JPS63193079A - Method for accelerated test of semiconductor device - Google Patents

Method for accelerated test of semiconductor device

Info

Publication number
JPS63193079A
JPS63193079A JP2570587A JP2570587A JPS63193079A JP S63193079 A JPS63193079 A JP S63193079A JP 2570587 A JP2570587 A JP 2570587A JP 2570587 A JP2570587 A JP 2570587A JP S63193079 A JPS63193079 A JP S63193079A
Authority
JP
Japan
Prior art keywords
temperature
sample
differential amplifier
constant temperature
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2570587A
Other languages
Japanese (ja)
Inventor
Haruhiko Tabuchi
晴彦 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2570587A priority Critical patent/JPS63193079A/en
Publication of JPS63193079A publication Critical patent/JPS63193079A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests

Abstract

PURPOSE:To exclude the effect of a measuring temperature to seize a change in characteristics of a sample accurately and efficiently and thereby to implement the supposition of lifetime, screening or the like in a short time and with high reliability, by a method wherein the temperature in a constant temperature apparatus containing the sample is varied periodically in the vicinity of a prescribed value. CONSTITUTION:The system consists of a constant temperature apparatus 1 and a data collecting apparatus 2, and a sample is set in the constant temperature apparatus 1. The constant temperature apparatus 1 is provided with a temperature sensor 11, a sawtooth wave generator 12, a reference voltage source 13, a differential amplifier 15, a heater 17, etc., while the data collecting apparatus 2 is provided with a sample temperature monitoring element 21, a sample characteristic measuring element 22, etc. A sawtooth wave voltage of the sawtooth wave generator 12 is superposed on a reference voltage V0, and a control voltage thus obtained is inputted to the differential amplifier 15 to vary the temperature of the sample 3 periodically. When the temperature of the sample accords with a prescribed temperature T0 in the rising process of the temperature, for instance, a trigger signal is delivered to conduct the measurement of characteristics.

Description

【発明の詳細な説明】 〔概要〕 この発明は、半導体装置の加速試験において、試料を収
容した恒温室内の温度を所定の値の近傍で周期的に変化
させ、試料の温度が所定の値にあるときにその特性測定
を行うことにより、測定温度を高精度の一定値として測
定温度の影響を排除し、試料の特性変動を正確に効率よ
く把握して、寿命推定或いはスクリーニング等を短時間
かつ高い信頼度で実施することを可能とするものである
[Detailed Description of the Invention] [Summary] The present invention, in accelerated testing of semiconductor devices, periodically changes the temperature in a thermostatic chamber containing a sample in the vicinity of a predetermined value, so that the temperature of the sample reaches a predetermined value. By measuring the characteristics at a certain time, the influence of the measured temperature can be eliminated by keeping the measured temperature at a constant value with high accuracy, and fluctuations in the characteristics of the sample can be accurately and efficiently grasped, allowing life estimation or screening to be carried out in a short time. This enables implementation with high reliability.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の加速試験方法、特に所定の高温度
における特性測定を繰り返して実施する加速試験方法の
改善に関する。
The present invention relates to an accelerated testing method for semiconductor devices, and particularly to an improvement in an accelerated testing method that repeatedly measures characteristics at a predetermined high temperature.

例えば長距離、大容量の光通信幹線系の光源に用いる半
4体レーザは、長年にわたる安定な動作を保証する高い
信頼性が要求され、特に故障しても取り換えが許されな
い海底″中継器では数10年の寿命保証が必要である。
For example, semi-quadruple lasers used as light sources in long-distance, large-capacity optical communication trunk systems require high reliability to ensure stable operation over many years, especially in submarine repeaters that cannot be replaced even if they fail. A lifespan guarantee of several decades is required.

