JPS63192856A - Production of yttrium oxide composition for vapor deposition and antireflection film - Google Patents

Production of yttrium oxide composition for vapor deposition and antireflection film

Info

Publication number
JPS63192856A
JPS63192856A JP62023946A JP2394687A JPS63192856A JP S63192856 A JPS63192856 A JP S63192856A JP 62023946 A JP62023946 A JP 62023946A JP 2394687 A JP2394687 A JP 2394687A JP S63192856 A JPS63192856 A JP S63192856A
Authority
JP
Japan
Prior art keywords
vapor deposition
oxide
yttrium oxide
vapor
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62023946A
Other languages
Japanese (ja)
Inventor
Shungo Tsuboi
俊吾 坪井
Yoshifumi Matsushita
松下 嘉文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62023946A priority Critical patent/JPS63192856A/en
Priority to CN87107819A priority patent/CN1017164B/en
Priority to DE19883890060 priority patent/DE3890060C2/en
Priority to DE19883890060 priority patent/DE3890060T/de
Priority to PCT/JP1988/000103 priority patent/WO1988005963A1/en
Priority to KR1019880701199A priority patent/KR910008716B1/en
Publication of JPS63192856A publication Critical patent/JPS63192856A/en
Priority to SE8803506A priority patent/SE8803506L/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To produce a chemically stable durable vapor-deposited film having superior antireflection performance by using yttrium oxide for vapor deposition contg. titanium oxide and zirconium oxide. CONSTITUTION:Yttrium oxide for vapor deposition is mixed with about 0-7.3wt.% titanium oxide and 0-90wt.% zirconium oxide and the mixture is tabletted and sintered. A vapor-deposited film is formed on a substrate of silicon or a III-V compd. semiconductor such as GaAs with the resulting yttrium oxide compsn. The refractive index of the compsn. is closed to 1.87 as the theoretically required value, so the surface reflectance of the substrate can be made nearly zero. Since the vapor-deposited film hardly undergoes change with the lapse of time, the service life can be prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は蒸着用酸化イツトリウム組成物及び反射防止
膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a yttrium oxide composition for vapor deposition and a method for producing an antireflection film.

〔従来の技術〕[Conventional technology]

従来例えばAppN、Phys、Lett、VoL、4
7.NO,5,第450頁及びApplied Qpt
ics、Vol、23.NO,1,第161頁に示され
ているようにStやGaAs  からなる素子に対して
反射防止膜を形成する場合の蒸着材料にはZrOx  
やSi3N4が使用されるのが普通である。それは、こ
れらの素子の屈折率は3.5で、反射防止膜の屈折率の
要求値が理論的にf丁、5 = 1.87  となる。
Conventionally, for example, AppN, Phys, Lett, VoL, 4
7. No. 5, page 450 and Applied Qpt.
ics, Vol. 23. As shown in No. 1, page 161, ZrOx is used as a vapor deposition material when forming an antireflection film on elements made of St or GaAs.
Ordinarily, Si3N4 is used. The refractive index of these elements is 3.5, and the required value of the refractive index of the antireflection film is theoretically f,5=1.87.

1.87  をほぼ満足する蒸着材料がZr(h  及
びSi3N4である。これらの材料のバルクの屈折率は
それぞれ2.05.1.98  であるが、薄膜にした
場合に蒸着条件を調整することによって、屈折率n=1
.87を得ることができる。この事実については、T、
L、Paoli 、 Appl、 Phys 、Let
t 、47(5)、 450(1985)、第450頁
及びG 、 Eisenstein、AppCOpti
cs、23(1)、161(1984)、第162頁に
示されている。
Vapor deposition materials that almost satisfy 1.87 are Zr(h) and Si3N4.The bulk refractive index of these materials is 2.05 and 1.98, respectively, but when forming a thin film, the vapor deposition conditions must be adjusted. Accordingly, the refractive index n=1
.. 87 can be obtained. Regarding this fact, T.
L, Paoli, Appl, Phys, Let
t, 47(5), 450 (1985), p. 450 and G. Eisenstein, AppCOpti.
CS, 23(1), 161 (1984), p. 162.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のZrO2やSi3N4  のような蒸着組成物を
使用して、SiやGaAs  に対して反射防止膜を形
成した場合1反射率をゼロにすることはできても、反射
率の経「変化特性は、必らずしも満足のゆくものではな
い。この様に従来の組成物では初期特性は仕様を満足し
ていても、経時変化が大きいといった欠点があった。
When an antireflection film is formed on Si or GaAs using a conventional vapor deposition composition such as ZrO2 or Si3N4, it is possible to reduce the reflectance to zero, but the change characteristics of the reflectance over time are In this way, although the initial properties of conventional compositions satisfy the specifications, they have the drawback of large changes over time.

