DE3890060C2 - Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use - Google Patents

Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use

Info

Publication number
DE3890060C2
DE3890060C2 DE19883890060 DE3890060A DE3890060C2 DE 3890060 C2 DE3890060 C2 DE 3890060C2 DE 19883890060 DE19883890060 DE 19883890060 DE 3890060 A DE3890060 A DE 3890060A DE 3890060 C2 DE3890060 C2 DE 3890060C2
Authority
DE
Germany
Prior art keywords
oxide
refractive index
layer
cttrium
tina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE19883890060
Other languages
German (de)
Other versions
DE3890060T (en
Inventor
Syungo Tsuboi
Yoshifumi Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of DE3890060C2 publication Critical patent/DE3890060C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Description

Die Erfindung betrifft eine Yttriumoxid, Titanoxid und Zirkoniumoxid enthaltende verdampfbare Zusammensetzung, die zur Herstellung einer Antireflexionsschicht verwendet werden kann.The invention relates to an yttrium oxide, titanium oxide and Vaporizable composition containing zirconium oxide, which is used to produce an anti-reflective layer can be.

Bisher hat man im allgemeinen als verdampfendes Material ZrO₂ oder Si₃N₄ bei der Herstellung einer Antireflexionsschicht auf Einrichtungen aus Si oder GaAs verwendet, wie in "APPl. Phys. Lett., Bd. 47, Nr. 5, Seite 450" und in "Applied Optics, Bd. 23, Nr. 1, Seite 161" gezeigt wird. Dies erfolgt deshalb, weil der Brechungsindex dieser Einrichtungen 3,5 beträgt und der erforderliche Wert für den Brechungsindex der Antireflexionsschicht theoretisch =1,87 beträgt und dieser Brechungsindex 1,87 durch die Verdampfungsmaterialien, zusammengesetzt aus ZrO₂ und Si₃N₄ befriedigt wird. Obwohl der Brechungsindex von ZrO₂ und Si₃N₄ 2,05 bzw. 1,98 ist, kann man den vorerwähnten Brechungsindex n=1,87 dadurch erzielen, daß man die Verdampfungsbedingungen zur Herstellung der Schicht daraus entsprechend einstellt, wie in "T. L. Paoli, Appl. Phys. Lett. 47(5), 450 (1985), Seite 450" und "G. Eisenstein, Appl. Optics, 23(1), 161 (1984), Seite 162" beschrieben wird.So far one has generally used as a vaporizing material ZrO₂ or Si₃N₄ in the manufacture of an anti-reflection layer on devices made of Si or GaAs, as in "APPl. Phys. Lett., Vol. 47, No. 5, page 450" and in "Applied Optics , Vol. 23, No. 1, page 161 ". This is because the refractive index of these devices is 3.5 and the required value for the refractive index of the antireflection layer is theoretically = 1.87 and this refractive index 1.87 is satisfied by the evaporation materials, composed of ZrO₂ and Si₃N₄. Although the refractive index of ZrO₂ and Si₃N₄ is 2.05 and 1.98, the aforementioned refractive index n = 1.87 can be achieved by adjusting the evaporation conditions for producing the layer accordingly, as described in "TL Paoli, Appl. Phys. Lett. 47 (5), 450 (1985), page 450 "and" G. Eisenstein, Appl. Optics, 23 (1), 161 (1984), page 162 ".

Die Reflexionscharakteristik von üblichen, für eine Antireflexionsschicht verwendeten verdampfbaren Zusammensetzungen aus ZrO₂ oder Si₃N₄ verändern sich im Laufe der Zeit. Das heißt, daß man anfangs die gewünschte Charakteristik erhalten kann, daß aber nach einiger Zeit die charakteristischen Werte sich verändern.The reflection characteristic of usual, for an anti-reflection layer vaporizable compositions used  from ZrO₂ or Si₃N₄ change in the course of Time. This means that you initially have the desired characteristics can get that but after some time the characteristic values change.