この様な信頼性保証のために、半導体レーザの温度を例
えば70℃に保ち、かつ光出力を一定に保って数千時間
以上動作させ、その間に頻繁に測定した駆動電流等の経
過から数10万時間後の変化量を推定する。この場合に
推定される寿命の精度は電流の測定精度と試験時間の長
さとに依存するが、電流の測定精度を低下させる最大の
要因は素子温度の変動である。
In order to guarantee such reliability, we maintain the temperature of the semiconductor laser at, for example, 70 degrees Celsius, keep the optical output constant, and operate it for more than several thousand hours.During this period, we frequently measure the driving current, etc. Estimate the amount of change after 10,000 hours. The accuracy of the life estimated in this case depends on the current measurement accuracy and the length of the test time, but the biggest factor that reduces the current measurement accuracy is the variation in element temperature.

この様に長い試験時間は甚だ大きい負担となっており、
工程の短縮或いは推定精度向上のために素子温度の変動
を排除して測定精度を向上することが強く要望されてい
る。
This long test time is a huge burden,
In order to shorten the process or improve estimation accuracy, there is a strong demand for improving measurement accuracy by eliminating fluctuations in element temperature.

〔従来の技術〕[Conventional technology]

例えば半導体レーザ等の半導体装置について、上述の様
に高温加速エージングによってスクリーニング或いは寿
命評価などを行う場合に、測定装置の確度、温度の変化
、外来雑音などの外乱の影響が測定データに含まれて、
本来の半導体装置の特性の変動と区別ができない。これ
に対処するために特性変動の効果が外乱に対して十分大
きくなるように試験時間を長くし、例えば10万時間以
上が要求される寿命評価には数千時間以上の長時間を費
やしているが、前記の外乱のうち現在量も影響が大きい
ものは温度の不安定性である。
For example, when screening or evaluating the lifespan of semiconductor devices such as semiconductor lasers by high-temperature accelerated aging as described above, the accuracy of the measurement equipment, changes in temperature, and the effects of disturbances such as external noise are included in the measurement data. ,
It cannot be distinguished from variations in the characteristics of the original semiconductor device. To deal with this, test times are lengthened so that the effect of characteristic fluctuations is sufficiently large in response to external disturbances, and for example, life evaluations that require more than 100,000 hours take several thousand hours or more. However, among the above-mentioned disturbances, one that has a large influence on the current amount is temperature instability.

現在の高温加速試験では、試料の温度を一定の値に安定
化する方法がとられており、例えば第3図に示す様に、
試料31の温度を温度センサ32でモニタし、差動増幅
器33で基準電圧vrarと比較してその誤差を増幅し
、ヒーター34の電流を制御して試料31の温度を一定
値に保持する。
In current high-temperature accelerated testing, a method is used to stabilize the temperature of the sample at a constant value. For example, as shown in Figure 3,
The temperature of the sample 31 is monitored by a temperature sensor 32, compared with a reference voltage vrar by a differential amplifier 33 to amplify the error, and the current of the heater 34 is controlled to maintain the temperature of the sample 31 at a constant value.

この方法で先ず定常状態において一定温度を保持するに
は、基準電圧V、。、が安定であること、差動増幅器3
3のオフセット、バイアス、温度安定度、経時変化等が
小さいことが要求されるが、差動増幅器33には直流増
幅器が用いられるために長時間の安定性保持は困難であ
り、例えば100℃で0.01℃の安定性を持たせるに
はlXl0−’の安定度が必要であるのに対して、実際
にはlXl0−”程度の安定度に止まり0.1℃程度が
限界となっている。更に基準電圧源、差動増幅器も一定
温度に保持することが必要で、装置が高価となり取り扱
いも難しくなる。
In this method, first, in order to maintain a constant temperature in steady state, the reference voltage V,. , is stable, differential amplifier 3
However, since the differential amplifier 33 uses a DC amplifier, it is difficult to maintain stability for a long time, for example, at 100°C. In order to have stability of 0.01℃, a stability of lXl0-' is required, but in reality, the stability is only about lXl0-'', and the limit is about 0.1℃. Furthermore, it is necessary to maintain the reference voltage source and the differential amplifier at a constant temperature, making the device expensive and difficult to handle.