本発明は上記問題点を解消するためになされたもので、
蒸着用酸化イツトリウム組成物を提供することである。
The present invention was made to solve the above problems, and
An object of the present invention is to provide a yttrium oxide composition for deposition.

さらに他の目的は、化学的に安定で耐久性に富み、反射
防止性能の優れた蒸着膜を製造する方法と材料を提供す
ることである。
Still another object is to provide a method and material for producing a deposited film that is chemically stable, durable, and has excellent antireflection performance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る蒸着用酸化イツトリウム組成物は酸化チ
タン及び酸化ジルコニウムを含有したものである。また
、他の発明に係る反射防止膜の製造方法は酸化チタン及
び酸化ジルコニウムを含!する蒸着用酸化イツトリウム
を用いたものである。
The yttrium oxide composition for vapor deposition according to the present invention contains titanium oxide and zirconium oxide. In addition, a method for manufacturing an antireflection film according to another invention includes titanium oxide and zirconium oxide! This method uses yttrium oxide for vapor deposition.

〔作用〕[Effect]

この発明における蒸着用酸化イツトリウム組成物は、屈
折率が理論的な要求値の1.87  に近いものが得ら
れ、経時変化も小さくなる。
The yttrium oxide composition for vapor deposition according to the present invention has a refractive index close to the theoretically required value of 1.87, and changes over time are also small.

〔実施例〕〔Example〕

GaAsやSiに対する反射防止膜の形成に必要な蒸着
材料の検討において、経時変化の小さい材料としてY2
O3が秀れていることが判明した。しかし、その屈折率
がやや小さく最適ではないため、Y2O3を単独で使用
を避けることにした。
When considering vapor deposition materials necessary for forming antireflection films on GaAs and Si, Y2 was selected as a material with little change over time.
It turns out that O3 is superior. However, since its refractive index is rather small and not optimal, it was decided to avoid using Y2O3 alone.

従って、屈折率の大きい物質と組合せて所望の材料を得
ようとした。混合膜を得ようとする場合、それぞれの蒸
気圧が近いことが望ましい。それは蒸着中に蒸着材料の
組織が変化してしまうからであるo Y2O3とZr(
hとが2300℃〜2600℃の温度範囲でほぼ等しい
ので、Y2O3とZr0zとを主たる混合物質とし、ざ
らに屈折率の補正のためにTi0zを添加した。TiO
2はZrO2に特有な膜厚方向の組織の不均質性を軽減
する。
Therefore, attempts were made to obtain a desired material by combining it with a substance having a high refractive index. When trying to obtain a mixed film, it is desirable that the vapor pressures of each film be close to each other. This is because the structure of the vapor deposition material changes during vapor deposition.
Since h is approximately equal in the temperature range of 2300° C. to 2600° C., Y2O3 and Zr0z were used as the main mixed substances, and Ti0z was added to roughly correct the refractive index. TiO
2 reduces the heterogeneity of the structure in the film thickness direction, which is specific to ZrO2.

表面反射率Rを零にすると、薄膜の屈折率nfの変動に
よる表面反射率Rの変化は最小となる。
When the surface reflectance R is set to zero, changes in the surface reflectance R due to variations in the refractive index nf of the thin film become minimum.

即ち、表面反射率を零にすることは経時変化の小さい反
薊防止膜を得るための必要条件である。
That is, reducing the surface reflectance to zero is a necessary condition for obtaining an anti-rumination film that shows little change over time.

表面反射率Rは(1)式に示すようにN膜の屈折率nf
の二次関数である。
The surface reflectance R is the refractive index nf of the N film as shown in equation (1).
is a quadratic function of

たtごし、noは入射媒質の屈折率で、空気の場合、n
o=1.ooである。nSは基板の屈折率で、GaAs
の場合、ns == 3.5  である。
In the case of air, n is the refractive index of the incident medium.
o=1. It is oo. nS is the refractive index of the substrate, GaAs
, then ns == 3.5.

(1)式を簡略化すると、(2)式になる。Equation (1) can be simplified to form (2).

