム酸化
物とは、破壊靭性値の改善、焼結性向上の点では
同効物質とみなし得るもので、両者は複合的に使
用してもよい。 上記各助剤は、それぞれ配合割合の増加ととも
に添加効果の向上をみるが、あまり多く配合して
も、配合量の割に効果の増加が少く、かつ混合物
中に占める窒化けい素粉末の比率が低下すること
に伴つて窒化けい素焼結体としての特徴が弱ま
る。このために、A助剤は13重量%、B助剤は18
重量%、A助剤とB助剤の合計量は28重量%、お
よびC助剤は30重量%をそれぞれ上限とすべきで
ある。一般的には、A助剤は8重量%まで、B助
剤は16重量%まで、A助剤とB助剤の合計は20重
量%まで、またC助剤は20重量%までの配合によ
り好結果を得ることができる。 主原料である窒化けい素粉末には、結晶構造に
α型とβ型とがあり、周知のように焼結体の強度
等の点から焼結体内粒界層の結晶化助長のために
α型が有利であり、好ましくはα化率約90%以上
のものが使用される。 本発明によれば、窒化けい素粉末に、前記各助
剤を各々所要量配合し、なお必要ならば適当な成
形助剤を添加した混合物を、常法に従つて成形、
焼結することにより目的とする焼結体を得る。
「成形・焼結する」と言うのは、適用されるプロ
セスにより、例えばホツトプレス法や熱間静水圧
焼結法などのように、成形と焼結とが一工程で行
なわれる場合や、常圧焼結法のように所定形状へ
の成形と、成形体の焼結とが各別の工程として行
なわれる場合を含む。いづれのプロセスも通常の
条件で行なえばよく、例えばホツトプレス法で
は、所定形状の型内に混合物を充填し、適当な加
圧力、焼結温度(例えば200〜400Kgf/cm2、1600
〜1850℃)にて焼結を達成する。熱間静水圧焼結
法では、例えば加圧力500〜2500Kgf/cm2、温度
1600〜1850℃で行なわれる。また、常圧焼結法で
は、前記助剤とともにメチルセルロースなどの成
形助剤が適量加えられた混合物を適宜の成形法、
例えば一軸プレス、ラバープレス、射出成形など
に付して所望の成形体を得たのち、窒素ガスなど
の不活性雰囲気下、例えば雰囲気圧力1〜10Kg
f/cm2、温度1600〜1850℃にて焼結を完了する。 次に本発明の実施例について説明する。 実施例 〔A〕 ホツトプレス法 窒化けい素粉末(α化率95%、平均粒径0.6μ
m)に焼結助剤を配合し、ホツトプレス法によ
り、加圧力400Kgf/cm2、温度1800℃に1時間
保持して焼結体(40mm×20mm×6mm)を得た。 〔B〕 常圧焼結法 窒化けい素粉末(α化率95%、平均粒径0.6μ
m)に焼結助剤、および成形助剤として0.5%
メチルセルロース水溶液を配合(窒化けい素粉
末30gに対して10c.c.)、混合し、一軸プレス法
にて円板体を成形したのち、常圧焼結法によ
り、窒素ガス雰囲気(圧力1.3Kgf/cm2)中、
1750℃に2時間保持して円板状焼結体(直径50
mm×厚さ6mm)を得た。 上記各焼結法により得られた焼結体のそれぞれ
について破壊靭性値(KIC)および曲げ強度を測
定した。破壊靭性値の測定はKnoop―Inden―
tation―Strength法に準処した。曲げ強度試験
は、3mm×3mm×40mmの試片を使用し、3点曲げ
法(スパン距離30mm)にて行つた。 焼結助剤の配合および試験結果を第1表に示
す。 表中、「製法」欄の「A」はホツトプレス法、
「B」は常圧焼結法を意味する。試番(1)〜(6)は発
明例、101〜109は比較例である。発明例6におけ
るB助剤に占める不純分CeOの割合は7.9%、
Sm2O3のそれは2.6%である。他方、比較例101〜
109のうち、101はC助剤が欠けている例、102と
106はB助剤とC助剤が欠けている例、103と107
はB助剤が欠けている例、104はA,BおよびC
助剤を含んでいるが、A助剤とB助剤の合計が不
足している例、105と108はA,BおよびC助剤を
含んでいるが、B助剤に付随する不純分(CeO,
Sm2O3)が本発明の上限規定からはずれている
例、109はマグネシアを助剤とした例である。な
お、比較例105における不純分CeOのB助剤に占
める割合は18.2%であり、108における不純分
CeOのB助剤に占める割合は22.2%、Sm2O3のそ
れは8.3%である。 表に示されるように、本発明により得られる焼
結体は、成形・焼結法のいかんにかかわらず、従
来の水準を大きく越える高破壊靭性値を有し、か
つ強度についても同じ成形・焼結法による従来材
にまさつている。
The present invention relates to a method for producing a silicon nitride sintered body having excellent toughness and strength. Silicon nitride (Si 3 N 4 ) sintered bodies have excellent strength and wear resistance in high temperature ranges, and have a small coefficient of thermal expansion.
Because it is also chemically stable, internal combustion engines are becoming popular these days.
It is attracting attention as a new material to replace conventional heat-resistant alloys in gas turbines, radiant tubes, and other high-temperature applications. Since silicon nitride powder itself has poor sintering properties, it is common to add a sintering aid to it when producing a sintered body. Various studies have been conducted on the composition of sintering aids for the purpose of promoting sintering and improving the high-temperature strength of sintered bodies. For example, yttrium oxide (Y 2 O 3 ), magnesia (MgO ) or alumina (Al 2 O 3 ) are known as useful auxiliaries. However, in general, the bonds of the constituent atoms of ceramics are mainly covalent bonds or ionic bonds (usually a hybrid of these bonds), so while they have high elastic modulus and high strength, they have a complex crystal structure and are prone to spatial gaps. It has many structures. For this reason, unlike metals, general ceramics are unable to move dislocations at low temperatures, and exhibit a behavior called brittleness, which is a major drawback. To prevent this brittleness, for example, if a heterogeneous phase is formed in the sintered body, when a crack develops due to external stress, the fracture energy will be absorbed by the dispersed heterogeneous phase and the fracture toughness value will decrease. It has also been announced that there will be an improvement in the strength, and efforts have also been made to improve brittleness by adding additives. However, regarding silicon nitride sintered bodies,
Until now, sufficient results have not been achieved in improving toughness, and the fracture toughness value (K IC ) does not exceed 6 MN・m -3/2 , and usually remains at around 3 to 4 MN・m -3/2 . That is the reality. The present invention was made in order to improve the fracture toughness value and increase the strength of silicon nitride sintered bodies. The method for producing a silicon nitride sintered body of the present invention includes adding yttrium oxide (Y 2 O 3 ) as a sintering aid to silicon nitride powder (hereinafter referred to as "A aid").