また過渡的な温度変化が例えば試料の交換などにより発
生した場合には、定常状態における静的な安定性向上の
ためにシステムの時定数を大きくしていることから、オ
ーバーシュートを生じてかなり長時間にわたって温度が
振動する。更に例えば2重恒温槽などの高安定を意図し
たシステムでは、制御系が温度を変化させる動作を行っ
てから実際に温度が変化するまでの時間がますます長く
なり、温度が安定するまでに非常に長い時間を要してい
る。
In addition, if a transient temperature change occurs due to, for example, sample exchange, the time constant of the system is increased to improve static stability in steady state, resulting in overshoot and a considerable length of time. Temperature oscillates over time. Furthermore, in systems intended to be highly stable, such as double thermostats, the time from when the control system performs an action to change the temperature until the temperature actually changes becomes increasingly long, and it takes a very long time for the temperature to stabilize. It takes a long time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の如〈従来の加速試験方法では温度を静的に一定値
に保持するために、温度制御系を構成する全要素に非常
に高い精度と安定性を求めてなお十分な結果に到達せず
、更に静的な安定性向上のためにシステムの時定数を大
きくすることは、過渡的な温度変動に対する応答速度を
低下させるという矛盾を含んでいる。
As mentioned above, in order to statically maintain the temperature at a constant value, conventional accelerated testing methods require extremely high accuracy and stability in all elements that make up the temperature control system, but still do not achieve satisfactory results. Furthermore, increasing the time constant of the system to improve static stability has the paradox of decreasing the response speed to transient temperature fluctuations.

本発明は従来とは視点を変えて、この矛盾を含む問題を
解決することを目的とする。
The present invention aims to solve the problem including this contradiction by changing the viewpoint from the conventional one.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、試料を収容した恒温室内の温度を所定の
値の近傍で周期的に変化させ、該試料の温度が該所定の
値にあるときに該試料の特性測定を行う本発明による半
導体装置の加速試験方法により解決される。
The above-mentioned problem is solved by the semiconductor device according to the present invention, in which the temperature in a thermostatic chamber containing a sample is periodically changed in the vicinity of a predetermined value, and the characteristics of the sample are measured when the temperature of the sample is at the predetermined value. The problem is solved by an accelerated testing method for equipment.

なお測定精度を高めるために、前記温度変化が相互に同
一の方向にあるときに前記特性測定を行うことが望まし
い。
Note that in order to improve measurement accuracy, it is desirable to perform the characteristic measurement when the temperature changes are in the same direction.

〔作 用〕[For production]

本発明による加速試験方法は第1図(alに図示する様
に、試料を収容した恒温室内の温度を所定の値T0の近
傍で、振幅を例えば±ΔT=0.5℃程度とし、周期を
試料が熱的に平衡状態にあると見做される温度変化速度
から選択して周期的に変化させ、試料の温度が所定の温
度T0にあるときに所要の特性測定を繰り返す。
As shown in FIG. 1 (al), the accelerated testing method according to the present invention is performed by setting the temperature in the thermostatic chamber in which the sample is stored in the vicinity of a predetermined value T0, setting the amplitude to about ±ΔT=0.5°C, and changing the period. The temperature change rate at which the sample is considered to be in thermal equilibrium is selected and changed periodically, and the required characteristic measurements are repeated when the sample temperature is at a predetermined temperature T0.

なおこの特性測定タイミングは一般に、温度変化方向が
上昇或いは降下の何れか一方に統一することが測定精度
を高めるために望ましく、温度上昇時間と温度降下時間
とを等分せず、特性測定を行う側の時間を長くしてもよ
い。また測定周期は温度変化の周期の何倍かであっても
よい。
It should be noted that it is generally desirable to unify the timing of this characteristic measurement so that the direction of temperature change is either rising or falling in order to improve measurement accuracy, and the characteristic measurement is performed without dividing the temperature rise time and temperature fall time equally. You may want to increase the side time. Further, the measurement period may be several times the period of temperature change.

