JPS63190379A - Color image sensor - Google Patents

Color image sensor

Info

Publication number
JPS63190379A
JPS63190379A JP62027805A JP2780587A JPS63190379A JP S63190379 A JPS63190379 A JP S63190379A JP 62027805 A JP62027805 A JP 62027805A JP 2780587 A JP2780587 A JP 2780587A JP S63190379 A JPS63190379 A JP S63190379A
Authority
JP
Japan
Prior art keywords
color filter
image sensor
photoelectric conversion
color
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62027805A
Other languages
Japanese (ja)
Inventor
Masabumi Kunii
正文 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPS63190379A publication Critical patent/JPS63190379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To produce a color filter suitable for use in a one-dimensional contact- type image sensor by a method wherein a color filter is formed between a photoelectric conversion element and transparent insulating substrate. CONSTITUTION:In a color image sensor wherein a photoelectric conversion element 5 and a scanning circuit to drive the photoelectric transfer element 5 are integrated on a transparent insulating film 1, a color filter 3 is built between the photoelectric conversion element 5 and the transparent insulating substrate 1. The color filter 3 is a color filter wherein a pigment is the main component. The result is a color filter capable of on-chip installation which has been an impossibility with other designs with light incident upon the side of the transparent substrate 1. This greatly simplifies the package configuration in a process of packaging into products. Yield after packaging of color image sensors is improved, which in turn reduces the manufacturing cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーイメージセンサに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a color image sensor.

〔従来の技術〕[Conventional technology]

一次元密着イメージセンサは、原稿と同一サイズのセン
サ長を持つので、ファクシミリやイメージスキャナの小
型化、低価格化に大きく寄与する。このため、近年、そ
の開発が活発化しており、第16回置体素子やコンファ
レンス論文集(1984)p、555に示すように、光
電変換素子と、これを駆動する走査回路とを同一の石英
基板上に集積化した密着イメージセンナがDfl 発、
実用化されている。
Since the one-dimensional contact image sensor has a sensor length that is the same size as the document, it greatly contributes to miniaturization and cost reduction of facsimiles and image scanners. For this reason, their development has become active in recent years, and as shown in the 16th Annual Mounting Element and Conference Papers (1984) p. 555, photoelectric conversion elements and scanning circuits that drive them are made of the same quartz. A close-contact image sensor integrated on a substrate is developed by Dfl.
It has been put into practical use.

この密着イメージセンサには、第2図に示すような、能
動素子面(光電変換素子や駆動回路素子が集積されてい
る面)側から光が入射するタイプ(以降、トップタイプ
と呼ぶ)と、第1図に示すような、石英基板側から光が
入射するタイプ(以降、ボトムタイプと呼ぶ)とがある
。密着イメージセンサの光電変換素子面にカラーフィル
タを形成してフルカラー化を行う場合、トップタイプで
は第2図に示すようにカラーフィルタ3を光電変換索子
5土の透明導電膜4に直接接して形成することができる
。しかし、トップタイプでは、その構造上製品として実
装する際にガラス封止等の高価な実装形態をとらざるを
得す、コスト低下が難しかった。
These contact image sensors include a type (hereinafter referred to as a top type) in which light enters from the active element surface (the surface where photoelectric conversion elements and drive circuit elements are integrated) as shown in Fig. 2; There is a type (hereinafter referred to as a bottom type) in which light enters from the quartz substrate side, as shown in FIG. When forming a color filter on the photoelectric conversion element surface of a contact image sensor to achieve full color, in the top type, the color filter 3 is directly contacted with the transparent conductive film 4 of the photoelectric conversion cable 5 as shown in FIG. can be formed. However, the top type has no choice but to use expensive mounting methods such as glass sealing when mounting it as a product due to its structure, making it difficult to reduce costs.

