JPS63194579A - Pulsed high voltage power supply - Google Patents

Pulsed high voltage power supply

Info

Publication number
JPS63194579A
JPS63194579A JP2615587A JP2615587A JPS63194579A JP S63194579 A JPS63194579 A JP S63194579A JP 2615587 A JP2615587 A JP 2615587A JP 2615587 A JP2615587 A JP 2615587A JP S63194579 A JPS63194579 A JP S63194579A
Authority
JP
Japan
Prior art keywords
voltage power
power supply
charging
voltage
speed switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2615587A
Other languages
Japanese (ja)
Other versions
JP2681633B2 (en
Inventor
Senichi Masuda
増田 閃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62026155A priority Critical patent/JP2681633B2/en
Publication of JPS63194579A publication Critical patent/JPS63194579A/en
Application granted granted Critical
Publication of JP2681633B2 publication Critical patent/JP2681633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To obtain an inexpensive and simple high voltage power supply, by a method wherein respective capacitors are charged in parallel with a DC high voltage power supply while the voltages of the capacitors are discharged to loads in series through a high speed switching element. CONSTITUTION:The electric dust collector 1 of high voltage load is equipped with a dust collecting electrode 2 and a discharging electrode while the dust collector 1 is connected to a DC high voltage power supply through an air-core coil 5. A pulse high voltage generating unit 10 is also connected between the discharging electrode 3 and the dust collecting electrode 2. In the high voltage generating unit 10, two sets of capacitors 16-17 of the array 15 of the capacitors are connected in series through a rotary spark switch 18 while respective capacitors 16-17 are provided with charging inductance elements 32-33 and diode elements 34, 35. According to this constitution, the capacitors 16-17 in the array 15 of capacitors are charged in parallel with the power supply 6. Then, a high speed switching element 18 is put ON to connect respective capacitors 16-17 in series and all of the charging voltages thereof is superposed to impress it on both terminals of the load 1.

Description

【発明の詳細な説明】 i産業上の利用分野」 本発明は電気集塵装置等の如き晶型ハ負荷に、時間幅の
極めて短い周期的パルス高電圧を、直流高電圧に重畳し
て印加しするためのパルス高圧電源に関するものである
。I[tI、本発明のパルス高圧電源は電気集塵装置の
みならず、パルス高電圧をIl’l流高電圧に重畳印加
して駆動すべきあらゆる高電圧応用装;〃、例えばパル
ス・コロナ放電を11!川するオゾン発生装置、パルス
 二10ナ放電を利用するS021)N02NO2,I
lg、ダイオキシン、フラン等の有害ガスの燃焼1北ガ
スからの除去装置、あるいはパルス・コロナ放電を利用
するプラスチックの表面話性化装:η等にも用いる4r
が出来る。
[Detailed Description of the Invention] Industrial Application Fields The present invention applies a periodic pulse high voltage with an extremely short duration to a DC high voltage to a crystal type load such as an electrostatic precipitator. This relates to pulsed high-voltage power supplies for I[tI, the pulsed high-voltage power supply of the present invention is applicable not only to electrostatic precipitators, but also to any high-voltage application equipment that needs to be driven by applying a pulsed high voltage superimposed on an Il'l flow high voltage; e.g., pulsed corona discharge. 11! S021) N02NO2,I, a flowing ozone generator that uses pulsed 210n discharge
A device for removing harmful gases such as lg, dioxins, and furans from combustion 1 north gases, or a device for making surface talkative of plastics using pulsed corona discharge: 4r, which is also used for η, etc.
I can do it.

I従来の技術] &e東この種の電源としζは、電気集塵装置等の高電圧
負荷にfめ独立の1h流高圧電源で直流高電圧を印加し
ておき、これに重畳して、それ自体別個のiI!f′f
L高圧電源別を備えた独ケのパルス高圧電源より結合コ
ンデンサーを介して該高電圧負荷に周期的パルス高電圧
を印加する17式が用いられてきた。
I Conventional Technology] & eHigashi This type of power supply ζ applies a DC high voltage to a high voltage load such as an electrostatic precipitator using an independent 1 hour current high voltage power supply, and then superimposes it on top of it. Its own separate iI! f′f
Type 17 has been used, which applies a periodic pulsed high voltage to the high voltage load via a coupling capacitor from an independent pulsed high voltage power supply equipped with an L high voltage power supply.

1本発明が解決しようとする間1iff11記b′C東
技術にあっては、該高電圧負荷に直接直流高電圧を印加
するための1/+流高圧電源の他、註パルス高圧電源に
もその構成@Aとして、該fI′流高正高圧電源4程度
の出力電圧を有する別個のめ、流i;1ハ電源を設ける
ゼ・曹があり、そのためパルス高圧電源のコストが非常
に高くなるという問題があった。本発明はこの問題を解
決し、電気集塵′A:6ならびに上記の各種高電圧負荷
に直1高電圧に重畳して周期的パルス高電圧を印加する
ための、簡lItでかつ安価なパルス高圧電源を提供す
る事を目的とするものである。
1 While the present invention is trying to solve the problem, 1iff 11 b'C East technology is capable of applying not only a 1/+ current high voltage power supply for directly applying DC high voltage to the high voltage load, but also a pulse high voltage power supply. As for its configuration @A, there is a separate power supply with an output voltage of about 4, and a separate power supply with an output voltage of about 4, which makes the cost of the pulsed high-voltage power supply very high. There was a problem. The present invention solves this problem and provides a simple and inexpensive pulse for applying periodic pulsed high voltage directly superimposed on one high voltage to the electrostatic precipitator 'A: 6 and the various high voltage loads mentioned above. Its purpose is to provide a high voltage power source.

E問題を解決するための手段] 本発明は、」−記の高電圧負荷(以下1綺と呼ぶ)に直
流ρ1電圧を供給するための直流高rI・電源を以て、
同時に2個又はそれ以上のコンデンサーを充電インピー
ダンスを介して並列に充電、次いで全てのハコンデンサ
ーの充電電圧を高速スイッチ素−r・を介して直列接続
のうえ、f・め上記直′rIL高電圧を印加されている
j!負負荷両端に印加し、その結果として該負荷に1/
「流高電圧に重畳してコ峻なパルス高電圧を印加する事
により、使用すべき直流高圧電源の数をただ1llll
として−1,記の問題を解決する。
Means for Solving Problem E] The present invention provides a DC high rI power supply for supplying DC ρ1 voltage to the high voltage load (hereinafter referred to as 1Q) indicated in ``-''.
Simultaneously charge two or more capacitors in parallel through a charging impedance, then connect the charging voltage of all capacitors in series through a fast switching element, is being applied! A negative load is applied across both ends of the load, resulting in a 1/
"By applying a steep pulsed high voltage superimposed on the current high voltage, the number of DC high voltage power supplies to be used can be reduced to just 1
As -1, solve the problem listed below.

即ち、本発明による新規のパルス高圧電源は、空心コイ
ル等のインダクタンス要素より成る高周波電流阻止要素
を介して該高電圧負荷に接続されこれに直流高電圧を供
給するための直流高圧電源を有し、少なくとも2111
のコンデンサーを夫々の中間に高速スイッチ素子を介し
てIし列接続のうえJ&高電圧負荷に並列に接続して成
るコンデンサー列を有し、該コンデンサー列の両端の2
1Illのコンデンサーは夫々の該高速スイッチ素tと
の接続点を夫々充電インピーダンスを介して反対端のコ
ンデンサーの該高電圧負荷との接続点に接続し、該=I
ンデンサー列の中間部のコンデンサーは夫々の両端を夫
々の充電インピーダンスを介して該両端コンデンサーと
該1へ電圧負荷との2個の当#接続点に接続し、上記各
コンデンサーをに記直流、へ圧電源により夫々の充電イ
ンピーダンスを介して並列に充電の上、全ての高速スイ
ッチ素子を1.1時にオンせしめ、これにより上記軽コ
ンデンサーの充電電圧を直列に11高電圧負荷の両端に
印加し、以下この動作を周期的にIi返して該高電圧負
荷に謹直fIi高電圧に重畳して周+1目的パルス高電
圧を印加する事を特徴とする。
That is, the novel pulsed high-voltage power supply according to the present invention has a DC high-voltage power supply connected to the high-voltage load via a high-frequency current blocking element made of an inductance element such as an air-core coil for supplying DC high voltage to the high-voltage load. , at least 2111
It has a capacitor string consisting of capacitors I and J connected in parallel through a high-speed switching element between each capacitor and a high voltage load, and two capacitors at both ends of the capacitor string.
1Ill capacitors each connect the connection point with the high-speed switching element t to the connection point with the high voltage load of the capacitor at the opposite end via a charging impedance, and
The capacitors in the middle of the capacitor array are connected at both ends to the two connection points between the capacitors at both ends and the voltage load to the voltage load through their respective charging impedances. After being charged in parallel by a voltage source through their respective charging impedances, all high-speed switching elements are turned on at 1.1 o'clock, thereby applying the charging voltage of the light capacitor in series to both ends of the 11 high-voltage loads, Thereafter, this operation is repeated Ii periodically to apply a period+1 target pulse high voltage to the high voltage load by superimposing it on the high voltage fIi.