本加速試験方法は第1図(e)のブロック図に例示する
如き装置で実施することができる。同図において、1は
恒温装置、2はデータ収集装置であり、試料3は恒温装
置1内に装着される。恒温装置1には温度センサ11、
鋸波発生器12、基準電圧源13、差動増幅器15、ヒ
ータ17などを備え、データ収集装置2は試料温度監視
部21、試料特性測定部22などを備える。
This accelerated testing method can be carried out using an apparatus as illustrated in the block diagram of FIG. 1(e). In the figure, 1 is a constant temperature device, 2 is a data collection device, and a sample 3 is installed in the constant temperature device 1. The constant temperature device 1 includes a temperature sensor 11,
The data collection device 2 includes a sawtooth generator 12, a reference voltage source 13, a differential amplifier 15, a heater 17, and the like, and a sample temperature monitoring section 21, a sample characteristic measuring section 22, and the like.

第1図(b)に示す如く鋸波発生器12の鋸波電圧を基
準電圧v0に重畳した制御電圧を差動増幅器15に入力
して、同図(a)に示す様に試料3の温度を周期的に変
化させ、例えば温度上昇過程で試料温度が所定の温度T
0に一致したときに同図(C1に示す様にトリガ信号を
送出して特性測定を行う。
As shown in FIG. 1(b), a control voltage obtained by superimposing the sawtooth voltage of the sawtooth wave generator 12 on the reference voltage v0 is input to the differential amplifier 15, and the temperature of the sample 3 is increased as shown in FIG. 1(a). For example, during the temperature rising process, the sample temperature reaches a predetermined temperature T.
0, a trigger signal is sent out as shown in the figure (C1) to measure the characteristics.

本方法の温度制御系には比較的簡易でそれなりの長時間
安定性が得られるものを利用することができ、同図(d
)に示す様に温度変化範囲がかなり変動しても測定温度
は常に所定の温度T0に確保される。
For the temperature control system of this method, a relatively simple one that can provide a certain degree of long-term stability can be used;
), even if the temperature change range fluctuates considerably, the measured temperature is always maintained at the predetermined temperature T0.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第2図は本発明を半導体レーザに適用する場合のシステ
ムの例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a system in which the present invention is applied to a semiconductor laser.

1は恒温装置、2はデータ収集装置であり、恒温装置1
内に試料3として半導体レーザが、温度センサ11が接
する金属ブロック内に収容されて受光装置23とともに
装着される。
1 is a constant temperature device, 2 is a data collection device, and constant temperature device 1
Inside, a semiconductor laser as a sample 3 is housed in a metal block in contact with a temperature sensor 11 and mounted together with a light receiving device 23 .

恒温装置1には鋸波発生器12、基準電圧源13、加算
器14、差動増幅器15、ヒータ電流制御回路16、ヒ
ータ17などを備え、データ収集装置2では試料温度監
視部21として温度計が恒温装置1内の温度センサ11
に接続され、試料特性測定部22には前記受光装置23
の他に、光出力設定電圧源24、電流電圧変換器25、
差動増幅器26、電圧計27、プロセッサ28、タイマ
ー29、記録器30などを備える。
The constant temperature device 1 includes a sawtooth generator 12, a reference voltage source 13, an adder 14, a differential amplifier 15, a heater current control circuit 16, a heater 17, etc., and the data collection device 2 includes a thermometer as a sample temperature monitoring section 21. is the temperature sensor 11 in the constant temperature device 1
The light receiving device 23 is connected to the sample characteristic measuring section 22.
In addition, an optical output setting voltage source 24, a current-voltage converter 25,
It includes a differential amplifier 26, a voltmeter 27, a processor 28, a timer 29, a recorder 30, and the like.