Aufgabe der Erfindung ist es deshalb, eine verdampfbare Zusammensetzung zu zeigen, die nach dem Aufdampfen eine Antireflexionsschicht mit konstantem Brechungsindex ergibt. Diese Aufgabe wird erfindungsgemäß durch eine verdampfbare Zusammensetzung aus Yttriumoxid, Titanoxid und Zirkoniumoxid gelöst.The object of the invention is therefore a vaporizable Composition to show the after evaporation one Antireflection layer with constant refractive index results. This object is achieved by an evaporable Composition of yttrium oxide, titanium oxide and zirconium oxide dissolved.

Kurze Beschreibung der Zeichnung:Brief description of the drawing:

Fig. 1 und 2 sind charakteristische Diagramme und zeigen die Beziehung zwischen dem Brechungsindex und der Oberflächenreflexion der Schicht; und Fig. 1 and 2 are characteristic diagrams showing the relationship between the refractive index and the surface reflectance of the layer; and

Fig. 3 ist ein charakteristisches Diagramm und zeigt die Beziehung zwischen der abgemischten Menge an TiO₂ und dem Brechungsindex der Schicht. Fig. 3 is a characteristic diagram and shows the relationship between the blended amount of TiO₂ and the refractive index of the layer.

Als Ergebnis von Untersuchungen über Verdampfungsmaterialien, wie sie zur Herstellung von Antireflexionsschichten für GaAs oder Si erforderlich sind, wurde festgestellt, daß Y₂O₃ ein Material ist, welches sich im Laufe der Zeit nur in geringem Maße verändert. Aber der Brechungsindex davon ist etwas zu klein, den erforderlichen optimalen Brechungsindex zu erzielen, und deshalb ist es nicht vorteilhaft, Y₂O₃ in Form einer Einzelsubstanz zu verwenden. As a result of studies on evaporation materials, as used for the production of anti-reflection layers for GaAs or Si are required, it was found that Y₂O₃ is a material that only changes over time changed slightly. But the Refractive index of which is somewhat too small to achieve the required optimal refractive index, and therefore it is not advantageous to form Y₂O₃ Use single substance.  

Es bestand somit die Absicht, die gewünschte Zusammensetzung durch Kombination von Y₂O₃ mit einem Material, das einen großen Brechungsindex hat, zu erhalten. Im allgemeinen sind die Dampfdrücke der jeweiligen Komponenten bei der Herstellung einer Mischschicht gleich, um zu verhindern, daß während der Verdampfungsstufe das verdampfende Material eine strukturelle Veränderung erfährt. Da die Dampfdrücke von Y₂O₃ und von ZrO₂ im Temperaturbereich von 2300 bis 2600°C nahezu gleich sind, wurden Y₂O₃ und ZrO₂ als Hauptmischmaterialien verwendet und TiO₂ wurde zugegeben, um den Brechungsindex zu korrigieren. TiO₂ ist für die Reduzierung der Heterogenität der Struktur in Richtung der Filmdicke, die ZrO₂ eigen ist, geeignet.The intention was therefore to create the desired composition by combining Y₂O₃ with a material that a has large refractive index. In general are the vapor pressures of the respective components at the Making a mixed layer the same to prevent that during the evaporation stage the evaporating material undergoes a structural change. Because the vapor pressures of Y₂O₃ and ZrO₂ in the temperature range from 2300 to 2600 ° C are almost the same, Y₂O₃ and ZrO₂ were considered Main mixing materials used and TiO₂ was added to correct the refractive index. TiO₂ is for Reduction of the heterogeneity of the structure in the direction the film thickness, which is ZrO₂, suitable.

Ist die Oberflächenreflexion R Null, so wird die Veränderung der Oberflächenreflexion (R) aufgrund der Veränderung des Brechungsindexes (n f ) der Schicht minimiert. Das heißt, daß es zur Erzielung einer Antireflexionsschicht, die sich im Laufe der Zeit nur wenig verändert, eine notwendige Bedingung ist, daß die Oberflächenreflexion Null ist.If the surface reflection R is zero, the change in surface reflection (R) due to the change in the refractive index (n f ) of the layer is minimized. That is, in order to obtain an anti-reflection layer which changes little over time, it is a necessary condition that the surface reflection is zero.

