JPS6319447B2 - - Google Patents

Info

Publication number
JPS6319447B2
JPS6319447B2 JP57068054A JP6805482A JPS6319447B2 JP S6319447 B2 JPS6319447 B2 JP S6319447B2 JP 57068054 A JP57068054 A JP 57068054A JP 6805482 A JP6805482 A JP 6805482A JP S6319447 B2 JPS6319447 B2 JP S6319447B2
Authority
JP
Japan
Prior art keywords
mol
ferrite
particle size
mgo
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57068054A
Other languages
Japanese (ja)
Other versions
JPS58185437A (en
Inventor
Yukio Nagayama
Hiroshi Hagya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57068054A priority Critical patent/JPS58185437A/en
Publication of JPS58185437A publication Critical patent/JPS58185437A/en
Publication of JPS6319447B2 publication Critical patent/JPS6319447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば、磁気ヘツドのギヤツプスペ
ーサとして用いられる非磁性亜鉛フエライトおよ
びその製造方法の改良に関するものである。 近年、磁気ヘツド用フエライトとしては、ヘツ
ド損傷やテープ損傷の不都合を避けるために、気
孔が少なく、粒子径が均一で、小さな、緻密なフ
エライトが要求されている。これらの要求を満た
すために、真空焼成法、ラバープレス法、ホツト
プレス法、熱間静水圧プレス法等の製造方法が知
られているが、中でも、気孔消滅効果が大きく、
かつ生産性の良い熱間静水圧プレス法が他の方法
よりも優れている。 ところで、磁気ヘツドにおいて、ギヤツプを与
えるギヤツプスペーサも、同様に、気孔率が小さ
く、粒子径が均一で小さな、緻密な材料で構成さ
れることを要求される。 従来のギヤツプスペーサ材として、非磁性亜鉛
フエライトが用いられている。一般に、非磁性亜
鉛フエライトは、49.0〜52.0モル%のZnOと48.0
〜51.0モル%のFe2O3を配合した粉末を仮焼、微
粉砕し、その後プレス成形し、大気中にて焼成す
ることによつて製造されている。しかしながら、
このような製造方法による場合、高密度の材料を
得るためには、1250℃以上の比較的高温で焼成し
なければならず、平均粒子径が15μm以上に大き
く成長してしまう。このため、材料の機械的強度
が低下するとともに、Znが分解し粒界に析出し、
脱粒の原因となつており、小粒子径で緻密なZn
フエライトを製造しにくい状況となつている。 本発明は、上記の問題点に鑑みて、加工性の良
い緻密な小粒子径の非磁性フエライトを提供する
ことを目的とするものである。 本発明は、Zn―Fe2O4に容易に固溶しかつ比較
的粒界に集中しやすい酸化物に注目し、Al2O3
CaO又はAl2O3とMgOの二種を副成分として複合
添加することによりZnの析出を抑制するととも
に粒成長抑制効果を生じさせているものである。 第1表は、ZnFe2O4にAl2O3を添加し、1200
℃、2時間、大気中にて焼成した時の粒成長状態
とZnの析出状態とを示したものである。Al2O3
0.5wt%以上添加すると、Znの析出は観察されな
い。これは分解析出するZnがAl2O3と反応し
ZnAl2O4を形成するとともにZn・Fe2O4中にうま
く固溶するためと考えられる。 しかしながら、2.0wt%以上の添加は粒の成長
をもたらし、かつ巨大な粒内気孔の発生が顕著と
なり好ましくない。
The present invention relates to non-magnetic zinc ferrite used, for example, as a gap spacer of a magnetic head, and to improvements in a method for manufacturing the same. In recent years, as ferrite for magnetic heads, small, dense ferrite with few pores and uniform particle diameter has been required in order to avoid inconveniences such as head damage and tape damage. In order to meet these requirements, manufacturing methods such as vacuum firing, rubber pressing, hot pressing, and hot isostatic pressing are known, but among them, the pore elimination effect is large;
The hot isostatic pressing method, which also has good productivity, is superior to other methods. Incidentally, the gap spacer that provides the gap in the magnetic head is similarly required to be made of a dense material with low porosity and small, uniform particle size. Non-magnetic zinc ferrite is used as a conventional gear spacer material. Generally, non-magnetic zinc ferrite contains 49.0~52.0 mol% ZnO and 48.0
It is manufactured by calcining and finely pulverizing a powder containing ~51.0 mol% of Fe 2 O 3 , followed by press molding and firing in the atmosphere. however,
In the case of such a manufacturing method, in order to obtain a high-density material, it is necessary to sinter at a relatively high temperature of 1250° C. or higher, and the average particle size grows to be 15 μm or higher. As a result, the mechanical strength of the material decreases, and Zn decomposes and precipitates at grain boundaries.
Zn, which is dense with small particle size, is the cause of grain shedding.
The situation has become difficult to manufacture ferrite. SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a dense non-magnetic ferrite having a small particle size and good workability. The present invention focuses on oxides that are easily dissolved in Zn-Fe 2 O 4 and relatively easy to concentrate at grain boundaries , and
By adding CaO or Al 2 O 3 and MgO in combination as subcomponents, precipitation of Zn is suppressed and a grain growth suppressing effect is produced. Table 1 shows that when Al 2 O 3 is added to ZnFe 2 O 4 , 1200
The figure shows the grain growth state and the Zn precipitation state when fired at ℃ for 2 hours in the air. Al 2 O 3
When 0.5wt% or more is added, no Zn precipitation is observed. This is because the Zn produced by the separation reacts with Al 2 O 3 .
This is thought to be due to the formation of ZnAl 2 O 4 and good solid solution in Zn.Fe 2 O 4 . However, addition of 2.0 wt% or more causes grain growth and the generation of huge intragranular pores, which is not preferable.