この場合超高速スインチ素子はその全てを、例えば一対
の火花電極より成る火花スイノナ素子等の如く、ある電
圧以1−の過電圧で自動的にオンする様な自爆望高速ス
イlチ素子としてもよく、この場りには該:lンデンサ
−の充電電圧が1記過電圧を越えると瞬時に全自爆型高
速スイッチ素子がオンする。あるいは該、二゛−速スイ
ッチ素子の中・ル・なくとも1個は外部よりそのオン動
作を制御設定しうる外部制御型高速スイッチ素子、mは
自爆型高速スイッチ素子とし、註外部制御望高速スイッ
チ素子を外部よりの操作で周期的にオンせしめて、その
都度他の自爆や高速スイッチ素−fを111時にオンせ
しめる様にしてもよい。この場合該外部制御を高速スイ
ッチ素子がオンすると、 II!lのすべての自爆撃、
f:1速スイッチ素子に過電圧を生じ、自動的に全てが
オンする“1「になる。
In this case, all of the ultra-high-speed switch elements may be self-destruct high-speed switch elements that automatically turn on at an overvoltage of 1-1 or more, such as a spark switch element consisting of a pair of spark electrodes. In this case, when the charging voltage of the capacitor exceeds the first overvoltage, all self-destructive high-speed switching elements are turned on. Alternatively, at least one of the two-speed switching elements is an externally controlled high-speed switching element whose on operation can be controlled and set from the outside, m is a self-destructing type high-speed switching element, and the externally controlled high-speed The switch element may be turned on periodically by an external operation, and other self-destruction or high-speed switch elements -f may be turned on at 111 o'clock each time. In this case, when the high-speed switching element turns on the external control, II! All suicide bombings of l,
f: Overvoltage is generated in the 1st speed switch element and it becomes "1" which automatically turns on everything.

該外部f、II m ’?I高速スイッチ素子としては
所定のパルス晶型几周期に今せて予め設定した時点オン
動作を始発するものであれば適当なfEE!、のらのを
使用でき1例えば外部からのトリガー信号でオンするサ
イリスター素子、に T O素(−、FET素了素子ラ
ンジス9−”5にQ゛ト導体スイッチ素子・、又は電−
r管、あるいは水素サイラトロン等のトリガー用格f電
極を備えた放電管を用いてもよい、あるいは外部からの
操作で火花を発生してオン動作を行っ外、g2I11御
型火花スイッチ素子を用いてもよい。この様な外部制御
型火花スイッチ素子には、例えばトリガー用抽助電極を
備え、これにトリガー電圧を加えて火花をトリガ〜する
3点火花スイッチや、レーザー照射によるイオン化で火
7Lをトリガーするレーザー トリガー型火花スイッチ
等、外部からのトリガー操作でオン動作を行わせるトリ
ガーを火花スイッチ素仁あるいは一対の固定電極と、そ
の間にEn1転自在に絶縁表持されtu動機により即動
された回転r・とそのLに担持された複数個のln1転
−に極よりなる回転ta電極体で構成され、該同転電極
体が回転して該固定電極と該回転−B極が接近した時点
でのみ火花を生じてオ〉・動作を行う回転火花スイッチ
等がある。
The external f, II m'? I As a high-speed switching element, an appropriate fEE is suitable as long as it starts an on operation at a preset time point in a predetermined pulse crystal cycle. For example, you can use a thyristor element that is turned on by an external trigger signal, a TO element (-, a FET switching element, and a Q-conductor switch element, or an electric current).
You may use a discharge tube equipped with a trigger type f electrode such as an R tube or a hydrogen thyratron, or you can use a G2I11 type spark switch element to turn on by generating a spark by external operation. Good too. Examples of such externally controlled spark switch elements include, for example, a three-point spark switch that is equipped with a trigger extraction electrode and that triggers a spark by applying a trigger voltage to it, and a laser that triggers the fire 7L by ionization by laser irradiation. Trigger-type spark switches, etc., which are turned on by external trigger operation, are connected to a spark switch or a pair of fixed electrodes, and between them En1 is rotatably insulated and rotated immediately by a tu motor. It is composed of a rotating ta electrode body consisting of a plurality of ln1 rotary poles supported on the L and L, and sparks are generated only when the rotary electrode body rotates and the fixed electrode and the rotating B pole approach each other. There are rotary spark switches, etc. that operate by generating .

又充電インピーダンスとしては、インダクタンス要素、
抵抗要素のいずれを用いても良いが、インダクタンス要
素を用いる時は各コンデンサーのJ&il’l渣d−圧
電源からの充電に際して、該インダクタンス要A;のイ
ンダクタンスと註コンデンサーの静電容曖によるしC過
渡振動による充電、ll1Iちいわゆる共振充電がおこ
なわれ充電損失が4しく少なくなって好信合である。こ
の場合かがるインダクタンス要素に一1列に該コンデン
サーの該ln直流高圧電源らの充電方向をその導通方向
としてダイオード素j″−を接続する時は、上記共振充
電によって光1にされたコンデンサー電圧のピーク値が
そのまま保持され、各コンデンサーの電7Eは該直流高
圧電源の直流高電圧よりも一般に高くなり、その結IA
最大のパルス出力zs圧が得られる様になる。
Also, as charging impedance, inductance element,
Any resistive element may be used, but when an inductance element is used, the inductance is required when charging each capacitor from a voltage source. Charging due to transient vibration, ll1I, so-called resonance charging is performed, and the charging loss is reduced by 4 times, which is a good result. In this case, when connecting diode elements j''- to the inductance element in a row with the charging direction of the DC high-voltage power source of the capacitor being the conduction direction, the capacitor that has been made light 1 by the above-mentioned resonant charging. The peak value of the voltage is maintained as it is, and the voltage of each capacitor is generally higher than the DC high voltage of the DC high voltage power supply, and the connection IA
The maximum pulse output zs pressure can now be obtained.

111′川1 以下本発明の作用をその出力パルス晶型1紅の波IFj
を示した第11″4によって説明する。llj L l
+F1図では負の1ffft高電圧を用いた場合の電I
I−波形が示されており、Vo=−Vとなついる。
111' River 1 Hereinafter, the effect of the present invention will be described as its output pulse crystal type 1 red wave IFj
This is explained by the 11th "4" which shows llj L l
+F1 diagram shows the voltage I when using a negative 1ffft high voltage.
The I-waveform is shown, with Vo=-V.

尤ず1.記コンデンサー列を構成する各:Iンデンサ−
が、夫々の充電インピーダンスを介して=良i/(流高
圧電源により並列に充電され、全てのコンデンサーの電
圧Vcが該直流高圧電源の出力1i1流、1電圧V o
 = −−Vに等しいか、りるいはこれより高い値Vc
=−Ve (共振充電の時)に達する0次に時点し1に
於いて、該高速スイッチ素子の全てが同時にオンし、こ
れらを介して各コンデンサーの光電電圧がすべて直列に
重畳され、Vcに該コンデンサー要素の数Nを乗じた値
NVcの全波高値のパルス高電圧が該コンデンサー列の
両端に発生し、これが註iへ電圧負荷のM端に印加され
る。このとき上記高周波電流阻止要素が?を在するので
、このパルス高電圧の該直流高圧Xr!h源への侵入は
阻止され、オン時点Llに於いてVp=NVc−\/f
1の波高値のパルス高電圧が詠直流電圧vOに1rr畳
された形で、2&高−U正負荷の両端に加わる。
Of course 1. Each of the capacitors forming the capacitor row:
are charged in parallel by the high-voltage power supply through their respective charging impedances, and the voltage Vc of all capacitors is the output 1i1 current, 1 voltage Vo of the DC high-voltage power supply.
= Vc equal to or higher than −−V
At the 0th time point 1 when = -Ve (during resonance charging) is reached, all of the high-speed switching elements are turned on at the same time, and the photoelectric voltages of each capacitor are all superimposed in series through them, and Vc A pulsed high voltage with a full wave peak value NVc multiplied by the number N of capacitor elements is generated across the capacitor string, which is applied to the M end of the voltage load to note i. At this time, what about the above high frequency current blocking element? Therefore, the DC high voltage Xr! of this pulsed high voltage is The intrusion into the h source is prevented, and at the on point Ll, Vp=NVc-\/f
A pulse high voltage having a peak value of 1 is applied to both ends of the 2&high-U positive load in the form of 1rr multiplied by the DC voltage vO.

この時の電圧波形は同図の如く、該パルス高電圧の周期
T=t/1−Llを1周期とする先頭波高値Vpの鋸歯
状波が該直rM電圧V。
The voltage waveform at this time is as shown in the same figure, and the direct rM voltage V is a sawtooth wave of the leading peak value Vp with one cycle being the period T=t/1-Ll of the pulse high voltage.

=−Vに重畳したものを基本とし、該′JA歯状歯状波
先頭車]−がり部分に極めて高い周波数の高周波′JQ
会振動が乗ったものとなるが、その詳細については渣で
第214に関連して説明する。この高周波振動の第一の
半波はその時間幅が約1マイクロセカンド程度で、この
部分が極めてコ峻なパルスAtIFによるパルス荷電と
同等の作用効果を現し、実質的にパルス高電圧として(
至)くのである。
= -Based on the one superimposed on V, the 'JA tooth-shaped wave leading wheel] - extremely high frequency high frequency 'JQ
The details of this will be explained in relation to the 214th chapter in Hajime. The first half-wave of this high-frequency vibration has a time width of about 1 microsecond, and this part exhibits the same effect as pulse charging by extremely sharp pulsed AtIF, and is essentially a pulsed high voltage (
Until).