Die Oberflächenreflexion (R) ist eine quadratische Funktion des Brechungsindexes der Schicht. Das heißtThe surface reflection (R) is a quadratic function of the refractive index of the layer. This means

worin bedeuten: n₀ gibt den Brechungsindex des Umgebungsmediums an und ist an der Luft 1,00; n s gibt den Brechungsindex eines Substrates an und ist bei GaAs 3,5.where mean: n ₀ indicates the refractive index of the surrounding medium and is 1.00 in air; n s indicates the refractive index of a substrate and is 3.5 for GaAs.

Die obige Gleichung (1) kann zur nachfolgenden Gleichung (2) vereinfacht werden:The above equation (1) can be compared to the following equation (2) be simplified:

R(n f - 1,87) (2) R(n f - 1.87) (2)

Es wurde gefunden, daß der Veränderungsgrad der Oberflächenbrechung (R) aufgrund des Brechungsindexes (n f ) der Schicht klein wird, wenn (n f ) näher zu 1,88 rückt, wie dies in der nachfolgenden Gleichung (3) gezeigt wirdIt has been found that the degree of change in surface refraction (R) due to the refractive index (n f ) of the layer becomes small as (n f ) comes closer to 1.88, as shown in equation (3) below

Die Oberflächenreflexion (R) (%), die von der Einzelsubstanz Y₂O₃ erhalten wird, wird in der nachfolgenden Tabelle 1 gezeigt.The surface reflection (R) (%), which is obtained from the individual substance Y₂O₃, is shown in Table 1 below.

Tabelle 1 Table 1

Beim Ausarbeiten einer Mischschicht mit einem Brechungsindex, welcher einer Oberflächenreflexion von nicht mehr als 0,25% genügt, erhält man die nachfolgende Gleichung (4) aus der Fig. 1The following equation (4) from FIG. 1 is obtained when working out a mixed layer with a refractive index which does not meet a surface reflection of more than 0.25%

1,732 < n f < 2,048 (4)1.732 < n f <2.048 (4)

Eine weitere Gleichung (5) für (n f ), welches einer Oberflächenreflexion von nicht mehr als 0,05% entspricht, kann man aus Fig. 2 erhalten. Another equation (5) for (n f ), which corresponds to a surface reflection of not more than 0.05%, can be obtained from FIG. 2.

Tabelle 2 Table 2

Beispiel 1Example 1

10% Zirkoniumoxid und 1% Titanoxid, jeweils in Gew.-%, wurden zu Yttriumoxid gegeben und damit gut vermischt.10% zirconium oxide and 1% titanium oxide, each in% by weight, were added to yttrium oxide and mixed well therewith.