【表】 第1図は、Al2O3を0.5、1.0及び2.0wt%添加す
ると同時にCaOあるいはMgOを0.05〜1.0wt%添
加し、1200℃、2時間、大気中にて焼成した時の
粒子径の変化を示したものである。 CaO及びMgOのいずれも、0.5wt%以下におい
て粒成長抑制効果があることが判明した。これは
原料中に不可避で微量に存在するSiO2と反応し、
CaO―SiO2又はMgO―SiO2等の粒界相を形成し、
粒成長を制御するためと考えられる。従つて、
Al2O3を0.2〜2.0wt%添加し、同時にCaO又は
MgOのいずれかを0.5wt%以下添加することによ
りZnの析出を抑制するとともに小粒子径のZn・
フエライトが作製可能となることが明らかとなつ
た。 なお、本発明のZn・フエライトは、一次焼成
後、熱間静水圧プレスを施すことによつて、平均
粒子径を小さく保つたまま、Znの析出もなく気
孔率を大幅に減少できる。 以下本発明を実施例に基づいて説明する。 実施例 1 ZnO50.2mol%、Fe2O349.8mol%からなる原料
粉末にAl2O3を0.5wt%及びCaCO3をCaOに換算
して0.2wt%になるよう計算し添加し、ボールミ
ルにて40時間湿式混合し、過、乾燥後900℃の
温度にて2時間仮焼する。さらにボールミルにて
24時間粉砕し平均粒子径1μmの粉末を得た後、バ
インダーを添加し、2000Kg/cm2の圧力で60×20×
10mmの圧粉体を作製し、1150℃の温度にて大気中
2時間、一次焼成を行なつた。この時得られた
Zn―フエライトの平均粒子径は3.4μmであり、か
つZnの析出は見られなかつた。但し、気孔率は
3.5%であつた。これを温度1100℃、圧力1000Kg/
cm2のArガス中にて1時間、熱間静水圧プレスし
た結果、100KHzでの透磁率が1であり、平均粒
子径3.6μmと一次焼成の粒子径を維持しながら、
気孔率0.03%と大幅に低下した緻密な小粒子径の
Zn―フエライトが得られた。もちろんZnの析出
は観察されなかつた。 実施例 2 ZnO50.0mol%、Fe2O350mol%からなる原料粉
末にAl2O3を1.0wt%及びMgOを0.5wt%添加し、
実施例―1と同様の方法で圧粉体を作製し、1200
℃の温度にて大気中、2時間、一次焼成を行なつ
た。この時得られたZn―フエライトの平均粒子
径は5.1μmであり、かつZnの析出は見られなかつ
たが、気孔率は4%であつた。これを温度1150
℃、圧力800Kg/cm2のArガス中にて1時間、熱間
静水圧プレスした結果、実施例―1と同様に
100KHzでの透磁率が1であり、平均粒子径
5.5μm、気孔率0.03%の緻密な小粒子径のZn―フ
エライトが得られた。又、Znの析出は見られな
かつた。 第2図および第3図に、本発明品および従来品
の破断面の2000倍電子顕微鏡写真をそれぞれ示
す。両図において、図上2cmが10μmに相当する。
両図から、本発明品は、従来品よりも緻密でかつ
粒界強度が大きく粒内破断を示していることがわ
かる。 以上説明したように、本発明によれば、脱粒等
の大きな原因となつているZnの析出を抑える効
果を有するとともに、また熱間静水圧プレスによ
り気孔率を極端に小さくでき、鏡面性が良く、加
工性の優れた非磁性フエライトを得ることがで
き、磁気ヘツドのギヤツプスペーサ材としては極
めて有用である。
[Table] Figure 1 shows the particles obtained when 0.5, 1.0 and 2.0wt% of Al 2 O 3 and 0.05 to 1.0wt% of CaO or MgO were added and fired at 1200℃ for 2 hours in the air. This shows the change in diameter. It was found that both CaO and MgO have a grain growth inhibiting effect at 0.5 wt% or less. This reacts with SiO 2 , which is unavoidably present in trace amounts in the raw material,
Forms grain boundary phases such as CaO-SiO 2 or MgO-SiO 2 ,
This is thought to be to control grain growth. Therefore,
Add 0.2 to 2.0 wt% of Al 2 O 3 and at the same time add CaO or
By adding 0.5wt% or less of either MgO, it is possible to suppress the precipitation of Zn and to reduce the
It has become clear that ferrite can be produced. In addition, by subjecting the Zn/ferrite of the present invention to hot isostatic pressing after primary firing, the porosity can be significantly reduced without Zn precipitation while keeping the average particle size small. The present invention will be explained below based on examples. Example 1 0.5 wt% of Al 2 O 3 and 0.2 wt% of CaCO 3 in terms of CaO were added to a raw material powder consisting of 50.2 mol% of ZnO and 49.8 mol% of Fe 2 O 3 , and the mixture was placed in a ball mill. The mixture was wet mixed for 40 hours, filtered and dried, and then calcined for 2 hours at a temperature of 900°C. Furthermore, in a ball mill