恒温室内の温度は上述の如く、鋸波発生器12の鋸波電
圧を加算器14で基準電圧v0に重畳して差動増幅器1
5に人力し、これと温度センサ11の出力との差をなく
するようにヒータ電流制御回路16が動作して、試料3
の温度が第1図(a)に示す様に周期的に変化する。な
お本実施例では例えば温度上昇1.5時間、温度降下0
.5時間で1周期としている。
As mentioned above, the temperature inside the thermostatic chamber is determined by superimposing the sawtooth voltage of the sawtooth wave generator 12 on the reference voltage v0 by the adder 14 and applying it to the differential amplifier 1.
5, the heater current control circuit 16 operates to eliminate the difference between this and the output of the temperature sensor 11, and the sample 3
The temperature changes periodically as shown in FIG. 1(a). In this example, for example, the temperature rises for 1.5 hours and the temperature drops for 0 hours.
.. One cycle is 5 hours.

試料3の半導体レーザの出力光を所定の一定値に保持す
ることは従来と同様に受光装置23、光出力設定電圧源
24、電流電圧変換部25、差動増幅器26等で行われ
る。
Maintaining the output light of the semiconductor laser of the sample 3 at a predetermined constant value is performed by the light receiving device 23, the light output setting voltage source 24, the current-voltage converter 25, the differential amplifier 26, etc., as in the conventional case.

試料特性測定は、温度センサ11に接続された例えば水
晶温度計等の高精度の温度計でモニタして、例えば1〜
10秒程度の周期でプロセッサ28に取り込み、タイマ
ー29から所定の測定周期に基づく測定要求があり、例
えば温度上昇過程で、温度が所定の温度T0に一致した
ときに、第1図(C)に示す様にトリガ信号を電圧計2
7に送出して、レーザ駆動電流に対応する電圧測定値の
サンプリングを行う。
The sample characteristics are measured by monitoring with a high precision thermometer such as a quartz thermometer connected to the temperature sensor 11.
The data is input to the processor 28 at a cycle of about 10 seconds, and the timer 29 makes a measurement request based on a predetermined measurement cycle. For example, when the temperature matches the predetermined temperature T0 during the temperature rising process, the data shown in FIG. Connect the trigger signal to the voltmeter 2 as shown.
7 to sample the voltage measurement corresponding to the laser drive current.

この測定値は必要に応じてプロセッサ28内、或いは記
録器30に記録される。
This measured value is recorded in the processor 28 or in the recorder 30 as required.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば半導体装置の加速試験
において、特性測定温度が高精度で一定値に保持されて
測定値から測定温度の影響が排除され、試料の特性変動
が正確に効率よく把握されて、寿命推定或いはスクリー
ニング等を従来より短時間かつ高い信顛度で実施するこ
とが可能となる。
As explained above, according to the present invention, in accelerated testing of semiconductor devices, the characteristic measurement temperature is maintained at a constant value with high accuracy, the influence of the measurement temperature is eliminated from the measured value, and the characteristic fluctuations of the sample are accurately and efficiently understood. As a result, it becomes possible to perform life estimation, screening, etc. in a shorter time and with higher reliability than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の実施例のブロック図、第3図は従来例
のブロック図である。 図において、 1は恒温装置、    2はデータ収集装置、3は試料
(半導体レーザ)、 11は温度センサ、   12は鋸波発生器、13は基
準電圧源、   14は加算器、15は差動増幅器、 
  17はヒータ、16はヒータ電流制御回路、 21は試料温度監視部(温度計)、 22は試料特性測定部、 23は受光装置、24は光出
力設定電圧源、25は電流電圧変換器、26は差動増幅
器、   27は電圧計、28はプロセッサ、   2
9はタイマー、30は記録器を示す。 水化哨の鳳到図 あ 1 匹 傾      宵 トー          N      らJ従葉る1
67079図 第 3 図
FIG. 1 is a principle diagram of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a block diagram of a conventional example. In the figure, 1 is a constant temperature device, 2 is a data acquisition device, 3 is a sample (semiconductor laser), 11 is a temperature sensor, 12 is a sawtooth wave generator, 13 is a reference voltage source, 14 is an adder, and 15 is a differential amplifier. ,
17 is a heater, 16 is a heater current control circuit, 21 is a sample temperature monitoring section (thermometer), 22 is a sample characteristic measurement section, 23 is a light receiving device, 24 is a light output setting voltage source, 25 is a current voltage converter, 26 is a differential amplifier, 27 is a voltmeter, 28 is a processor, 2
9 indicates a timer, and 30 indicates a recorder. The water patrol's phoenix is 1.
67079Figure 3