Nach einer Preßverformung mit einem Druck von 500 bar wurde das Produkt bei 1300°C 3 Stunden gesintert, wobei man eine Tablette zum Verdampfen erhielt. Dann wurde in eine Verdampfungsvorrichtung, in welche diese Probe eingebracht war, eine Elektronenkanone eingebracht. Nach Einstellung eines Hochvakuums wurde der Output der Elektronenkanone erhöht, wobei man auf die obere Oberfläche des Glassubstrates und des GaAs-Substrates achtete, um die Tablette durch Erhöhung der Temperatur derselben zu schmelzen. Dann erfolgte die Verdampfung der Tablette bei einer Substrattemperatur von 300°C bis zu einer optimalen Schichtdicke (n d ) von 120 nm (d. h., n d =120 nm). Bei der aufgedampften Schicht der so erhaltenen Probe auf dem Glassubstrat lag bei einem Brechungsindex von n=1,84 keine Absorption vor, vielmehr wurde eine starke Haftung an das GaAs-Substrat festgestellt und der Film war ausreichend chemisch stabil und dauerhaft. Weiterhin betrug die Oberflächenreflexion des GaAs-Substrates im wesentlichen 0% und diese Eigenschaft im Anfangsstadium blieb über einen längeren Zeitraum unverändert. Man erhielt somit eine sehr befriedigende Schicht, die als Antireflexionsmaterial geeignet war.After compression molding at a pressure of 500 bar, the product was sintered at 1300 ° C for 3 hours, whereby a tablet was obtained for evaporation. Then, an electron gun was placed in an evaporator in which this sample was placed. After setting a high vacuum, the output of the electron gun was increased, paying attention to the upper surface of the glass substrate and the GaAs substrate, to melt the tablet by increasing its temperature. The tablet was then evaporated at a substrate temperature of 300 ° C. to an optimal layer thickness (n d ) of 120 nm (ie, n d = 120 nm). With the vapor-deposited layer of the sample thus obtained on the glass substrate, there was no absorption with a refractive index of n = 1.84, rather strong adhesion to the GaAs substrate was found and the film was sufficiently chemically stable and durable. Furthermore, the surface reflection of the GaAs substrate was substantially 0%, and this property remained unchanged in the initial stage over a long period of time. This gave a very satisfactory layer which was suitable as an anti-reflection material.

Beispiel 2Example 2

20% Zirkoniumoxid und 1,5% Titanoxid, jeweils in Gew.-%, wurden zu Yttriumoxid gegeben und es wurde eine Tablette in gleicher Weise wie im vorhergehenden Beispiel 1 hergestellt. Das Ergebnis der Verdampfung auf die Endfläche einer Laserdiode aus GaAs-GaAlAs bei einer Substrattemperatur von 120°C, die in gleicher Weise wie beim vorhergehenden Beispiel erfolgte, betrug die Reflexion der an dem Laserstrahl ausgehenden Oberfläche im wesentlichen Null und man erhielt eine SLD (Super Lumineszenz Diode). Diese Eigenschaft blieb eine lange Zeit erhalten.20% zirconium oxide and 1.5% titanium oxide, each in% by weight, were added to yttrium oxide and became a tablet in the same way as in Example 1 above produced. The result of evaporation on the end face a laser diode made of GaAs-GaAlAs at a substrate temperature of 120 ° C, which is the same as the previous one Example was done, the reflection was on the Laser beam outgoing surface essentially zero and an SLD (Super Luminescence Diode) was obtained. This property has been preserved for a long time.

VergleichsbeispielComparative example

20% Zirkoniumoxid und 8% Titanoxid, jeweils in Gew.-%, wurden zu Yttriumoxid gegeben und eine Tablette wurde in gleicher Weise wie im vorhergehenden Beispiel 1 hergestellt. Als Ergebnis der Verdampfung auf die Endfläche einer Laserdiode aus GaAs-GaAlAs bei einer Substrattemperatur von 120°C, die in gleicher Weise erfolgt wie im vorhergehenden Beispiel 2, betrug die Reflexion an der am Laserstrahl ausgehenden Oberfläche 1,2 und die Eigenschaft als SLD wurde nicht erzielt.20% zirconium oxide and 8% titanium oxide, each in% by weight, were added to yttrium oxide and a tablet was placed in prepared in the same way as in Example 1 above. As a result of evaporation on the end face of one Laser diode made of GaAs-GaAlAs at a substrate temperature of 120 ° C, which is done in the same way as in the previous one  Example 2, the reflection was on the laser beam outgoing surface 1,2 and the property as SLD was not achieved.

Infolgedessen wird es bevorzugt, daß man die Menge an Zirkoniumoxid, die sich in der Yttriumoxid-Zusammensetzung befindet, auf den Bereich bis zu 90 Gew.-% und vorzugsweise bis 80 Gew.-% und die Menge an Titanoxid, welche darin enthalten ist, auf den Bereich bis zu 7,3% und noch bevorzugter 0,5 bis 4,8 Gew.-% einstellt.As a result, it is preferred that the amount of Zirconia, which is in the yttria composition located in the range up to 90 wt .-% and preferably up to 80% by weight and the amount of titanium oxide which included in the range up to 7.3% and more preferably 0.5 to 4.8% by weight.