RoC(nf −1,87)   −・−・−・−・・
(21表面反射率Rの薄膜の屈折率nfによる変化率は
(3)式に示す通り、nfが1.88  に近付くほど
変化率が小さくなることがわかる。
RoC (nf -1,87) −・−・−・−・・
(21) As shown in equation (3), the rate of change of the surface reflectance R of the thin film due to the refractive index nf becomes smaller as nf approaches 1.88.

nf Y2O3単独で得らnる表面反射率R(%)は第1図か
ら表1の通りである。
The surface reflectance R (%) obtained from nf Y2O3 alone is shown in FIG. 1 and Table 1.

表  1 表面反射率Rが0.25  %以下を満足する屈折率が
得られる混合膜を設計すると、第1図から(4)式%式
%(4) さらに1表面反射率Rが0.05  %以下を満足する
nfは第2図から(5)式となる。
Table 1 When designing a mixed film that provides a refractive index that satisfies the surface reflectance R of 0.25% or less, from Figure 1, formula (4) % Formula % From FIG. 2, nf that satisfies % or less is expressed by equation (5).

1.775 < nf < 1.992 −・・・−・
・・・(s+(4)式及び(5)式を満足するTiO2
及びZrO2の混合率は第3図から表2の通りである。
1.775 < nf < 1.992 −・・・−・
...(s+TiO2 that satisfies equations (4) and (5)
The mixing ratios of ZrO2 and ZrO2 are shown in Table 2 from FIG.

表  2 実施例1 酸化イツトリウムに重量比で酸化ジルコニウムを10%
、酸化チタンを1%添加して充分混合し、5001の圧
力でプレス成型した後、約1300  ℃、約3時開焼
結を行って蒸着試験の錠剤(タブレット)を得た。次い
で、この試薬を蒸着装置に配置された電子銃に装填した
。真空度5 X 10  Torrになるまで排気後、
ガラス基板上およびGa As  基板上に注意しなが
ら電子銃の出力を上げ、錠剤の温度を上げて溶解し、さ
らに光学的膜厚がnd =12011m  となるまで
基板温度30017.で蒸着した。
Table 2 Example 1 10% zirconium oxide by weight to yttrium oxide
, 1% titanium oxide was added, thoroughly mixed, and press-molded at a pressure of 5,000 liters, followed by open sintering at about 1,300° C. for about 3 hours to obtain tablets for vapor deposition tests. This reagent was then loaded into an electron gun located in the vapor deposition apparatus. After evacuating to a vacuum level of 5 x 10 Torr,
While paying attention to the glass substrate and the GaAs substrate, increase the output of the electron gun, raise the temperature of the tablet to dissolve it, and further increase the substrate temperature to 30017m until the optical film thickness reaches nd = 12011m. It was deposited with

ガラス基板上に蒸着された本試薬の蒸着膜は屈折率n=
1.84  で吸収もなく GaAs  基板に対する
付着力が大キく、かつ化学的に安定で耐久性に富み、G
aAs  基板での表面反射率はほぼ0%で、かつ、長
期間にわたって、その初期特性が持続するという反射防
止用材料として、きわめて満足すべき薄膜が得られた。
The deposited film of this reagent deposited on a glass substrate has a refractive index n=
1.84, no absorption, strong adhesion to GaAs substrate, chemically stable and durable,
A very satisfactory thin film was obtained as an anti-reflection material in which the surface reflectance of the aAs substrate was approximately 0% and its initial characteristics were maintained over a long period of time.

実施例2 酸化イツトリウムにMATE比で酸化ジルコニウムを2
0%、酸化チタンを1.5%添加し、前記実施例と同様
な方法で錠剤を得た。前記実施例と同様な方法で、基板
湿度120℃で、GaAs −GaA7As系のレーザ
ダイオードの端面に蒸着を行なったところ、レーザ光出
射面の反射率はほぼゼロとなり、5LD(Super 
Lum1nescent Diode) fg子として
の特性を示すようになった。
Example 2 Zirconium oxide is added to yttrium oxide at a MATE ratio of 2
0% and 1.5% titanium oxide were added, and tablets were obtained in the same manner as in the previous example. When vapor deposition was performed on the end face of a GaAs-GaA7As laser diode at a substrate humidity of 120°C using the same method as in the above example, the reflectance of the laser light emitting surface became almost zero, resulting in a 5LD (Super
Luminescent Diode) Now exhibits characteristics as fg child.

この特性は長期間持続する。This property lasts for a long time.