この場合該コンデンサー列で3個またはそれ以Eのコン
デンサーを用いる時は、両端のコンデンサー以外のコン
デンサーには、夫々その内端に1個ずつ、夫々計2個の
充電インピーダンスをrLFlせしめ、これらを夫々該
高電圧負荷の両端に接続する必要がある。
In this case, when three or more E capacitors are used in the capacitor string, the capacitors other than the capacitors at both ends are connected to a total of two charging impedances rLFl, one at each inner end, and these are It is necessary to connect each terminal to both ends of the high voltage load.

1実施PAF 第2I7Iは本発明の一つの実施例を示す回路図である
。lは高電圧負荷1本例では電気集塵装置で、その集塵
電極2は接地され、これより絶縁支持された放電極3は
導線4.空心コイル5(インダクタンス航Ll)を介し
て直流高圧電源6の負の出力端子7に接続されてElの
1/1流高電圧−■が印加され、0の正の出力端子8は
導線9により接地されている。1(Jは本発明によるパ
ルス高圧発生部で、その高圧側出力端子11は49線1
2を介して該放電極3に接続され。
1 Implementation PAF No. 2I7I is a circuit diagram showing one embodiment of the present invention. In this example, l is a high voltage load.In this example, the dust collecting electrode 2 is grounded, and the discharge electrode 3, which is insulated and supported from this, is connected to a conductor 4. It is connected to the negative output terminal 7 of the DC high voltage power supply 6 through the air-core coil 5 (inductance Ll), and a 1/1 current high voltage -■ of El is applied, and the positive output terminal 8 of 0 is Grounded. 1 (J is the pulse high voltage generating section according to the present invention, and its high voltage side output terminal 11 is connected to the 49 wire 1
2 to the discharge electrode 3.

接地側出力端r13は導線111を介して該集塵電極2
と共に接地されている。15は既に述べたコンデンサー
シリで2個のコンデンサー16、]7が回転火花スイッ
チ18を介して直列接続されて成る。
The ground side output end r13 is connected to the dust collection electrode 2 via the conductor 111.
It is also grounded. Reference numeral 15 denotes the capacitor series already mentioned, which is composed of two capacitors 16 and 7 connected in series via a rotary spark switch 18.

19.20は3&I++1転火花スイlチ18の固定電
極で、夫々接続点21.22を介して該コンデンサー1
6.17に接続されている。23は絶縁円盤で該固定電
極】す、20を結ぶ仮想軸に7行な回転軸24に回転自
在に支持され、23の周縁部は19.20の間隙に嵌入
しており、該周縁部の対称位置に人々該円盛を11(直
に貫通して回転上+4+2’+、26が配設されている
。27は5回転軸24に結合された電動機で、該絶縁円
盤23を回転させて、該IC11転電極25.2()を
交rfに該1.’il定電極19、20の間の間隙を通
過せしめ、その度に火花を発生せしめて該該回転火ll
:スイッチ18のオン動作を行わしめる。コンデンサー
16.17の他端28.20は夫々導線30.31を介
して高圧出力端T−11.接地側出力端F13に接続さ
れている。32.3゛うは人々該コンデンサー16.1
7の充−にインダクタンス要素で1人々ダイオード素子
34.35に直列接続の−1−接続点21と29.22
と30の間に接続されている。3・l、35の6通方向
は二組C(流高圧電源6による該コンデンサー1(i、
17の充電方向である0本例の電源の動fi:を次に述
べる。先ずH転火花スイッチ18のオフ時(謹固定電極
19、20と該回転電極25乃至26の離隔的)に於い
て該=Iンデンサー16.17は夫々の充電インダクタ
ンス要素32.33.該ダイオード素子33,34、及
び該空心インダクタンス5を介して該直流高圧電源6に
より並列に充電される。この場合該コンデンサー16.
17は夫々の充電インダクタンス要素32.33の存在
により過M振動で充電(共振充電)されるので充電損失
は極めて少なく、かつダイオード素子34.35の((
在により各コンデンサーの充電電圧Vcは−■よりも高
い過渡振動のピーク電圧Vc−=−Veにホールドされ
る0次に該回転火花スイッチ18がオンすると、両コン
デンサー16.17が18を介して直列接続され、夫々
の電圧の相2Vc=−2Veが出力端子11.13間に
現れ、これが導m12.14を介して、既に負の直流高
電圧−Vに充電されている放電極3と集塵電極2の間に
印加される。従って結局3と2の間には負の直1高電圧
−■に重畳して負のパルス高電圧VP= (2Ve−V
)が印加される結果となり、第112ilの様な電圧波
形(N=2>が現れる。即ち先ず時点t1に於いて上記
31111転火花スイッチ18がオンし、この瞬間、放
電極3と集塵電極2の間には瞬時に2VC=−2Veに
近い波高値のパルス高電圧が加わり、これに重畳して、
全回路容菫Ct、(コンデンサー16.17の静電容1
ick、C2,放電極3と集塵電極2の間の電極間静電
容量C’eの直列容菫)と、全回路インダクタンスLt
(火花スイッチ18、導線30.12.14.31の各
インダクタンスの直列インダクタンス)との直列共振に
よる高周波の過渡減衰振動が発生する。この振動は周波
数が約1000kHz程度で極めて♀く減衰1時点t、
2(ttの約0.1ミリセカンド後)に於いて消滅する
が、その最初の半波のピークのみで強力なパルス的コロ
ナ放電が放電極3に生じ、放電極表面に著しく人員の負
イオンを生ずる。この放出負イオンの空間電荷が余りに
大きいため、その放電極に対する静を七遮蔽作用で次の
振動ピーク以降ではコロナ放電は生じない。
19.20 are the fixed electrodes of the 3&I++1 spark switch 18, which are connected to the capacitor 1 via connection points 21.22, respectively.
6.17 is connected. 23 is an insulating disk rotatably supported by a rotating shaft 24 arranged in seven rows on an imaginary axis connecting the fixed electrodes and 20, and the peripheral edge of 23 fits into the gap 19. At a symmetrical position, an electric motor 11 (directly passing through the circular plate 26) is arranged. , the rotating electrode 25.2() of the IC 11 is caused to pass through the gap between the constant electrodes 19, 20, and each time a spark is generated, the rotating flame is
:Turns on the switch 18. The other end 28.20 of the capacitor 16.17 is connected to the high-voltage output end T-11. through conductors 30.31, respectively. It is connected to the ground side output terminal F13. 32.3 people 16.1
The inductance element 7 is connected in series with the diode element 34.35 at the connection points 21 and 29.22.
and 30. The six directions of 3.l, 35 are two sets C (the capacitor 1 (i,
The dynamic fi: of the power supply in the 0-wire example, which is the charging direction of 17, will be described next. First, when the H spark switch 18 is off (the fixed electrodes 19, 20 and the rotating electrodes 25 and 26 are separated), the =I inductors 16, 17 are connected to the respective charging inductance elements 32, 33, . They are charged in parallel by the DC high-voltage power supply 6 via the diode elements 33 and 34 and the air-core inductance 5. In this case, the capacitor 16.
17 is charged (resonant charging) by overM vibration due to the presence of the respective charging inductance elements 32 and 33, so the charging loss is extremely small, and the diode elements 34 and 35 ((
As a result, the charging voltage Vc of each capacitor is held at the peak voltage Vc-=-Ve of the transient oscillation, which is higher than -■.0 Next, when the rotary spark switch 18 is turned on, both capacitors 16 and 17 are charged via 18. Connected in series, the respective voltage phase 2Vc=-2Ve appears between the output terminals 11.13, which is collected via the conductor m12.14 with the discharge electrode 3, which is already charged to the negative high DC voltage -V. It is applied between the dust electrodes 2. Therefore, between 3 and 2, a negative pulse high voltage VP= (2Ve-V
) is applied, and a voltage waveform like 112il (N=2> appears. That is, at time t1, the 31111 rolling spark switch 18 is turned on, and at this moment, the discharge electrode 3 and the dust collection electrode 2, a pulse high voltage with a peak value close to 2VC=-2Ve is instantaneously applied, and superimposed on this,
Total circuit capacity Ct, (capacitance 1 of capacitor 16.17
ick, C2, series capacity of interelectrode capacitance C'e between discharge electrode 3 and dust collection electrode 2), and total circuit inductance Lt
(Series inductance of each inductance of the spark switch 18 and the conducting wires 30, 12, 14, 31) A high frequency transient damped vibration occurs due to series resonance. This vibration has a frequency of about 1000kHz and is extremely attenuated at one point t,
2 (approximately 0.1 milliseconds after tt), but a strong pulse-like corona discharge occurs at the discharge electrode 3 only at the peak of the first half-wave, and the negative ions of personnel are noticeably deposited on the surface of the discharge electrode. will occur. Since the space charge of this emitted negative ion is so large, corona discharge does not occur after the next vibrational peak due to its static shielding effect on the discharge electrode.