Die Antireflexionsschichten können mit der erfindungsgemäßen verdampfbaren Zusammensetzung auch auf lichtabgebende Dioden oder Fotodioden, die aus einem Si-Halbleiter aufgebaut sind, aufgedampft werden.The anti-reflective layers can with the invention vaporizable composition also on light-emitting Diodes or photodiodes made from a Si semiconductor are built up, are evaporated.

Die vorliegende Erfindung kann beispielsweise bei einem Temperatursensor, für eine Laserdiode oder für eine Solarbatterie, bei welchen optische Fasern inkorporiert sind, verwendet werden.For example, the present invention can be applied to a Temperature sensor, for a laser diode or for a solar battery, which optical fibers are incorporated, be used.

Claims (5)

1. Verdampfbare Zusammensetzung, dadurch gekennzeichnet, daß sie Yttriumoxid, Titanoxid und Zirkoniumoxid enthält.1. Vaporizable composition, characterized in that it contains yttrium oxide, titanium oxide and zirconium oxide. 2. Zusammensetzung gemäß Anspruch 1, enthaltend bis zu 7,3 Gew.-% Titanoxid und bis zu 90 Gew.-% Zirkoniumoxid.2. Composition according to claim 1, comprising until 7.3% by weight of titanium oxide and up to 90% by weight of zirconium oxide. 3. Zusammensetzung gemäß Anspruch 1 oder 2, in welcher das Yttriumoxid, Titanoxid und Zirkoniumoxid vermischt und unter Ausbildung einer Tablette gesintert sind.3. Composition according to claim 1 or 2, in which the yttrium oxide, titanium oxide and zirconium oxide mixed and sintered to form a tablet are. 4. Verwendung der Zusammensetzung gemäß Ansprüchen 1, 2 oder 3 zur Herstellung einer Antireflexionsschicht auf einem Halbleiter.4. Use of the composition according to claims 1, 2 or 3 for the production of an anti-reflection layer on a semiconductor. 5. Verwendung gemäß Anspruch 4, bei welchem die Zusammensetzung mittels einer Elektronenkanone erhitzt wird.5. Use according to claim 4, wherein the composition heated by an electron gun becomes.
DE19883890060 1987-02-04 1988-02-04 Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use Expired - Lifetime DE3890060C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62023946A JPS63192856A (en) 1987-02-04 1987-02-04 Production of yttrium oxide composition for vapor deposition and antireflection film
PCT/JP1988/000103 WO1988005963A1 (en) 1987-02-04 1988-02-04 Yttrium oxide composition for use in evaporation and process for preparing anti-reflection film thereof

Publications (1)

Publication Number Publication Date
DE3890060C2 true DE3890060C2 (en) 1990-08-16

Family

ID=12124709

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19883890060 Expired - Lifetime DE3890060C2 (en) 1987-02-04 1988-02-04 Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use
DE19883890060 Pending DE3890060T (en) 1987-02-04 1988-02-04

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE19883890060 Pending DE3890060T (en) 1987-02-04 1988-02-04

Country Status (6)

Country Link
JP (1) JPS63192856A (en)
KR (1) KR910008716B1 (en)
CN (1) CN1017164B (en)
DE (2) DE3890060C2 (en)
SE (1) SE8803506D0 (en)
WO (1) WO1988005963A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850371B2 (en) * 1989-06-19 1999-01-27 松下電器産業株式会社 Image output device
CN102140621A (en) * 2011-03-10 2011-08-03 苏州大学 Preparation method of dense composite titanium dioxide film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613501A1 (en) * 1986-04-22 1987-10-29 Stefan Dipl Ing Donnerhack Process for anti-catalytic coating of thermocouples