] and a lanthanum-neodymium-praseodymium double oxide or a mixture of lanthanum oxide, neodymium oxide, and praseodymium oxide (hereinafter referred to as "Auxiliary B")
and zirconium oxide (ZrO 2 ) or partially stabilized zirconium oxide (hereinafter referred to as "C auxiliary agent"), 2 to 13% by weight of A auxiliary agent and 2 to 13% by weight of B auxiliary agent.
~18% by weight, the total amount of A and B auxiliaries is 5 to 28% by weight, and C auxiliary is 7 to 30% by weight, mixed with silicon nitride powder, and then molded and sintered. It is. A auxiliary agent and B auxiliary agent blended as sintering aids have effects such as promoting sintering and improving the strength of the sintered body. In order to fully obtain this addition effect, at least 2% by weight of auxiliary agent A and 2% by weight of auxiliary agent B,
The total amount of both is required to be 5% by weight. Preferably, the amount of auxiliary agent A is 3% by weight or more, the amount of auxiliary agent B is 4% or more by weight, and the total amount thereof is 7% or more by weight. From the viewpoint of the quality of the sintered body, the lanthanum/neodymium/praseodymium double oxide or oxide mixture that is the auxiliary agent B contains 20 to 80% by weight of lanthanum oxide (La 2 O 3 ) in terms of oxide value. Consisting of 20-50% by weight of neodymium oxide (Nd 2 O 3 ) and 3-20% by weight of praseodymium oxide (Pr 6 O 11 ), with 15% by weight or less of cerium oxide (CeO) accompanying as an impurity, Other rare earth oxides are preferably used in an amount of 5% by weight or less. This material is obtained by removing cerium (oxide) from naturally occurring lanthanide series rare earths (oxides), and can be produced at a lower cost than rare earth single metal oxides. Containing cerium (oxide) in the double oxide or oxide mixture is not desirable in terms of the quality of the sintered body, but if it is less than 15% by weight in terms of oxide, there is no actual harm, and samarium (Sm) There is no problem if the remaining rare earth elements are 5% by weight or less. The C auxiliary agent is an auxiliary agent that is effective in improving the fracture toughness value of the sintered body in addition to promoting sintering, and for this purpose, at least 7% by weight is required. More preferably, it is blended in an amount of 9% by weight or more. In addition, zirconium oxide, which is a C auxiliary agent, and partially stabilized zirconium oxide can be considered to be equivalent substances in terms of improving fracture toughness and improving sinterability, and both can be used in combination. Good too. The effect of adding each of the above auxiliary agents improves as the mixing ratio increases, but even if too much is added, the effect increases little compared to the mixing amount, and the ratio of silicon nitride powder in the mixture increases. As the value decreases, the characteristics of the silicon nitride sintered body weaken. For this, the A auxiliary is 13% by weight and the B auxiliary is 18% by weight.
By weight, the total amount of A and B coagents should be up to 28 wt.%, and C coagent 30 wt.%, respectively. In general, the amount of A auxiliary is up to 8% by weight, the B auxiliary is up to 16% by weight, the total of A and B auxiliaries is up to 20% by weight, and the C auxiliary is up to 20% by weight. Good results can be obtained. Silicon nitride powder, which is the main raw material, has an α-type crystal structure and a β-type crystal structure.As is well known, from the viewpoint of the strength of the sintered body, α Types are advantageous, and those with a pregelatinization rate of about 90% or more are preferably used. According to the present invention, a mixture of silicon nitride powder mixed with the required amounts of each of the above-mentioned auxiliary agents and, if necessary, an appropriate molding auxiliary agent, is molded according to a conventional method.
A desired sintered body is obtained by sintering.