Claims (1)

【特許請求の範囲】 1)試料を収容した恒温室内の温度を所定の値の近傍で
周期的に変化させ、該試料の温度が該所定の値にあると
きに該試料の特性測定を行うことを特徴とする半導体装
置の加速試験方法。 2)前記温度変化が相互に同一の方向にあるときに前記
特性測定を行うことを特徴とする特許請求の範囲第1項
記載の半導体装置の加速試験方法。
[Claims] 1) Periodically changing the temperature in a thermostatic chamber containing a sample in the vicinity of a predetermined value, and measuring the characteristics of the sample when the temperature of the sample is at the predetermined value. An accelerated testing method for semiconductor devices characterized by: 2) The accelerated testing method for a semiconductor device according to claim 1, wherein the characteristic measurement is performed when the temperature changes are in the same direction.
JP2570587A 1987-02-06 1987-02-06 Method for accelerated test of semiconductor device Pending JPS63193079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2570587A JPS63193079A (en) 1987-02-06 1987-02-06 Method for accelerated test of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2570587A JPS63193079A (en) 1987-02-06 1987-02-06 Method for accelerated test of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63193079A true JPS63193079A (en) 1988-08-10

Family

ID=12173203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2570587A Pending JPS63193079A (en) 1987-02-06 1987-02-06 Method for accelerated test of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63193079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104852A (en) * 2003-08-28 2012-05-31 Cascade Microtech Dresden Gmbh Device of inspecting substrate under load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104852A (en) * 2003-08-28 2012-05-31 Cascade Microtech Dresden Gmbh Device of inspecting substrate under load

Similar Documents

Publication Publication Date Title
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
JPS63193079A (en) Method for accelerated test of semiconductor device
US3759083A (en) Sensing element response time measuring system
JPS6126240B2 (en)
US2674719A (en) Temperature-compensating measuring system
US3313140A (en) Automatic calibration of direct current operated measuring instruments
JP3533141B2 (en) Semiconductor laser device, measuring device and measuring method thereof
RU2682101C1 (en) Temperature meter
SU935764A1 (en) Method and device for complex determination of thermal physical properties of substances in phase transition areas
SU1190207A1 (en) Device for measuring temperature
Eberhard et al. Dielectric study of the ferroelectric phase transition of KH2PO4
Solomons et al. Electronic Recording Differential Potentiometer
JP3670757B2 (en) Sample temperature control method and apparatus
JP2532450B2 (en) Semiconductor laser equipment
SU1312405A1 (en) Thermoresistive temperature meter with digital indication
SU1057830A1 (en) Method and device for determination of material heat
SU1273749A1 (en) Method of measuring temperature
SU596894A1 (en) Method of determining maximum permissible current of avalanche transit time diodes
CN116454719A (en) High-precision laser frequency stabilization method and device based on working temperature sectional setting
SU737891A1 (en) Device for measuring temperature coefficients of the components of drift of field-effect transistors
SU714317A1 (en) Arrangement for measuring coordinates of field-transistor thermostable point
SU824340A1 (en) Method and device for quality control of discharge devices
JPS6252474A (en) Apparatus for testing semiconductive device
JPH01123171A (en) Temperature drift tester of semiconductor apparatus
SU620839A1 (en) Method of determining high temperatures