これに対しボトムタイプでは、石英基板側から光を入射
する形態であるため実装上のガラス封止等の高価・複雑
な工程は必要なく、トップタイプに比較すればコスト低
下は容易である。しかし、ボトムタイプをカラー化する
場合、第1図の破線で示す位置、即ち透明基板の裏面0
にカラーフィルタを形成することはできない。密着イメ
ージセンサの画素ピッチが100μm以下であ□るのに
対し、石英基板2の厚みが1.2mmあるので、第1図
の破線位置0にカラーフィルタを形成すると隣接画素と
の混色を起し、色ぼけが生ずるためである。このためボ
トムタイプでは第1図に示す如く、透明絶縁基板2と光
電変換素子5との間にカラーフィルタ3を形成する必要
がある。この位置にカラーフィルタを形成するためには
、カラーフィルタ形成後、最高220°Cの温度がかか
る工程を通るため、カラーフィルタの耐熱性は最底25
0°Cは必要である。従来、固体撮像索子のカラーフィ
ルタに用いられてきた、透明ゼラチンを染料で染色して
作成するタイプのものは耐熱性がなく、第1図に示す位
置にカラーフィルタを形成することは不可能であった。
On the other hand, in the bottom type, light enters from the quartz substrate side, so there is no need for expensive and complicated processes such as glass sealing for mounting, and costs can be easily reduced compared to the top type. However, when colorizing the bottom type, the position shown by the broken line in Figure 1, that is, the back side 0 of the transparent substrate.
It is not possible to form color filters on While the pixel pitch of a contact image sensor is 100 μm or less, the thickness of the quartz substrate 2 is 1.2 mm, so if a color filter is formed at position 0 of the broken line in Fig. 1, color mixing with adjacent pixels will occur. This is because color blurring occurs. For this reason, in the bottom type, it is necessary to form a color filter 3 between the transparent insulating substrate 2 and the photoelectric conversion element 5, as shown in FIG. In order to form a color filter at this location, after the color filter is formed, it goes through a process that requires temperatures of up to 220°C, so the heat resistance of the color filter is at the bottom 25°C.
0°C is necessary. Conventionally, the type of color filter that has been used for solid-state imaging probes, made by dyeing transparent gelatin with dye, is not heat resistant, making it impossible to form a color filter in the position shown in Figure 1. Met.

本発明は以上の問題点を解決するもので、その目的は、
−次元密着形イメージセンサに適切なカラーフィルタ、
及びその形成方法を提供することにある。
The present invention solves the above problems, and its purpose is to:
- Color filter suitable for dimensional contact type image sensor,
An object of the present invention is to provide a method for forming the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のカラーイメージセンサは、光電変換素子と、そ
れを駆動する走査回路とを透明絶縁基板上に集積化した
カラーイメージセンサにおいて、該光電変換素子と、該
透明絶縁基板との間にカラーフィルタを形成し、該カラ
ーフィルタに顔料を主成分とするカラーフィルタを用い
たことを特徴とする。
The color image sensor of the present invention is a color image sensor in which a photoelectric conversion element and a scanning circuit for driving the same are integrated on a transparent insulating substrate, and a color filter is provided between the photoelectric conversion element and the transparent insulating substrate. The color filter is characterized in that a color filter containing pigment as a main component is used.

〔実施例〕〔Example〕

第1図に本発明のカラーイメージセンサの実施例を示す
。1が透明絶縁基板、2が層間絶縁膜、3がカラーフィ
ルタ、4が透明導電膜、5が光電変換素子、6が上部電
極、7が駆動回路を構成する薄膜トランジスタ(T、F
、T、)であり、第1図、第2図では簡単のためT、F
、Tを代表して1個だけ描いである。
FIG. 1 shows an embodiment of the color image sensor of the present invention. 1 is a transparent insulating substrate, 2 is an interlayer insulating film, 3 is a color filter, 4 is a transparent conductive film, 5 is a photoelectric conversion element, 6 is an upper electrode, and 7 is a thin film transistor (T, F) constituting a drive circuit.
, T, ), and in Figures 1 and 2, T, F are used for simplicity.
, only one is drawn to represent T.