結果的にこの舷初の過渡振動のピークが、全波高値−2
Ve、5価的峙聞幅が約1マイクロセカンドの極めて短
いパルス高゛、シ圧と全く等価なパルス荷電作用を高電
圧負荷に及ぼすのである。この場合コンデンサ I (
J、17の同転火花スイッチ18を通しての放電電流は
少なくとも18がオフするまでの短い間は充電インダク
タンス32.33の高周波に対する大きなインピーダン
スに阻1トされて殆ど流れない、また放電極3から集塵
電極2へのnイオン移動によるパルス的コロナ電流は火
花スイッチ18のア=り維持には小さすぎる、そこで1
−記の高周波過M振動が滅火し、その高周波電流による
アーク加熱作用が停+1−1.た時点L2で直ちにアー
クもIJIれて該回転穴/I1.スイッチ18がオフと
なり、該パルス高圧発生部10から電極3.2への電流
の供給が断たれる。パルス的コロナ放電で発生した大!
誹の負イオンはこの後も放電極3から集塵電極2に向か
って移動する。そしてこれに伴う大きなパルス的イオン
電流によって、3と2の間の電極間静電界jIIceに
蓄えられていた電荷はコ速に放電し、放電極3の電圧V
が急激に低下し、−I2負イオンの移動完r時点L3(
t2から数ミリセカンド)で電圧■の急激な低下がおわ
る。そして、それ以降は通常の直流負コロナ放電による
緩慢なVの低下が続いてVはもとの直流電圧−■に近ず
き1回転火花スイッチ18の次のオン時点し4に至り1
以上の動作を繰返す、この場合上記高周波振動電圧に対
して空心コイル5は大きなインピーダンス分呈し、これ
に阻!卜されて5高周波振動電圧は直流高圧電源6に侵
入する事がない、またこのインピーダンスの作用でほぼ
全波高値−2■eに近いパルス電圧がドロップする′ド
なく電極3.2間に現れるのである、また該高周波振動
電圧が消滅した後、t2−L3の期間の過電圧は該空心
コイル5では阻止出来ないが、その変化がより緩慢なの
で該II′I流高圧電源らの内部の整流器で1分阻止で
き、これを破壊するバも無い0時点t2で回転火7Eス
イッチ18がオフすると直ちに光電インダクタンス32
.33およびダイオード34.35を介して=1ンデン
サー16.17の充電が始まるが、了の場合該充電イン
ダクタンス32.33のインダクタンスI/(Ll、L
2とJiコンデンサーの容+、+−ct、c2出定まる
過渡振動の周期’r’1.′r2が大きいと共振充電に
′心待間がかかり、!1!i局はぼ時点L5の直前で充
電が素子する。逆にI’1.T”2が時間(t、3−1
2>に比べて量・分率さいと、時点L2に於いて電極2
.3間の静電容置Ceに充電されている比較的高いtu
圧がCe −1,−1−CIおよびCe−Ll−CIの
過渡振動による共振充電で人々のコンデンサー16.1
7に逆充電し、ペルス波形は第3図に示す様に−めて急
峻となる。これに伴って、該コンデンサー16.17か
らパルス印加時に電極同容!11Ceに供給された容疑
性エネルギーの町なりの部分が16.17にFI11収
され、エネルギー効率が極めて高くなる。この場合もダ
イオード34.35が」、2逆充電電圧のビーク植をホ
ールドする役(」を果たす。
As a result, the peak of this transient vibration at the beginning of the ship is the total wave height -2
Ve, a very short pulse with a pentavalent hearing width of about 1 microsecond, exerts a pulse charging effect on a high voltage load that is completely equivalent to a voltage. In this case capacitor I (
The discharge current through the co-rotating spark switch 18 of J and 17 is blocked by the large impedance of the charging inductance 32 and 33 against high frequencies, at least for a short period of time until 18 is turned off, and almost no current flows, and the discharge current is not collected from the discharge electrode 3. The pulsed corona current due to n ion transfer to the dust electrode 2 is too small to maintain the spark switch 18 at a constant temperature, so 1
- The high frequency over M vibration described above is extinguished and the arc heating effect due to the high frequency current stops +1-1. Immediately at time L2, the arc is also IJI and the rotation hole/I1. The switch 18 is turned off, and the supply of current from the pulse high voltage generator 10 to the electrode 3.2 is cut off. A large one caused by a pulsed corona discharge!
After this, the harmful negative ions continue to move from the discharge electrode 3 toward the dust collection electrode 2. Due to the accompanying large pulsed ion current, the charges stored in the interelectrode electrostatic field jIIce between 3 and 2 are discharged at a speed of
decreases rapidly, and the movement of -I2 negative ions is completed at point L3 (
A few milliseconds after t2), the rapid drop in voltage (2) ends. After that, V continues to slowly decrease due to normal DC negative corona discharge, and V approaches the original DC voltage -■, reaching the next ON point of the 1-turn spark switch 18, 4.
The above operation is repeated. In this case, the air-core coil 5 presents a large impedance to the high-frequency oscillating voltage, and this causes an obstruction! The high-frequency oscillating voltage does not enter the DC high-voltage power supply 6, and due to the effect of this impedance, a pulse voltage close to the full-wave peak value -2■e appears between the electrodes 3 and 2 without any drop. Moreover, after the high frequency oscillating voltage disappears, the overvoltage during the period t2-L3 cannot be prevented by the air core coil 5, but since the change is slower, the rectifier inside the II'I high voltage power supply can prevent the overvoltage. As soon as the rotary flame 7E switch 18 is turned off at time t2, when it can be blocked for 1 minute and there is no way to destroy it, the photoelectric inductance 32
.. 33 and the diode 34.35, charging of the =1 capacitor 16.17 starts, but in the case of completion, the inductance I/(Ll, L
2, the capacitance of the Ji capacitor +, +-ct, and the period of transient vibration determined by c2 'r'1. If 'r2 is large, it takes a long waiting time for resonance charging. 1! Station i starts charging just before time L5. On the contrary, I'1. T”2 is time (t, 3-1
2>, the amount and fraction is smaller than that of electrode 2 at time L2.
.. A relatively high tu charged in the capacitor Ce between 3
People's capacitors 16.1 with resonant charging due to transient oscillations of pressure Ce-1,-1-CI and Ce-Ll-CI
7, and the pulse waveform becomes very steep as shown in FIG. Along with this, when pulses are applied from the capacitors 16 and 17, the electrodes are the same! The town's portion of the suspicious energy supplied to 11Ce will be collected by FI11 on 16.17, making the energy efficiency extremely high. In this case as well, the diodes 34 and 35 play the role of holding the peak of the two reverse charging voltages.

本例で該充電インピーダンス32.33の両方又は一方
を可変とし、これを大きくして時定RT1.T2の両方
又は一方をパルス周期゛1゛の1/3よりも大きくして
やると、次のトリガ一時点t4に至っても該コンデンサ
ー16.17の内方ないし一方が一■まで充電されず、
パルス高圧電源の出力電圧は一2■よりも小さくなる。
In this example, both or one of the charging impedances 32 and 33 is made variable, and is increased to increase the time constant RT1. If both or one of T2 is made larger than 1/3 of the pulse period "1", one or more of the capacitors 16 and 17 will not be charged to 12 even when the next trigger point t4 is reached.
The output voltage of the pulsed high-voltage power supply will be smaller than -2.

従ってLl、L2の両方ないし一方を上に対応する値よ
り大きく調整する事によって、パルス電I3:の全′f
!L高値Vpを一2v以下の範囲で可変にする°1肋(
可能となる。この場合充電インダクタンス32.33の
代わりに、固定またはり変の充電抵抗を用いてもよい′
ハは3うまでも環い。又場合に、1リダイオーl;34
.35を??略する°1tら出来るが、この時は光′、
kIIIFの該=1ンデンサー1()、】7の光電電圧
は一■、あるいはこれ以1・に+lまる。又回転火花ス
イーy −) 1 Hの代わりにIE、Hの外部制御望
高速スイッチ素子−2ないし]^1定火花スイlチ等の
自爆1′!高速スイッチ素■′を用いても良い。
Therefore, by adjusting both or one of Ll and L2 to be larger than the corresponding value above, the total 'f' of the pulse voltage I3:
! L high value Vp is variable within the range of -2V or less.
It becomes possible. In this case, a fixed or variable charging resistor may be used instead of the charging inductance.
Ha goes around until 3. In addition, in the case, 1 redior l; 34
.. 35? ? It is possible to omit °1t, but at this time light',
The photoelectric voltage of the =1 capacitor 1(), ]7 of kIIIF is increased by 1 or more by 1. Also, rotating spark switch y-) 1 Instead of H, IE, H externally controlled high-speed switching element-2 or] ^1 Self-destruction of constant spark switch, etc. 1'! A high-speed switching element ■' may also be used.