比較例 酸化イツトリウムに重量比で酸化ジルコニウムを20%
、酸化チタンを8%添加し、上記実施例1と同様の方法
で錠剤を得た。基板温度を120℃として、その他の条
件は実施例2と同様の方法で、GaAs −GaAnA
s系のレーザーダイオードの端面に蒸着した。その結果
、表面反射率は約1.2%を示し、SLD素子としての
特性は得られなかった。
Comparative example: 20% zirconium oxide by weight to yttrium oxide
, 8% titanium oxide was added, and tablets were obtained in the same manner as in Example 1 above. GaAs-GaAnA was prepared using the same method as in Example 2 except that the substrate temperature was 120°C.
It was deposited on the end face of an S-based laser diode. As a result, the surface reflectance was approximately 1.2%, and the characteristics as an SLD element were not obtained.

上記の結果から、蒸着用酸化イツトリウム組成物に含有
する酸化ジルコニウムの量は0〜90%重量%、好まし
くは0〜80重塁%で、酸化チタンの量は0〜7.3重
量%、好ましくは0.5〜4.8重量%である。
From the above results, the amount of zirconium oxide contained in the yttrium oxide composition for deposition is 0 to 90% by weight, preferably 0 to 80% by weight, and the amount of titanium oxide is 0 to 7.3% by weight, preferably is 0.5 to 4.8% by weight.

被蒸着物の他への適用例としてはSi半帳体からなる発
光ダイオード、フォトダイオードなどに反射防止膜とし
て使用することができる。
As an example of application to other objects to be deposited, it can be used as an anti-reflection film for light emitting diodes, photodiodes, etc. made of Si halftone bodies.

上記実施例において、電子銃加熱のものについて説明し
たが、スパッタリングのターゲットとしても同様の効果
が期待される。
In the above embodiments, the electron gun heating was described, but similar effects are expected as a sputtering target.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればSiやGaAsからな
る半導体の屈折率に合わせて、反射防止膜を形成できる
ように、蒸着材料を酸化イツトリウム、酸化ジルコニウ
ム、酸化チタンからなる混合組成物としたため、被蒸着
物における表面反射率をほぼ零にすることができる。ま
た、経時変化が少ないため動作時間を長くすることがで
きる。
As described above, according to the present invention, the vapor deposition material is a mixed composition of yttrium oxide, zirconium oxide, and titanium oxide so that an antireflection film can be formed in accordance with the refractive index of a semiconductor made of Si or GaAs. , the surface reflectance of the object to be deposited can be reduced to almost zero. Furthermore, since there is little change over time, the operating time can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は薄膜の屈折率と表面反射率との関係
を示す説明図、第3図はTiQ2の混合量と薄膜の屈折
率との関係を示す説明図である。
FIGS. 1 and 2 are explanatory diagrams showing the relationship between the refractive index of a thin film and the surface reflectance, and FIG. 3 is an explanatory diagram showing the relationship between the amount of TiQ2 mixed and the refractive index of the thin film.

Claims (5)

【特許請求の範囲】[Claims] (1)酸化チタン及び酸化ジルコニウムを含有すること
を特徴とする蒸着用酸化イットリウム組成物。
(1) A yttrium oxide composition for vapor deposition characterized by containing titanium oxide and zirconium oxide.
(2)酸化チタンの含有量が0重量%〜7.3重量%、
酸化ジルコニウムの含有量が0重量%〜90重量%であ
ることを特徴とする特許請求の範囲第1項記載の蒸着用
酸化イットリウム組成物。
(2) The content of titanium oxide is 0% to 7.3% by weight,
The yttrium oxide composition for vapor deposition according to claim 1, characterized in that the content of zirconium oxide is 0% to 90% by weight.
(3)酸化イットリウム、酸化チタン及び酸化ジルコニ
ウムを混合してタブレット状に焼結したことを特徴とす
る特許請求の範囲第1項又は第2項記載の蒸着用酸化イ
ットリウム組成物。
(3) The yttrium oxide composition for vapor deposition according to claim 1 or 2, characterized in that yttrium oxide, titanium oxide, and zirconium oxide are mixed and sintered into a tablet shape.
(4)酸化チタン及び酸化ジルコニウムを含有する蒸着
用酸化イットリウム組成物を用いて、シリコン又はGa
AsのようなIII−V族化合物半導体の薄膜を製造する
ことを特徴とする反射防止膜の製造方法。
(4) Using a yttrium oxide composition for vapor deposition containing titanium oxide and zirconium oxide, silicon or Ga
A method for producing an antireflection film, comprising producing a thin film of a III-V compound semiconductor such as As.
(5)酸化イットリウム組成物を電子銃で加熱すること
を特徴とする特許請求の範囲第4項記載の反射防止膜の
製造方法。
(5) The method for producing an antireflection film according to claim 4, wherein the yttrium oxide composition is heated with an electron gun.
JP62023946A 1987-02-04 1987-02-04 Production of yttrium oxide composition for vapor deposition and antireflection film Pending JPS63192856A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62023946A JPS63192856A (en) 1987-02-04 1987-02-04 Production of yttrium oxide composition for vapor deposition and antireflection film
CN87107819A CN1017164B (en) 1987-02-04 1987-11-12 Preparation of antireflection coating on silicon or galliumarsenide substrate
DE19883890060 DE3890060C2 (en) 1987-02-04 1988-02-04 Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use
DE19883890060 DE3890060T (en) 1987-02-04 1988-02-04
PCT/JP1988/000103 WO1988005963A1 (en) 1987-02-04 1988-02-04 Yttrium oxide composition for use in evaporation and process for preparing anti-reflection film thereof
KR1019880701199A KR910008716B1 (en) 1987-02-04 1988-02-04 Yttrium oxide composition for use in evaporation and process for preparing anti-reflection film thereof
SE8803506A SE8803506L (en) 1987-02-04 1988-10-03 YETTRIUM OXIDE COMPOSITION FOR APPLICATION IN CULTIVATION AND PROCEDURES FOR PRODUCING ANTI-FLEX FILM THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023946A JPS63192856A (en) 1987-02-04 1987-02-04 Production of yttrium oxide composition for vapor deposition and antireflection film