以下に実施例を工程を追いながら説明する。まず透明絶
縁基板1である石英基板上に、多結晶シリコン701を
L P CV D法で成膜し、フォトリングラフで所望
のT、F、T、バタンを作る。次にゲート絶縁膜702
をポリシリコン701の熱酸化で作る。この上にゲート
電極703となるポリシリコンをL I) CV Dで
成膜したあと、抵抗を下げる目的でリンを拡散させる。
Examples will be explained below, following the steps. First, a film of polycrystalline silicon 701 is formed on a quartz substrate, which is a transparent insulating substrate 1, by the LPCCVD method, and desired T, F, T, and baton are formed using a photorin graph. Next, the gate insulating film 702
is made by thermal oxidation of polysilicon 701. After forming a polysilicon film to form the gate electrode 703 on this film by LI) CVD, phosphorus is diffused in order to lower the resistance.

ゲート電極のパタニングをし、pN n各チャネルに応
じてマスキングをしてnチャネルの場合はボロンを、n
チャネルの場合はリンをイオン打込する。チャネル部を
形成後、マスクを除いて層間絶縁膜2のNSGをCV 
I)法で成膜する。ここまでが主にT、F。
Pattern the gate electrode and mask it according to each pN channel.
In the case of channels, ion implantation of phosphorus is performed. After forming the channel part, remove the mask and apply CV to the NSG of the interlayer insulating film 2.
I) A film is formed by method. Up to this point, it's mainly T and F.

T、7の形成工程である。以降は主に光電変換素子5の
形成工程となる。
This is the formation process of T and 7. The subsequent steps mainly involve forming the photoelectric conversion element 5.

まず、カラーフィルタ8の形成工程を述べる。First, the process of forming the color filter 8 will be described.

第1図の層間絶縁膜−ヒにITOをスパッタで約100
0〜2000人成膜し、赤(R)・緑(G)・青(B)
の各バタンに応じてITOをパタニングし、電着電極8
を形成する。この1例を第3図に示す。第3図は能動素
子面側から見た図である。81はRフィルタ電着用電極
、82はGフィルタ電着用電極、83はBフィルタ電着
用電極であり、84は電極電源印加部である。第3図で
は電着電極の一部だけを描いてあり、他の部分は省略し
である。この基板を赤顔料を高分子樹脂とともに溶液中
に分散させたもの(ミント−ケミトロン製)に対向電極
とともに浸し、電着電極8にプラス、対向電極にマイナ
スの電圧をかけると、マイナスの電荷をもつ赤顔料は電
着電極8上に集まる。適当な膜厚(1,5〜2.5μm
)になった時点で基板を−Lげ、水洗・乾燥ののち焼イ
」硬化させる。カラーフィルタの膜厚は電着時間を調整
することにより自由に制御できる。同様な方法によって
緑・青の各カラーフィルタも作る。顔料ツバインダーに
用いている高分子樹脂にはポリニスデル樹脂なので、以
上の工程で作製したカラーフィルタは耐熱性に優れ、大
気中240°C1時間の加熱しても劣化はない。
Approximately 100% of ITO is sputtered onto the interlayer insulating film shown in Figure 1.
0 to 2000 people deposited red (R), green (G), blue (B)
The ITO is patterned according to each of the taps, and the electrodeposited electrode 8 is
form. An example of this is shown in FIG. FIG. 3 is a view seen from the active element side. 81 is an electrode for electrodeposition of the R filter, 82 is an electrode for electrodeposition of the G filter, 83 is an electrode for electrodeposition of the B filter, and 84 is an electrode power supply section. In FIG. 3, only a part of the electrodeposited electrode is depicted, and other parts are omitted. This substrate is immersed together with a counter electrode in a solution containing a red pigment and a polymer resin dispersed in a solution (manufactured by Mint-Chemitron), and when a positive voltage is applied to the electrodeposited electrode 8 and a negative voltage is applied to the counter electrode, a negative charge is generated. The red pigment collected on the electrodeposited electrode 8. Appropriate film thickness (1.5 to 2.5 μm
), remove the substrate, wash it with water, dry it, and then bake it to harden it. The film thickness of the color filter can be freely controlled by adjusting the electrodeposition time. Green and blue color filters are also made using the same method. Since the polymer resin used in the pigment Zbinder is polynisder resin, the color filter produced through the above process has excellent heat resistance and does not deteriorate even when heated in the atmosphere at 240°C for 1 hour.