第414は両端の=1ンデンサー16.17の中間にい
ま一つめ=1ンデンサー3Gを2114の固定?137
.38よりなる自爆型火花スイッチ3りおよびL記同転
火花スイッチ18を介して挿入し、合計3個のコンデン
サーをも−)てコンデンサー列15を構成した例を示す
、lljシ中間の二1ンデンサー=36は人//その両
端40.41と接続点28.2りの間に挿入せる充電用
インダクタンス要素42.4”(をイfし、夫々にダイ
オード素子−44、/15が該コンデンサー36の該−
C源6による充電方向を導通として直列に接続されてい
る。この様に中1n+のコンデンサーは、その数が木イ
列の如<1111またるとそれ以−[たるとを問わず、
いずれも人々の両端と該高圧直流電源6の両端r7.8
の間に挿入された各2個の充電用インピーダンスを11
偏しないと光tuが出来ない1tは、iうまでもない0
図に於けるlから35までの番号の要素の?’+称及び
機ず指は第21Jにhセける1司一番号の要素のそれと
同じである。 j![【+1転火花スイッチ18がオン
するとコンデンサー17と16の充電型rhの和、即ち
はげ2Voの電圧が自爆型火花スイッチ39の同定電極
37.38の間に加わり、39が瞬時に自動的にオンす
る。これに続くパルス高電圧発生動作のxyaaは自明
であるので、。凭明を省略する。
The 414th fixes the first =1 densityer 3G between the =1 densityers 16 and 17 at both ends of 2114? 137
.. This is an example in which the capacitor array 15 is constructed by inserting the self-destructing spark switch 38 consisting of 3 self-destructive spark switches and the L simultaneous spark switch 18, for a total of 3 capacitors. =36 is a charging inductance element 42.4" inserted between both ends 40.41 and the connection point 28.2, and diode elements -44 and /15 are connected to the capacitor 36, respectively. -
They are connected in series with the charging direction by the C source 6 being conductive. In this way, if the number of medium 1n+ capacitors is 1111 in a tree row, then -[regardless of whether the barrel is
Both ends of people and both ends of the high voltage DC power supply 6 r7.8
Each two charging impedances inserted between
It goes without saying that 1t, which cannot produce light tu without polarization, is 0
What about the elements numbered l to 35 in the diagram? The + name and the key are the same as those of the 1st and 1st numbered elements in the 21st J. j! [[+1 When the spark switch 18 is turned on, the sum of the charging type rh of capacitors 17 and 16, that is, the voltage of 2Vo is applied between the identification electrodes 37 and 38 of the self-destructing spark switch 39, and 39 instantly and automatically Turn on. Since xyaa of the pulse high voltage generation operation that follows this is obvious. Omit 凭明.

第5121は本発明のいま一つの実施例で、第2図の実
施例において回転火花スイッチ]8の代わりに、2個の
固定電極46.47、l・リガー用袖助電極48、トリ
ガー用パルス電源49よりなる3点火花スイッチ50を
用い、充電用インピーダンス32.33の代わりに光−
に用抵抗’51a、5 l bを用い、かつ51aに直
列にF I−: 1’ Xt直列2とそのゲート回路5
3より成る充電電流制御要素54を挿入してパルス出力
型jトυ1…要素としたものである。14に於ける1か
631までの要素の名称及び機能は第214に於ける1
14一番号の要素のそれと同じである0本例では該1/
+流高圧電源6より該コンデンサIb、17が充電され
る際、16は充電抵抗51とL記充電電流V+11要素
”i4を介して、また17は充電抵抗52を介して充電
される。bCって17の光電速度は該充tu抵抗52の
値で定まるが、16の充電速度は該充電電流f、II御
要素54によって自由に制御出来、これによって該トリ
ガー火花スイッチ50がオンする直前のコンデンサー1
()の充電型ハをV o L’11−の範囲で自由に調
節出来、パルス出Jl電圧をVoから2VOの範囲で自
由に調節する事が出来る0本実施例のパルス高電圧発生
動作は基本的に第2図のそれと何等変わる所はないので
、その説明を省略する。
No. 5121 is another embodiment of the present invention, in which, in place of the rotary spark switch 8 in the embodiment shown in FIG. A three-ignition spark switch 50 consisting of a power source 49 is used, and a light source is used instead of the charging impedance 32,33.
Using resistors '51a and 5lb for 51a, and in series with 51a, FI-:1'
A charging current control element 54 consisting of 3 is inserted to form a pulse output type j to υ1... element. The names and functions of elements 1 to 631 in No. 14 are 1 in No. 214.
14 is the same as that of the numbered element 0 In this example, the 1/
When the capacitors Ib and 17 are charged by the + current high voltage power supply 6, 16 is charged via the charging resistor 51 and the charging current V+11 element "i4", and 17 is charged via the charging resistor 52. The photoelectric speed of 17 is determined by the value of the charging resistor 52, but the charging speed of 16 can be freely controlled by the charging current f, II control element 54. 1
The charging type C of () can be freely adjusted within the range of V o L'11-, and the pulse output Jl voltage can be freely adjusted within the range of Vo to 2VO. The pulse high voltage generation operation of this embodiment is as follows. Since there is basically no difference from that shown in FIG. 2, the explanation thereof will be omitted.

本発明に用いる外部制御を高速スイッチ素子として、例
えばサイリスターの如く整流性をtIする素子55を用
いる時は、第6[A(a)、(1))に示すようにこれ
に並列にダイオード素7−56を接続し5更にインダク
タンス要素57を同L4(a〉の如く上記並列接続要素
に直列に、あるいは同図(b)の如く該ダイオード素子
56の分枝にこれと的列に接続して電極2.3問にパル
ス印加時に蓄えられた容1−性エネルギーを[40過′
a振す9によりコンデンサーに回収するifが出来る。
When the external control used in the present invention is a high-speed switching element, for example, when using an element 55 such as a thyristor that has a rectifying property of tI, a diode element is connected in parallel to it as shown in No. 6 [A(a), (1)). 7-56, and 5 further connect an inductance element 57 in series with the above parallel connected element as shown in L4 (a), or in line with the branch of the diode element 56 as shown in figure (b). The capacitive energy stored at electrode 2.3 during pulse application is [40+'
If a is collected into a condenser by shaking 9, it is possible to collect it in a condenser.

第6171に於いてサイリスター素−ト55の代わりに
トリガ−ヘフ火IヒスイッチまたはIIす転火/Hスイ
ッチ等を用いてもよい・ハは言うまでも無い。
It goes without saying that in No. 6171, a trigger-height I/H switch or a trigger-heavy/H switch or the like may be used in place of the thyristor element 55.

また接続点28と放;に極3の間、あるいは接続点29
と5AI%電極2の間に介入して、第71m(a>の如
く可変充電インダクタンス、ti)変充電抵抗、1シ魂
ル制御機能を有する固体素「−笠より成る適当な充電電
流制御要素58と二ム=lンデンサー列の放zt時にそ
の放電方向のみの導通を許す高速スイッナ素子59を並
列接続して成るパルス出力電圧制御要素60を挿入し、
該コンデンサー列の各コンデンサーグ〕薔列充電速度を
制御し、これによって各コンデンサーの直列放電時点に
於ける充電電圧を変化せしめてパルス出力電圧を自由に
制御する・Iができる。この場合該コンデンサーの直列
放電時にはその放電電流は瞬時に該高速スイッチ素子5
9を通じて流れるので、その放−[動作には何等の支ド
クも生じない、第7N(tI)は該充電電流制御要素5
8として可変インダクタンス要素61を、該コンデンサ
ー列の放電時にその放電方向のみの導通を許す高速スイ
ッチf:子59として該コンデンサー列の直列放電に同
期して火花をトリガーするトリガー11’!火花スイッ
チ62を用いて1−記のパルス出力電圧制御要素60を
構成したものである。この場合61に直列にダイオード
素子63を各コンデンサーの電源6による充電方向を導
通ツノ自として接続し、このぜ1−列接続嬰素を62に
並列接続している。この場合該コンデンサーの直列放電
時にトリガー信号が62に加えられ、62が瞬時に火花
を生じてオンする。また該コンデンサーの充電時にはJ
a uf変インダ2タンス要素の存(FによってしC過
渡振動による各コンデンサーの共振充電が生じ、充電損
失の大幅な低減が得られるのみならず、パルス電圧印加
時に電極2.3間に蓄えられた容JJ性エネルギーの1
−1収も行われる。また該ダイオード素子の存在によっ
て各コンデンサーの充電電圧は該過渡振動のピーク値に
ホールドされその値が大きくなる。
Also, between the connection point 28 and the pole 3, or the connection point 29
Interposed between the electrode 2 and the 5AI% electrode 2, a suitable charging current control element consisting of a 71st m(a) variable charging inductance, ti) variable charging resistance, and a solid-state element having a power control function. A pulse output voltage control element 60 is inserted in which a high-speed switcher element 59 is connected in parallel with a high-speed switcher element 59 that allows conduction only in the discharge direction when the capacitor array is discharged.
It is possible to freely control the pulse output voltage by controlling the charging speed of each capacitor in the capacitor array, thereby changing the charging voltage at the time of series discharge of each capacitor. In this case, when the capacitor is discharged in series, the discharge current instantly flows through the high-speed switching element 5.
Since the current flows through the charging current control element 5, the 7th N(tI) does not cause any hindrance to its discharge operation.
8, a variable inductance element 61; a high-speed switch f, which allows conduction only in the discharge direction when the capacitor string is discharged; and a trigger 11', which triggers a spark in synchronization with the series discharge of the capacitor string, as a child 59; A spark switch 62 is used to configure the pulse output voltage control element 60 in item 1-. In this case, a diode element 63 is connected in series to 61 with the charging direction of each capacitor by the power supply 6 as a conductive horn, and this first column-connected element is connected to 62 in parallel. In this case, a trigger signal is applied to 62 when the capacitor is discharged in series, and 62 instantaneously produces a spark and turns on. Also, when charging the capacitor, J
The existence of a uf variable inductance element (F) causes resonant charging of each capacitor due to transient vibration, which not only greatly reduces charge loss, but also reduces the amount of energy stored between electrodes 2 and 3 when a pulse voltage is applied. JJ sex energy 1
-1 harvest will also be held. Also, due to the presence of the diode element, the charging voltage of each capacitor is held at the peak value of the transient oscillation, and the value increases.