“Forming and sintering” depends on the process being applied, for example, when forming and sintering are performed in one step, such as hot pressing or hot isostatic sintering, or when forming and sintering are performed in one step, such as in hot pressing or hot isostatic sintering, or This includes a case where forming into a predetermined shape and sintering the molded body are performed as separate steps, such as in a sintering method. Either process can be carried out under normal conditions; for example, in the hot press method, the mixture is filled into a mold of a predetermined shape, and the pressure and sintering temperature are adjusted to an appropriate pressure (e.g. 200 to 400 Kgf/cm 2 , 1600 kgf/cm 2 ).
Achieve sintering at ~1850℃). In the hot isostatic pressure sintering method, for example, the pressure is 500 to 2500 Kgf/cm 2 and the temperature is
It is carried out at 1600-1850℃. In addition, in the pressureless sintering method, a mixture to which an appropriate amount of a forming aid such as methyl cellulose is added together with the above-mentioned aid is processed by an appropriate forming method,
For example, after obtaining a desired molded body by uniaxial press, rubber press, injection molding, etc., under an inert atmosphere such as nitrogen gas, for example, at an atmospheric pressure of 1 to 10 kg.
Sintering is completed at f/cm 2 and a temperature of 1600 to 1850°C. Next, examples of the present invention will be described. Example [A] Hot press method Silicon nitride powder (gelatinization rate 95%, average particle size 0.6μ
A sintering aid was added to m), and a sintered body (40 mm x 20 mm x 6 mm) was obtained by hot pressing at a pressure of 400 Kgf/cm 2 and a temperature of 1800° C. for 1 hour. [B] Pressureless sintering method Silicon nitride powder (gelatinization rate 95%, average particle size 0.6μ
m) as a sintering aid and a forming aid of 0.5%
A methyl cellulose aqueous solution (10 c.c. for 30 g of silicon nitride powder) was mixed and formed into a disc using a uniaxial press method, followed by pressureless sintering in a nitrogen gas atmosphere (pressure 1.3 Kgf/ cm2 ) medium,
The disc-shaped sintered body (diameter 50
mm x thickness 6 mm) was obtained. The fracture toughness value (K IC ) and bending strength of each of the sintered bodies obtained by the above-mentioned sintering methods were measured. Measurement of fracture toughness value is done by Knoop―Inden―
tation-Strength method. The bending strength test was conducted using a 3 mm x 3 mm x 40 mm specimen using a three-point bending method (span distance 30 mm). The formulation of the sintering aid and the test results are shown in Table 1. In the table, “A” in the “Manufacturing method” column indicates the hot press method.
"B" means pressureless sintering method. Trial numbers (1) to (6) are invention examples, and trial numbers 101 to 109 are comparative examples. The proportion of impurity CeO in the B auxiliary agent in Invention Example 6 was 7.9%,
That of Sm2O3 is 2.6%. On the other hand, comparative example 101~
Out of 109, 101 are cases where C auxiliary is missing, 102 and
106 is an example where B and C auxiliaries are missing, 103 and 107
is an example where B auxiliary is missing, 104 is A, B and C
Examples 105 and 108 contain auxiliaries, but the total of auxiliary A and auxiliary B is insufficient. Examples 105 and 108 contain auxiliaries A, B, and C, but impurities accompanying auxiliary B ( CeO,
Sm 2 O 3 ) is outside the upper limit of the present invention, and No. 109 is an example in which magnesia is used as an auxiliary agent. In addition, the ratio of impurity CeO to B auxiliary agent in Comparative Example 105 is 18.2%, and the ratio of impurity CeO in Comparative Example 108 is 18.2%.
The proportion of CeO in the B auxiliary agent is 22.2%, and that of Sm 2 O 3 is 8.3%. As shown in the table, the sintered body obtained by the present invention has a high fracture toughness value that far exceeds the conventional level, regardless of the forming and sintering method, and has the same strength as the forming and sintering method. It is superior to conventional materials made using the binding method.