このカラーフィルタ3上に、透明導電膜4となるITO
を約2000人スパッタし、ミート抵抗を下げるために
220@CのFGアニールを1時間行なう。しかるのち
、カラーフィルタ3と同一のパクンで透明導電膜4をパ
タニングする。この」二に光電変換索子5を形成する。
On this color filter 3, ITO which becomes the transparent conductive film 4 is placed.
Approximately 2,000 people were sputtered, and FG annealing was performed at 220 C for 1 hour to lower the meat resistance. Thereafter, the transparent conductive film 4 is patterned using the same patterns as the color filter 3. A photoelectric conversion cable 5 is formed on this second part.

光電変換素子にはプラズマCVD法で堆積した非晶質シ
リコンを用いた。非晶質シリコンの分光感度特性は人間
の眼の色感度にほぼ等しいので、非晶質シリコンはカラ
ーイメージセンサに好適である。非晶質シリコンの成膜
は、基板温度200°Cで約3時間の工程である。非晶
質シリコンを成膜後、パタニングをし、薄膜トランジス
タ7の電極を取り出すためのコンタクトホールをあける
。コンタクトホール形成後、電極6となるAρ−S j
 −Cu合金を約7000人スパッタし、パタニングす
ることにより光電変換素子5と薄膜トランジスタ7の配
線とを同時に形成する。この後、能動素子面に保護膜の
ポリイミド膜(東し製、フォトニースなど)を塗布して
カラーイメージセンサチップが完成する。従来のゼラチ
ン染色フィルターは、前記ITO成膜時のFGアニール
と前記非晶質シリコン成膜時の加熱とに耐えられず、退
色をおこして用いることができなかった。
Amorphous silicon deposited by plasma CVD was used for the photoelectric conversion element. Since the spectral sensitivity characteristics of amorphous silicon are approximately equal to the color sensitivity of the human eye, amorphous silicon is suitable for color image sensors. Forming an amorphous silicon film is a process that takes about 3 hours at a substrate temperature of 200°C. After forming the amorphous silicon film, patterning is performed to make a contact hole for taking out the electrode of the thin film transistor 7. After forming the contact hole, Aρ-S j becomes the electrode 6
The photoelectric conversion element 5 and the wiring of the thin film transistor 7 are simultaneously formed by sputtering and patterning -Cu alloy. Thereafter, a protective polyimide film (manufactured by Toshi Co., Ltd., Photonice, etc.) is applied to the active element surface to complete the color image sensor chip. Conventional gelatin dyed filters could not withstand the FG annealing during the ITO film formation and the heating during the amorphous silicon film formation, causing discoloration and could not be used.

これに対し、顔料を主成分表するカラーフィルタは十分
な耐熱性があるため、第1図に示すような構造が可能に
なった。
On the other hand, color filters whose main components are pigments have sufficient heat resistance, making the structure shown in FIG. 1 possible.