I発明の効果1 本発明は叙」−の如く電気集塵装置その他の高電圧負荷
1に直流高電圧Voを供給する直流高圧電源6をもって
、コンデンサー列を構成する21111以上のコンデン
サーを各個にJlt列に充電の1−1そのコンデンサー
電圧を高速スイッチ素子を介して該負荷1に向かい直列
に放電する事により、該直流高電圧■0に重畳したパル
ス高電圧を該負荷1に印加するので、パルス高圧を源の
コンデンサーを充電するための別個の直流高11電源を
要しないと言う効果を生じ、該パルス高圧電源が極めて
安価かつ簡単となる。またこれに加えて上記コンデンサ
ーの充電インピーダンス要素としてインダクタンス要素
を用いる事により各コンデンサーの」−記並列充電に共
振充電を利用できて充電損失を大幅に低減し、充電のエ
ネルギー効率を1しく向干、出来る。更にこの充電イン
ダクタンスに直列にダイオード素子を挿入し、これを介
してコンデンサーの共振充電を行う事によりコンデンサ
ーの充電電圧を共振充電時の過渡振動のピーク値にホー
ルド出来、該充電電圧をVOよりも高く出来て好都合で
ある。またこれに加えてコンデンサーの充電電流制御要
素からなるパルス出力電圧制御要素を用いてコンデンサ
ーの並列充電時の充電電流を制御する事により容易にパ
ルス出力電圧を調整できる。また該高速スイッチ素子の
オン時のLC過渡高周波振動の鮪初の時間幅1マイクロ
セ力ンド程度のi波のピーク電圧をパルス荷電に利用す
る1イにより、極めて2峻で幅の短いパルス高電圧を用
いた場合と同様の、極めて優れたパルス荷電効果が得ら
れる。
Effects of the Invention 1 The present invention has a DC high voltage power source 6 that supplies a DC high voltage Vo to an electrostatic precipitator and other high voltage loads 1 as described above, and 21111 or more capacitors constituting a capacitor array are connected to each other. By discharging the capacitor voltage in series toward the load 1 via a high-speed switching element, a pulsed high voltage superimposed on the DC high voltage ■0 is applied to the load 1. This has the advantage of not requiring a separate DC high voltage power supply for charging the pulsed high voltage source capacitor, making the pulsed high voltage power supply extremely cheap and simple. In addition, by using an inductance element as a charging impedance element for the capacitors mentioned above, resonance charging can be used for parallel charging of each capacitor, greatly reducing charging loss and increasing charging energy efficiency. , I can do it. Furthermore, by inserting a diode element in series with this charging inductance and performing resonance charging of the capacitor through this, the charging voltage of the capacitor can be held at the peak value of the transient oscillation during resonance charging, and the charging voltage can be made lower than VO. It is convenient because it can be made high. In addition to this, the pulse output voltage can be easily adjusted by controlling the charging current during parallel charging of the capacitors using a pulse output voltage control element consisting of a capacitor charging current control element. In addition, by utilizing the peak voltage of the i-wave of the LC transient high-frequency vibration with a time width of about 1 microsecond when the high-speed switching element is turned on for pulse charging, extremely steep and short-width pulse high voltage can be generated. An extremely excellent pulse charging effect, similar to that obtained when using , can be obtained.

1114而のI!?iQtな説明 第114は本発明のパルス、;゛う圧電源を使用すると
き高tC1111ffたる、に気鳴塵装置の電極間に現
れる典型的な電圧波形を示す、第2図は本発明の一実施
例の11す路14を示す、第3tlIは電気集塵装−:
の電極間にパルス高電圧印加時に蓄えられる容に性エネ
ルギーをLCC過渡グイ力で=Iンデンサーに回収する
場合の超電極間に現れる典へり的な電気波形を示す、第
4171、第51’Nは人々本発明の別の実施例の回路
図を示す、第6]4 (a ) 、  (b )は外部
制御型高速スイッチ素1−とじてサイリスターを用い同
時に上記エネルギー回収を行うものの回路14を示す、
第71’llに+)、  (L+1は夫々パルス出力電
圧制御要素の一例の原理1′7Iおよびi(体間の回路
14を示す、[4に於いてv−m−負荷電IE    
    +2.+4−導線1−−一電気集塵装置   
  15−一一コンデンサー列2−−〜−集塵電極  
     +6.+7.3G〜コン・テンサー3−−−
− 放電極        18−一一回転火花スイッ
チ4.9. +2.14.30.31−導線    +
9.20.37.38.46.47−固定電極5−一一
空心、インダクタンス  21,22.28,29,4
0.41−接続点6iり圧直流電源     23−−
−−絶縁円盤7、−−一同上出力端子     24−
−−同」陣り転軸10−m−パルス高圧発生部   2
41.26−回転電極H,+3−回1.出力端子   
  27−−−−−電動機32.33.42.43  
       53−−−1+号上川用−1−回路−−
−−充電インダクタンス  54−−一充電電流制御要
素34.3!1,44,45.5G、63      
55−−−サイリスターーーーーダイオード索7’  
   57−−−インダクタンス要素39−−−自爆η
1火花スイッチ  !+L−−−充一区電流制御要素4
8−  −トリガー用補助電極  !+9−−−−高速
スイッチ素子4’1l−−−トリガー川パルス   6
0−〜−−パルス出力電圧電源           
  a、lI御型要素50−−3点火花スイッチ   
61−−−、 M(変インダクタンス要素51.52 
=充電Il(抗       G2−一−−トリガー型
火花スイッチ52−−−FI’:i’素子列 以−1゜ V−−−11荷電ハ          32.33.
42.431−−電気集塵sAi       −−−
充電インダクタンス2−−−− ’41XCM+   
     34.35.44.4S、56.633−−
−放電極           −−−ダイオード、#
f4.9.+2.+4.30.31−樺!II    
 119−−−1’l爆ヤ火花スイIチ5−−−−空也
1インダクタンス  48−−− トリガー用袖助電極
6−−  +ff1llV(流電jll      4
Q−1・’) n −川/<JLX7−−141出11
端f−電ンリ H,In  ト41出力端1’      5G−−う
点火性スイッチ+2.+4 −導11        
 51a、!+lh−充電抵抗15 − コンデンサー
列    !+2− −1’l>T素子−’A1G17
 −コンデンサー     b3−−トlll−用ゲ−
1・回路18−  一回転火花スイノチ   5ト −
−光てu電瀉馴御f本19.20.37.38.4G、
47      5!l  −−サイリスター−(^l
定電i4i        !+7−−−インダクタン
ス要素21.22.2a、29.40.4+58−−−
光:訪Git2−嗜m□at素−−−−接続点    
    59−−−高速スイノチ!?23 − 絶縁円
盤       Go  −−パルス出カーLハ24−
−11111回転軸          制御要素25
.2G −1ol転’414i        6+−
−−−1+raイン!79ンスe素27−−−:−動機
        62−−−トリガー1′I火?ヒスイ
リーl−オ6図    オフ0
1114 I! ? iQt Description No. 114 shows a typical voltage waveform appearing between the electrodes of the aerosol device during the pulse of the present invention; 11th path 14 of the embodiment, the third tlI is an electrostatic precipitator:
No. 4171 and No. 51'N showing typical electric waveforms appearing between the superelectrodes when the capacitance energy stored during application of pulsed high voltage between the electrodes is recovered to the =I capacitor by the LCC transient force. Figure 6 shows a circuit diagram of another embodiment of the present invention, Part 6] (a) and (b) shows the circuit 14 of an externally controlled high speed switching element 1 which uses a thyristor and simultaneously performs the above energy recovery. show,
71'll +), (L+1 respectively shows the principle 1'7I and i (interbody circuit 14 of an example of the pulse output voltage control element, [4 in v-m-load voltage IE
+2. +4-conductor 1--electrostatic precipitator
15-11 Capacitor row 2--- Dust collection electrode
+6. +7.3G~Contensor 3---
- Discharge electrode 18-11 rotary spark switch 4.9. +2.14.30.31-Conductor +
9.20.37.38.46.47-Fixed electrode 5-11 air core, inductance 21,22.28,29,4
0.41-Connection point 6i voltage DC power supply 23--
--Insulation disc 7, --Output terminal 24-
--Same" rotational axis 10-m-Pulse high pressure generation part 2
41.26-rotating electrode H, +3-times 1. Output terminal
27-----Electric motor 32.33.42.43
53--1+ for Kamikawa-1-circuit--
--Charging inductance 54--Charging current control element 34.3!1, 44, 45.5G, 63
55 --- Thyristor --- Diode cable 7'
57---Inductance element 39---Self-destruction η
1 spark switch! +L---Charging section current control element 4
8- -Auxiliary electrode for trigger! +9---High-speed switch element 4'1l---Trigger river pulse 6
0----Pulse output voltage power supply
a, lI type element 50--3 ignition spark switch
61---, M (variable inductance element 51.52
= Charging Il (anti-G2-1--Trigger type spark switch 52--FI': i' element row -1°V---11 Charging c) 32.33.
42.431--Electrostatic precipitator sAi---
Charging inductance 2---'41XCM+
34.35.44.4S, 56.633--
-Discharge electrode---Diode, #
f4.9. +2. +4.30.31-Birch! II
119---1'l explosive spark switch Ichi 5----Kuya 1 inductance 48---- Trigger sleeve auxiliary electrode 6--- +ff1llV (current current jll 4
Q-1・') n -kawa/<JLX7--141 out 11
End f--Electric H, In 41 Output end 1' 5G--Ignition switch +2. +4 - conductor 11
51a! +lh-charging resistor 15-capacitor string! +2- -1'l>T element-'A1G17
-Capacitor b3--Toll-gate
1.Circuit 18- One rotation spark suinochi 5to-
- Hikate u Denshi familiar f book 19.20.37.38.4G,
47 5! l --Thyristor-(^l
Constant electricity i4i! +7---Inductance element 21.22.2a, 29.40.4+58---
Light: Visit Git2-Taste m□at element---Connection point
59---High speed suinochi! ? 23 - Insulating disk Go - Pulse output car L 24 -
-11111 Rotation axis control element 25
.. 2G -1ol inversion'414i 6+-
---1+ra in! 79th e element 27---:-Motive 62---Trigger 1'I fire? Jade l-o 6 figure off 0