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246043A (en) * 1979-12-03 1981-01-20 Solarex Corporation Yttrium oxide antireflective coating for solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613501A1 (en) * 1986-04-22 1987-10-29 Stefan Dipl Ing Donnerhack Process for anti-catalytic coating of thermocouples

Also Published As

Publication number Publication date
CN87107819A (en) 1988-08-17
KR910008716B1 (en) 1991-10-19
CN1017164B (en) 1992-06-24
SE8803506L (en) 1988-10-03
DE3890060T (en) 1989-03-23
JPS63192856A (en) 1988-08-10
SE8803506D0 (en) 1988-10-03
KR890700927A (en) 1989-04-28
WO1988005963A1 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
DE4037733C2 (en) Process for producing an indium / tin oxide target
DE1646553C (en)
DE2336049B2 (en) Loss-resistant, temperature-stable, highly reflective alternating layer system
DE69907506T2 (en) THIN FILM OF HAFNIUM OXIDE AND METHOD OF APPLYING
DE2658417A1 (en) PROCESS FOR THE PRODUCTION OF ANTIREFLEX COATING ON POLYDIAETHYLENGLYCOL DIALLYLCARBONATE, OPTICAL BODIES PRODUCED BY THE PROCESS AND USE OF THE OPTICAL BODY
DE2751221A1 (en) PROCESS FOR APPLYING A REFLECTION-REDUCING COATING TO BACKING MADE OF ORGANIC MATERIAL
DE2338019C3 (en) Process for the production of only the half-wave layer of an anti-reflection film consisting of a material that tends to be inhomogeneity
DE3616265A1 (en) COMPOSITE COMPOSED OF GRAPHITE FIBER SILVERED DIOXIDE MATRIX
DE2457474C3 (en) Process for the production of reflection-reducing multilayers and optical bodies produced by the process
DE3150525A1 (en) POLYCRYSTALLINE ZINKSULFID AND ZINKSELENID PRODUCTS WITH IMPROVED OPTICAL QUALITY AND METHOD FOR THE PRODUCTION OF SUCH ARTICLES
DE3890060C2 (en) Vaporizable composition containing cttrium oxide, tina oxide and zirconium oxide and their use
EP1597212B1 (en) Vaporizing material for producing highly refractive optical layers
DE3909654A1 (en) REFLECTION PREVENTING FILM FOR OPTICAL PARTS MADE OF PLASTIC
DE3908322A1 (en) ZIRCONIUM DIOXIDE SINTER BODY SUITABLE FOR THE FORMATION OF A THIN FILM AND METHOD FOR THE PRODUCTION THEREOF
DE2339183A1 (en) METHOD OF GROWING UP AN EPITAXIAL LAYER ON A SINGLE CRYSTALLINE, IN ITS COMPOSITION WITH ITS NON-IDENTICAL SUBSTRATE
DE2419122A1 (en) PROCESS FOR THE PRODUCTION OF TIO DEEP 2-LAYERS BY EVAPORATION FROM A MELTING TITANIUM OXYGEN PHASE
DE3131742A1 (en) FOR CONVERGING LIGHT TRANSMITTING HIGH QUALITY GLASS BODY AND METHOD FOR THE PRODUCTION THEREOF
DE69924095T2 (en) OPTICALLY CLEAR, CONTINUOUS INFRARED WINDOWS AND MANUFACTURING METHOD
CH680214A5 (en)
DD213514A1 (en) PROCESS FOR PREPARING CALCIUM FLUORIDE CRYSTALS FOR OPTICAL PURPOSES
DE69025860T2 (en) Optical elements and method for their production
DE3026703C2 (en) Process for the production of an anti-reflective coating on a transparent material such as an optical glass
DE68928486T2 (en) Laser and a coupled optical layer made of Ta2O5
DE1571568B2 (en) PROCESS FOR MANUFACTURING POLYCRYSTALLINE OBJECTS WITH GREAT RADIATION TRANSMISSION IN THE VISIBLE AND INFRARED SPECTRAL AREA
DE2413447C2 (en) Process for the manufacture of a superconductor