Publications (1)

Publication Number Publication Date
JPS63192856A true JPS63192856A (en) 1988-08-10

Family

ID=12124709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023946A Pending JPS63192856A (en) 1987-02-04 1987-02-04 Production of yttrium oxide composition for vapor deposition and antireflection film

Country Status (6)

Country Link
JP (1) JPS63192856A (en)
KR (1) KR910008716B1 (en)
CN (1) CN1017164B (en)
DE (2) DE3890060C2 (en)
SE (1) SE8803506L (en)
WO (1) WO1988005963A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321473A (en) * 1989-06-19 1991-01-30 Matsushita Electric Ind Co Ltd Image output device
CN102140621A (en) * 2011-03-10 2011-08-03 苏州大学 Preparation method of dense composite titanium dioxide film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246043A (en) * 1979-12-03 1981-01-20 Solarex Corporation Yttrium oxide antireflective coating for solar cells
DE3613501A1 (en) * 1986-04-22 1987-10-29 Stefan Dipl Ing Donnerhack Process for anti-catalytic coating of thermocouples

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321473A (en) * 1989-06-19 1991-01-30 Matsushita Electric Ind Co Ltd Image output device
CN102140621A (en) * 2011-03-10 2011-08-03 苏州大学 Preparation method of dense composite titanium dioxide film

Also Published As

Publication number Publication date
SE8803506D0 (en) 1988-10-03
CN1017164B (en) 1992-06-24
CN87107819A (en) 1988-08-17
SE8803506L (en) 1988-10-03
DE3890060C2 (en) 1990-08-16
KR910008716B1 (en) 1991-10-19
WO1988005963A1 (en) 1988-08-11
KR890700927A (en) 1989-04-28
DE3890060T (en) 1989-03-23

Similar Documents

Publication Publication Date Title
US3934961A (en) Three layer anti-reflection film
US4361598A (en) Polymerized solutions for depositing optical oxide coatings
US4346131A (en) Polymerized solutions for depositing optical oxide coatings
JPS63192856A (en) Production of yttrium oxide composition for vapor deposition and antireflection film
JPS5860701A (en) Reflection preventing film
JP2006519305A (en) Vapor deposition materials for producing high refractive index optical layers.
JPH07331412A (en) Optical parts for infrared ray and their production
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
US4465739A (en) Substrates coated with aluminum oxide solutions
Van Bommel et al. Spin coating of titanium ethoxide solutions
JPS6128027B2 (en)
CN101178440A (en) LaTiO3 evaporation material for high refractivity optical film, method of producing the same and use
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
CN109082632A (en) A kind of infrared low-refraction the admixture plates the film material and preparation method
JP2019066600A (en) Plastic lens and manufacturing method for the same
JPH11264068A (en) Material for vacuum deposition and vapor deposited thin film
JPH0474568A (en) Low reflection antistatic film and preparation and use thereof
JPS6151283B2 (en)
JPS6151281B2 (en)
JP2003073818A (en) Fluoride sputtering target and manufacturing method therefor
JPS63260138A (en) Formation of silicon oxide film
JPH0474681B2 (en)
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPS6363002A (en) Reflecting mirror for laser
JPH04181902A (en) Antireflection film to optical parts made of synthetic resin