Claims (33)

【特許請求の範囲】[Claims] (1)インダクタンス要素より成る高周波電流阻止要素
を介して高電圧負荷に接続されこれに直流高電圧を供給
するための直流高圧電源を有し、少なくとも2個のコン
デンサーを夫々の中間に高速スイッチ素子を介して直列
接続して成るコンデンサー列を有し、該コンデンサー列
の両端の2個のコンデンサーは夫々の該高速スイッチ素
子との接続点を夫々充電インピーダンスを介して反対端
のコンデンサーの該高電圧負荷との接続点に接続し、該
コンデンサー列の中間部のコンデンサーは夫々の両端を
夫々の充電インピーダンスを介して該両端コンデンサー
と該高電圧負荷両端との接続点に接続し、上記各コンデ
ンサーを上記直流高圧電源により夫々の充電インピーダ
ンスを介して並列に充電の上、全ての該高速スイッチ素
子を同時にオンせしめ、これにより上記各コンデンサー
の充電電圧を直列に該高電圧負荷の両端に印加し、以下
この動作を周期的に繰返して該高電圧負荷に該直流高電
圧に重畳して周期的パルス高電圧を印加する事を特徴と
するパルス高圧電源。
(1) It has a high-voltage DC power source that is connected to a high-voltage load through a high-frequency current blocking element consisting of an inductance element and supplies high-voltage DC to the high-voltage load, and has at least two capacitors interposed between each high-speed switching element. The two capacitors at both ends of the capacitor array connect the high voltage of the capacitor at the opposite end via a charging impedance to the connection point with each of the high-speed switching elements. The capacitors in the middle of the capacitor array are connected to the connection point between the capacitors at both ends and the high voltage load through respective charging impedances, and each of the capacitors is After being charged in parallel by the DC high-voltage power supply through their respective charging impedances, all the high-speed switching elements are turned on simultaneously, thereby applying the charging voltage of each of the capacitors in series to both ends of the high-voltage load, A pulsed high-voltage power supply characterized in that this operation is repeated periodically to apply a periodic pulsed high voltage to the high-voltage load superimposed on the DC high voltage.
(2)特許請求の範囲の(1)に記載の装置に於いて、
該高速スイッチ素子が全て過電圧に於いて自動的にオン
動作を行う自爆型高速スイッチ素子である事を特徴とす
るパルス高圧電源。
(2) In the device according to claim (1),
A pulsed high-voltage power supply characterized in that all of the high-speed switching elements are self-destructing type high-speed switching elements that automatically turn on in the event of overvoltage.
(3)特許請求の範囲の(2)に記載の装置に於いて、
該自爆型高速スイッチ素子が夫々一対の火花電極より成
る自爆型火花スイッチである事を特徴とするパルス高圧
電源。
(3) In the device according to claim (2),
A pulsed high-voltage power supply characterized in that the self-destructing high-speed switching elements are self-destructing spark switches each comprising a pair of spark electrodes.
(4)特許請求の範囲の(1)に記載の装置に於いて、
該高速スイッチ素子の少なくとも1個が外部よりそのオ
ン動作を制御設定しうる外部制御高速スイッチ素子であ
る事を特徴とするパルス高圧電源。
(4) In the device according to claim (1),
A pulsed high-voltage power supply characterized in that at least one of the high-speed switching elements is an externally controlled high-speed switching element whose ON operation can be controlled and set from the outside.
(5)特許請求の範囲(4)に、記載の装置に於いて、
該外部制御型高速スイッチ素子以外の該高速スイッチ素
子が過電圧に於いて自動的にオン動作を行う自爆型高速
スイッチ素子である事を特徴とするパルス高圧電源。
(5) In the device described in claim (4),
A pulsed high-voltage power supply characterized in that the high-speed switching elements other than the externally controlled high-speed switching element are self-destructing high-speed switching elements that automatically turn on in the event of an overvoltage.
(6)特許請求の範囲(5)に記載の装置に於いて、該
自爆型高速スイッチ素子が夫々一対の火花電極より成る
火花スイッチ素子である事を特徴とするパルス高圧電源
(6) A pulsed high-voltage power supply according to claim (5), wherein the self-destructing high-speed switching elements are spark switching elements each comprising a pair of spark electrodes.
(7)特許請求の範囲(4)より(6)までのいずれか
一項に記載の装置に於いて、該外部制御型高速スイッチ
素子が、火花発生によるオン動作を外部で制御設定出来
る外部制御型火花スイッチ素子である事を特徴とするパ
ルス高圧電源。
(7) In the device according to any one of claims (4) to (6), the externally controlled high-speed switching element is provided with an external control capable of externally controlling and setting an ON operation due to spark generation. A pulse high voltage power supply characterized by a type spark switch element.
(8)特許請求の範囲(7)に記載の装置に於いて、該
外部制御型火花スイッチ素子が外部からの操作で火花を
トリガー出来るトリガー型火花スイッチ素子である事を
特徴とするパルス高圧電源。
(8) The device according to claim (7), wherein the externally controlled spark switch element is a trigger type spark switch element that can trigger a spark by external operation. .
(9)特許請求の範囲(8)に記載の装置に於いて、該
トリガー型火花スイッチ素子がトリガー用補助電極を備
えた3点火花スイッチ素子である事を特徴とするパルス
高圧電源。
(9) A pulse high-voltage power source in the device according to claim (8), characterized in that the trigger type spark switch element is a three-point spark switch element equipped with a trigger auxiliary electrode.
(10)特許請求の範囲(8)に記載の装置に於いて、
該トリガー型火花スイッチ素子がレーザー照射によって
火花をトリガーするレーザー・トリガー型火花スイッチ
素子である事を特徴とするパルス高圧電源。
(10) In the device according to claim (8),
A pulse high voltage power supply characterized in that the trigger type spark switch element is a laser trigger type spark switch element that triggers a spark by laser irradiation.
(11)特許請求の範囲(7)に記載の装置に於いて、
該外部制御型火花スイッチ素子が一対の固定電極と、そ
の間に回転自在に絶縁支持され電動機により駆動された
回転子上に配設の複数個の回転電極より成り、該同転子
の回転に伴う該固定電極と該回転電極の近接による火花
発生によってオン動作が行わる回転火花スイッチである
事を特徴とするパルス高圧電源。
(11) In the device according to claim (7),
The externally controlled spark switch element consists of a pair of fixed electrodes and a plurality of rotating electrodes disposed on a rotor which is rotatably supported and insulated between them and driven by an electric motor. A pulsed high-voltage power source characterized in that it is a rotary spark switch that is turned on by spark generation due to the proximity of the fixed electrode and the rotating electrode.
(12)特許請求の範囲(4)より(6)までのいずれ
か一項に記載の装置に於いて、該外部制御型高速スイッ
チ素子が、固体スイッチ素子である事を特徴とするパル
ス高圧電源。
(12) In the device according to any one of claims (4) to (6), the pulsed high-voltage power supply is characterized in that the externally controlled high-speed switching element is a solid state switching element. .
(13)特許請求の範囲(12)に記載の装置に於いて
、該固体スイッチ素子がサイリスター、GTO、FET
、トランジスターのいずれか一つである事を特徴とする
パルス高圧電源。
(13) In the device according to claim (12), the solid state switching element is a thyristor, GTO, FET.
, a pulsed high-voltage power supply characterized by being one of transistors.
(14)特許請求の範囲(4)より(6)までのいずれ
か一項に記載の装置に於いて、該外部制御型高速スイッ
チ素子が、電子管である事を特徴とするパルス高圧電源
(14) A pulsed high-voltage power source in the device according to any one of claims (4) to (6), characterized in that the externally controlled high-speed switching element is an electron tube.
(15)特許請求の範囲(4)より(6)までのいずれ
か一項に記載の装置に於いて、該外部制御型高速スイッ
チ素子が、トリガー用格子電極を備えた放電管である事
を特徴とするパルス高圧電源。
(15) In the device according to any one of claims (4) to (6), the externally controlled high-speed switching element is a discharge tube equipped with a trigger grid electrode. Features a pulsed high voltage power supply.
(16)特許請求の範囲(15)に記載の装置に於いて
、該放電管が水素サイラトロンである事を特徴とするパ
ルス高圧電源。
(16) A pulsed high-voltage power source in the device according to claim (15), wherein the discharge tube is a hydrogen thyratron.
(17)特許請求の範囲(1)より(16)までのいず
れか一項に記載の装置に於いて、該充電インピーダンス
が充電用インダクタンス要素である事を特徴とするパル
ス高圧電源。
(17) A pulsed high-voltage power source in the device according to any one of claims (1) to (16), characterized in that the charging impedance is a charging inductance element.
(18)特許請求の範囲(1)より(16)までのいず
れか一項に記載の装置に於いて、該充電インピーダンス
が充電用抵抗要素である事を特徴とするパルス高圧電源
(18) A pulsed high-voltage power supply in the device according to any one of claims (1) to (16), characterized in that the charging impedance is a charging resistance element.
(19)特許請求の範囲(17)に記載の装置に於いて
、該充電用インダクタンス要素が可変インダクタンス要
素である事を特徴とするパルス高圧電源。
(19) The device according to claim (17), wherein the charging inductance element is a variable inductance element.
(20)特許請求の範囲(17)又は(19)のいずれ
か一項に記載の装置に於いて、該充電用インダクタンス
素子の少なくとも一つに直列に、該直流高圧電源による
当該コンデンサーの充電方向を導通方向としてダイオー
ド素子を挿入した事を特徴とするパルス高圧電源。
(20) In the device according to any one of claims (17) or (19), the direction in which the capacitor is charged by the DC high voltage power source is connected in series with at least one of the charging inductance elements. A pulsed high-voltage power supply characterized by inserting a diode element with the conduction direction as .
(21)特許請求の範囲(18)に記載の装置に於いて
、該充電用抵抗要素が可変抵抗要素である事を特徴とす
るパルス高圧電源。
(21) The device according to claim (18), wherein the charging resistance element is a variable resistance element.
(22)特許請求の範囲(1)より(21)までのいず
れか一項に記載の装置に於いて、該コンデンサー列と該
高電圧負荷との間に介入して該コンデンサーの充電電流
制御要素と該充電電流と反対方向の電流の導通のみを許
す高速スイッチ要素の並列接続より成るパルス出力電圧
制御要素を挿入した事を特徴とするパルス高圧電源。
(22) In the device according to any one of claims (1) to (21), an element for controlling the charging current of the capacitor that intervenes between the capacitor string and the high voltage load. A pulsed high-voltage power supply characterized by inserting a pulse output voltage control element consisting of a parallel connection of a high-speed switching element that only allows conduction of current in the opposite direction to the charging current.
(23)特許請求の範囲(22)に記載の装置に於いて
、該充電電流制御要素が可変抵抗要素である事を特徴と
するパルス高圧電源。
(23) A pulsed high-voltage power supply in the device according to claim (22), wherein the charging current control element is a variable resistance element.
(24)特許請求の範囲(22)に記載の装置に於いて
、該充電電流制御要素が可変インダクタンス要素である
事を特徴とするパルス高圧電源。
(24) The device according to claim (22), wherein the charging current control element is a variable inductance element.
(25)特許請求の範囲(22)に記載の装置に於いて
、該充電電流制御要素が電流制御機能を備えた固体素子
である事を特徴とするパルス高圧電源。
(25) The device according to claim (22), wherein the charging current control element is a solid state element having a current control function.
(26)特許請求の範囲(22)より(25)までのい
ずれか一項に記載の装置に於いて、該高速スイッチ要素
が火花スイッチである事を特徴とするパルス高圧電源。
(26) A pulsed high-voltage power supply in the device according to any one of claims (22) to (25), characterized in that the high-speed switching element is a spark switch.
(27)特許請求の範囲(26)に記載の装置に於いて
、該火花スイッチがその火花の始発を外部よりトリガー
出来るトリガー型火花スイッチである事を特徴とするパ
ルス高圧電源。
(27) A pulse high voltage power supply in the device according to claim (26), characterized in that the spark switch is a trigger type spark switch that can trigger the initial spark of the spark from the outside.
(28)特許請求の範囲(1)より(27)までのいず
れか一項に記載の装置に於いて、該充電用インピーダン
スの少なくとも一つに直列に充電電流制御要素よりなる
パルス出力電圧制御要素を挿入した事を特徴とするパル
ス高圧電源。
(28) In the device according to any one of claims (1) to (27), a pulse output voltage control element comprising a charging current control element in series with at least one of the charging impedances. A pulse high voltage power supply characterized by the insertion of a.
(29)特許請求の範囲(28)に記載の装置に於いて
、該充電電流制御要素が電流制御機能を備えた固体素子
である事を特徴とするパルス高圧電源。
(29) The device according to claim (28), wherein the charging current control element is a solid state element having a current control function.
(30)特許請求の範囲(1)より(29)までのいず
れか一項に記載の装置に於いて、該コンデンサー列と該
高電圧負荷との間に介入して、該直流高圧電源による該
各コンデンサーの並列充電方向を導通方向とするダイオ
ード素子をインダクタンス要素と直列接続のうえ、この
直列接続要素に並列に該ダイオード素子導通方向と逆方
向の電流の導通のみを許す高速スイッチ要素を接続して
成るエネルギー回収要素を、挿入した事を特徴とするパ
ルス高圧電源。
(30) In the device according to any one of claims (1) to (29), intervening between the capacitor array and the high voltage load, A diode element whose conduction direction is the parallel charging direction of each capacitor is connected in series with an inductance element, and a high-speed switch element that only allows conduction of current in the direction opposite to the conduction direction of the diode element is connected in parallel to this series-connected element. A pulse high-voltage power supply characterized by the insertion of an energy recovery element consisting of a
(31)特許請求の範囲(30)に記載の装置に於いて
、該高速スイッチ要素が火花スイッチである事を特徴と
するパルス高圧電源。
(31) A pulsed high-voltage power supply in the device according to claim (30), wherein the high-speed switching element is a spark switch.
(32)特許請求の範囲(1)より(31)までのいず
れか一項に記載の装置に於いて、該外部制御型高速スイ
ッチ素子を含む全ての該高速スイッチ素子に並列に、該
コンデンサーの直列放電と逆の導通方向をもってダイオ
ード素子を接続し、かつこの並列接続要素の少なくとも
一つと、この並列接続要素に接続のコンデンサーとのに
インダクタンス要素を接続した事を特徴とするパルス高
圧電源。
(32) In the device according to any one of claims (1) to (31), the capacitor is connected in parallel to all the high-speed switching elements including the externally controlled high-speed switching elements. A pulse high-voltage power supply characterized in that diode elements are connected in a conduction direction opposite to that of series discharge, and an inductance element is connected to at least one of the parallel-connected elements and a capacitor connected to the parallel-connected element.
(33)特許請求の範囲(1)より(31)までのいず
れか一項に記載の装置に於いて、該外部制御型高速スイ
ッチ素子を含む全ての該高速スイッチ素子に並列に、該
コンデンサーの直列放電と逆の導通方向をもってダイオ
ード素子を接続し、かつこの並列接続要素の少なくとも
一つに於いて該ダイオード要素に直列にインダクタンス
要素を接続した事を特徴とするパルス高圧電源。
(33) In the device according to any one of claims (1) to (31), the capacitor is connected in parallel to all the high-speed switching elements including the externally controlled high-speed switching elements. A pulsed high-voltage power supply characterized in that diode elements are connected in a conduction direction opposite to that of the series discharge, and an inductance element is connected in series to the diode element in at least one of the parallel connected elements.
JP62026155A 1987-02-06 1987-02-06 Pulse high voltage power supply Expired - Lifetime JP2681633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026155A JP2681633B2 (en) 1987-02-06 1987-02-06 Pulse high voltage power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026155A JP2681633B2 (en) 1987-02-06 1987-02-06 Pulse high voltage power supply