〔発明の効果〕〔Effect of the invention〕

本発明のカラーイメージセンサによれば、透明u板側か
ら光を入射するタイプのイメージセンナでは従来不可能
だったカラーフィルタのo n −chip化が可能と
なり、製品として実装する際の実装形態を大幅に簡略化
するととが可能になった。このため、本発明はカラーイ
メージセンサの実装歩留りを向上させ、コスト低減に多
大の効果を有する。
According to the color image sensor of the present invention, it is possible to use an on-chip color filter, which was previously impossible with a type of image sensor that enters light from the transparent U board side, and it is possible to change the mounting form when mounting it as a product. It has become possible to significantly simplify this. Therefore, the present invention has great effects in improving the mounting yield of color image sensors and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカラーイメージセンナの断面図。 第2図は従来のカラーイメージセンサの断面図。 第3図は電着電極のレイアウト図。 0は仮想のカラーフィルタ位置 1は透明絶縁基板 2は層間絶縁膜 3はカラーフィルタ 4は透明導電膜 5は光電変換素子 6は電極 7は薄膜トランジスタ(T、F、T、)8は電着電極 701はT、I”、T、チャネル部 702はゲート絶縁膜 703はゲート電極 以  上 第1図 FIG. 1 is a sectional view of the color image sensor of the present invention. FIG. 2 is a cross-sectional view of a conventional color image sensor. Figure 3 is a layout diagram of electrodeposited electrodes. 0 is the virtual color filter position 1 is a transparent insulating substrate 2 is an interlayer insulating film 3 is a color filter 4 is a transparent conductive film 5 is a photoelectric conversion element 6 is the electrode 7 is a thin film transistor (T, F, T,) 8 is an electrodeposition electrode 701 is T, I”, T, channel part 702 is a gate insulating film 703 is a gate electrode that's all Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)光電変換素子と、それを駆動する走査回路とを透
明絶縁基板上に集積化したカラーイメージセンサにおい
て、該光電変換素子と、該透明絶縁基板の間にカラーフ
ィルタを形成したことを特徴とするカラーイメージセン
サ。
(1) A color image sensor in which a photoelectric conversion element and a scanning circuit for driving the same are integrated on a transparent insulating substrate, characterized in that a color filter is formed between the photoelectric conversion element and the transparent insulating substrate. Color image sensor.
(2)前記カラーフィルタに顔料を主成分とするカラー
フィルタを用いたことを特徴とする特許請求の範囲第1
項記載のカラーイメージセンサ。
(2) Claim 1, characterized in that the color filter is a color filter whose main component is a pigment.
Color image sensor described in section.
JP62027805A 1986-09-02 1987-02-09 Color image sensor Pending JPS63190379A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20650886 1986-09-02
JP61-206508 1986-09-02

Publications (1)

Publication Number Publication Date
JPS63190379A true JPS63190379A (en) 1988-08-05

Family

ID=16524529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027805A Pending JPS63190379A (en) 1986-09-02 1987-02-09 Color image sensor

Country Status (1)

Country Link
JP (1) JPS63190379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136392A (en) * 2003-10-06 2005-05-26 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136392A (en) * 2003-10-06 2005-05-26 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2609339B2 (en) Method for manufacturing color filter
JPH05134109A (en) Manufacture of color filter
JPS5817404A (en) Multicolored optical filter and its manufacture
KR960010932B1 (en) Solid state image pick-up device
JPS63190379A (en) Color image sensor
JPS5817405A (en) Multicolored optical filter and its manufacture
JPH11354763A (en) Solid state image sensor and fabrication of color filter array
JPS59229863A (en) Manufacture of color sensor
JPS63155002A (en) Production of solid-state image pickup device
JPS6242449A (en) Color solid-state image pickup device
JPH01158770A (en) Manufacture of color image sensor
JPH0513736A (en) Color solid-state image pickup device
JPH0338063A (en) Color solid image pick-up element and manufacture thereof
KR930003614B1 (en) Making method of color filter
KR960007882B1 (en) Manufacturing method for color-filter
JPH082654Y2 (en) Electrode substrate for liquid crystal display element
JPH04234705A (en) Manufacture of color filter
JPS61287263A (en) Solid-state image pickup device and manufacture thereof
TW427022B (en) The manufacturing method of microlens
JPS59163860A (en) Solid-state image pickup element
JPH03192205A (en) Solid state image pickup device and production thereof
JPH01235271A (en) Solid-state image sensing device and manufacture thereof
KR920008072B1 (en) Method for making color filter
TW451488B (en) Method of manufacturing submicron color filter
JPS623203A (en) Solid-state color image pickup device and its production