【表】【table】

【表】 以上のように、本発明により得られる窒化けい
素焼結体は、従来材に著しくまさる高破壊靭性
値、高強度を有するので、各種構造部材、工具な
どに好適で、従来材では得られぬ安定した耐久性
を保証することができる。
[Table] As described above, the silicon nitride sintered body obtained by the present invention has high fracture toughness and high strength that are significantly superior to conventional materials, so it is suitable for various structural members, tools, etc. It can guarantee unparalleled and stable durability.

Claims (1)

【特許請求の範囲】 1 窒化けい素粉末に焼結助剤を配合して成形・
焼結を行う焼結体の製造法において、 イツトリウム酸化物(以下、「A助剤」と称す
る)と、 酸化物換算値で20〜80重量%のランタン酸化
物、20〜50重量%のネオジム酸化物および3〜20
重量%のプラセオジム酸化物からなり、不純物と
して付随するセリウム酸化物は15重量%以下、そ
の他の希土類酸化物は5重量%以下であるランタ
ン・ネオジム・プラセオジム複酸化物もしくはラ
ンタン酸化物・ネオジム酸化物・プラセオジム酸
化物の混合物(以下、「B助剤」と称する)と、 ジルコニウム酸化物もしくは部分安定化ジルコ
ニウム酸化物(以下、「C助剤)と称する)とを
焼結助剤として、 A助剤は2〜13重量%、B助剤は2〜18重量
%、A助剤とB助剤との合計量は5〜28重量%、
およびC助剤は7〜30重量%となるように窒化け
い素粉末に配合されることを特徴とする窒化けい
素焼結体の製造方法。
[Claims] 1. Molding and molding by adding a sintering aid to silicon nitride powder
In the method for producing a sintered body, yttrium oxide (hereinafter referred to as "A aid"), 20 to 80% by weight of lanthanum oxide, and 20 to 50% by weight of neodymium in oxide equivalent value are used. oxide and 3-20
Lanthanum/neodymium/praseodymium double oxide or lanthanum oxide/neodymium oxide, consisting of 15% by weight or less of cerium oxide and 5% or less of other rare earth oxides by weight, including cerium oxide as an impurity.・A mixture of praseodymium oxide (hereinafter referred to as “A aid”) and zirconium oxide or partially stabilized zirconium oxide (hereinafter referred to as “C aid”) as a sintering aid; The agent is 2 to 13% by weight, the B auxiliary is 2 to 18% by weight, the total amount of A and B auxiliaries is 5 to 28% by weight,
A method for producing a silicon nitride sintered body, characterized in that the auxiliary agent C is blended into the silicon nitride powder in an amount of 7 to 30% by weight.
JP58111489A 1983-06-21 1983-06-21 Manufacture of silicon nitride sintered body Granted JPS605076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111489A JPS605076A (en) 1983-06-21 1983-06-21 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111489A JPS605076A (en) 1983-06-21 1983-06-21 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS605076A JPS605076A (en) 1985-01-11
JPS6319472B2 true JPS6319472B2 (en) 1988-04-22

Family

ID=14562560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111489A Granted JPS605076A (en) 1983-06-21 1983-06-21 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS605076A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772106B2 (en) * 1985-11-20 1995-08-02 京セラ株式会社 Silicon nitride sintered body and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553397A (en) * 1978-06-15 1980-01-11 Gte Laboratories Inc Si3n4 having high temperature strength and its manufacture
JPS5771871A (en) * 1980-10-20 1982-05-04 Sumitomo Electric Industries Tenacious ceramic tool material and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553397A (en) * 1978-06-15 1980-01-11 Gte Laboratories Inc Si3n4 having high temperature strength and its manufacture
JPS5771871A (en) * 1980-10-20 1982-05-04 Sumitomo Electric Industries Tenacious ceramic tool material and manufacture

Also Published As

Publication number Publication date
JPS605076A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
US4963516A (en) SiC complex sintered bodies and production thereof
EP0365553B1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JPS6327306B2 (en)
JPS6319473B2 (en)
JPS6319472B2 (en)
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPS6359992B2 (en)
JP3445345B2 (en) High heat-resistant water sialon-based sintered body
JPS605078A (en) Manufacture of silicon nitride sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JPH042664A (en) High-strength sialon based sintered compact
JPS6054979A (en) Manufacture of silicon nitride sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP2771335B2 (en) Silicon nitride sintered body for cutting tools
JP2592267B2 (en) Sialon reinforced with silicon carbide whiskers
JPS5953235B2 (en) Manufacturing method of silicon nitride sintered body
JPS5935869B2 (en) Manufacturing method of silicon nitride sintered body