After grinding for 24 hours to obtain a powder with an average particle size of 1 μm, a binder was added and the powder was pulverized 60×20× at a pressure of 2000 Kg/cm 2.
A 10 mm green compact was produced, and primary firing was performed in the air at a temperature of 1150°C for 2 hours. obtained at this time
The average particle size of Zn-ferrite was 3.4 μm, and no Zn precipitation was observed. However, the porosity is
It was 3.5%. This is done at a temperature of 1100℃ and a pressure of 1000Kg/
As a result of hot isostatic pressing in cm 2 of Ar gas for 1 hour, the magnetic permeability at 100 KHz was 1, and while maintaining the average particle size of 3.6 μm, the particle size of the primary firing,
Dense and small particle size with significantly reduced porosity of 0.03%.
Zn-ferrite was obtained. Of course, no Zn precipitation was observed. Example 2 1.0 wt% of Al 2 O 3 and 0.5 wt% of MgO were added to a raw material powder consisting of 50.0 mol% of ZnO and 50 mol% of Fe 2 O 3 ,
A green compact was produced in the same manner as in Example-1, and 1200
Primary firing was performed in the air at a temperature of 0.degree. C. for 2 hours. The average particle diameter of the Zn-ferrite obtained at this time was 5.1 μm, and no Zn precipitation was observed, but the porosity was 4%. This temperature is 1150
As a result of hot isostatic pressing for 1 hour in Ar gas at a temperature of 800 kg/cm 2 and a pressure of 800 Kg/cm 2,
Magnetic permeability at 100KHz is 1, average particle size
Zn-ferrite with a compact particle size of 5.5 μm and a porosity of 0.03% was obtained. Further, no precipitation of Zn was observed. FIGS. 2 and 3 show 2000x electron micrographs of the fractured surfaces of the product of the present invention and the conventional product, respectively. In both figures, 2 cm on the figure corresponds to 10 μm.
From both figures, it can be seen that the product of the present invention is denser than the conventional product, has greater grain boundary strength, and exhibits intragranular fracture. As explained above, the present invention has the effect of suppressing the precipitation of Zn, which is a major cause of grain shedding, etc., and the porosity can be extremely reduced by hot isostatic pressing, resulting in good specularity. It is possible to obtain non-magnetic ferrite with excellent workability, and it is extremely useful as a gear spacer material for magnetic heads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZn―フエライトにAl2O3とCaO又は
MgOとを量を変えて添加した時の平均粒径の変
化を示したものである。第2図および第3図は、
本発明品および従来品の破断面の2000倍電子顕微
鏡写真を、それぞれ示したものである。
Figure 1 shows Zn-ferrite with Al 2 O 3 and CaO or
This figure shows the change in average particle size when varying amounts of MgO are added. Figures 2 and 3 are
2000x electron micrographs of the fractured surfaces of the product of the present invention and the conventional product are shown, respectively.