Publications (2)

Publication Number Publication Date
JPS63194579A true JPS63194579A (en) 1988-08-11
JP2681633B2 JP2681633B2 (en) 1997-11-26

Family

ID=12185646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026155A Expired - Lifetime JP2681633B2 (en) 1987-02-06 1987-02-06 Pulse high voltage power supply

Country Status (1)

Country Link
JP (1) JP2681633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492990A (en) * 2016-10-14 2017-03-15 江苏绿洁节能有限公司 A kind of high-frequency high-voltage dust removing power supply

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825139A (en) * 1971-08-04 1973-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825139A (en) * 1971-08-04 1973-04-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492990A (en) * 2016-10-14 2017-03-15 江苏绿洁节能有限公司 A kind of high-frequency high-voltage dust removing power supply

Also Published As

Publication number Publication date
JP2681633B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JPS5861843A (en) High voltage generator for ultrashort pulse
CN100409570C (en) Trigger / ignition device in a marx generator provided with n step capacitors
CA1055105A (en) Electrostatic precipitator arrangement
JPS63194579A (en) Pulsed high voltage power supply
CN115528546B (en) Based on capacitive anion generating circuit
JP2828958B2 (en) Circuit for pulse-charged electric precipitator and electric precipitator
JPH08164320A (en) High voltage pulse power source and pulse corona application device using same
KR101240126B1 (en) Current blocking circuit and micro pulse system comprising the same
KR101651737B1 (en) Micro Pulse System Having Function for Restricting Current and Electrostatic Precipitator Using That Micro Pulse System
JPH0523617A (en) Pulse power source device for electrostatic precipitator
US7612541B1 (en) Charge-pump voltage converter
KR100344988B1 (en) Apparatus for forming electric discharge in a gas using high voltage impulse
JP4245761B2 (en) Pulse superposition type high voltage generator for electrostatic application equipment and electrostatic application equipment
JP3594277B2 (en) Pulse power supply for electric dust collector and method of operating the same
JPS63178772A (en) High-voltage pulse generator
RU48682U1 (en) PULSE CURRENT GENERATOR
JPH11114448A (en) Pulse charge type electric precipitator
RU2542299C1 (en) Ozone system
JPH1190267A (en) Pulse charge type electric precipitator
JP2745920B2 (en) Ultra low frequency generator
RU2159978C2 (en) Spark gap ignition method
SU703897A1 (en) Square wave pulse generator
TW200922063A (en) Ion generating device
SU58198A1 (en) Pulse generator
JPS588565A (en) Electric dust collecting apparatus