Claims (1)

【特許請求の範囲】 1 ZnO49.0〜52.0モル%およびFe2O348.0〜51.0
モル%を主成分とする非磁性亜鉛フエライトに、
副成分として、CaOおよびMgOのいずれか1種
の0.5wt%以下(0は含まず)とAl2O30.5〜2.0wt
%とを添加したことを特徴とする非磁性亜鉛フエ
ライト。 2 ZnO49.0〜52.0モル%およびFe2O348.0〜51.0
モル%からなる主成分にCaOおよびMgOのいず
れか1種の0.5wt%以下(0は含まず)と
Al2O30.3〜2.0wt%とを副成分として添加した組
成を有するように調整した原料粉を、一次焼成
後、熱間静水圧成型法で処理することを特徴とす
る非磁性亜鉛フエライトの製造方法。
[Claims] 1 ZnO 49.0 to 52.0 mol% and Fe 2 O 3 48.0 to 51.0
Non-magnetic zinc ferrite whose main component is mol%,
As accessory components, 0.5wt% or less of any one of CaO and MgO (not including 0) and 0.5 to 2.0wt of Al 2 O 3
Non-magnetic zinc ferrite characterized by adding %. 2 ZnO 49.0-52.0 mol% and Fe 2 O 3 48.0-51.0
The main component consisting of mol% is 0.5wt% or less (not including 0) of either CaO or MgO.
A non-magnetic zinc ferrite characterized in that raw material powder adjusted to have a composition containing 0.3 to 2.0 wt% of Al 2 O 3 as a subcomponent is processed by hot isostatic pressing after primary firing. Production method.
JP57068054A 1982-04-24 1982-04-24 Nonmagnetic zinc ferrite and preparation thereof Granted JPS58185437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068054A JPS58185437A (en) 1982-04-24 1982-04-24 Nonmagnetic zinc ferrite and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068054A JPS58185437A (en) 1982-04-24 1982-04-24 Nonmagnetic zinc ferrite and preparation thereof

Publications (2)

Publication Number Publication Date
JPS58185437A JPS58185437A (en) 1983-10-29
JPS6319447B2 true JPS6319447B2 (en) 1988-04-22

Family

ID=13362675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068054A Granted JPS58185437A (en) 1982-04-24 1982-04-24 Nonmagnetic zinc ferrite and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58185437A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649608B2 (en) * 1988-04-13 1994-06-29 住友特殊金属株式会社 Non-magnetic material for thin film magnetic head substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JPS58185437A (en) 1983-10-29

Similar Documents

Publication Publication Date Title
CN1686929A (en) Lowloss ferritc in manganese zinc series and preparation method thereof
CN112723873B (en) Broadband high-impedance high-permeability MnZn soft magnetic ferrite and preparation method thereof
US3252913A (en) Method for preparing manganese-zincferrous ferrite
CN102936130B (en) Permanent magnetic ferrite material
JPH0238537B2 (en)
JPS6319447B2 (en)
US2935411A (en) High dielectric constant ceramics
JP3042627B2 (en) Low loss ferrite
CN110526692A (en) The preparation method of alumina ceramic prilling powder
JP3039784B2 (en) High frequency low loss ferrite for power supply
JPS6224380B2 (en)
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JP2627637B2 (en) Oxide magnetic material
SU1496922A1 (en) Method of manufacturing hexagonal barium microwave ferrite
JP2000091114A (en) High permeability oxide magnetic material
JPH0878220A (en) Manufacture of hexagonal crystal system ferrite
KR0169043B1 (en) Method of manufacturing mn-zn ferrite core having high frequency and low power loss
JPH06260321A (en) Sintered ferrite with fine crystalline grains and manufacture thereof
US3533948A (en) Process for producing magnesium manganese ferrite cores
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JPH0555463B2 (en)
WO2023182133A1 (en) MnZn-BASED FERRITE
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JPS6026067B2 (en) Transparent polycrystalline alumina composition and method for producing the same