TW451488B - Method of manufacturing submicron color filter - Google Patents

Method of manufacturing submicron color filter Download PDF

Info

Publication number
TW451488B
TW451488B TW89112060A TW89112060A TW451488B TW 451488 B TW451488 B TW 451488B TW 89112060 A TW89112060 A TW 89112060A TW 89112060 A TW89112060 A TW 89112060A TW 451488 B TW451488 B TW 451488B
Authority
TW
Taiwan
Prior art keywords
photoresist
color
green
daylight
red
Prior art date
Application number
TW89112060A
Other languages
Chinese (zh)
Inventor
Fu-Tian Weng
Jr-Guang Jang
Yu-Kuen Shiau
Bi-Jeng Jang
Guo-Liang Liu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW89112060A priority Critical patent/TW451488B/en
Application granted granted Critical
Publication of TW451488B publication Critical patent/TW451488B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)

Abstract

A method of manufacturing a submicron color filter consists of coating a substance layer with a blue photoresist and forming blue pixels by exposing and developing the blue photoresist once, then coating the layer with a green photoresist and forming green pixels by exposing and developing the green photoresist twice with each exposure covering 25% pattern ratio, and finally coating the layer with a red photoresist and forming red pixels by exposing and developing the red photoresist once.

Description

451488 '' ' 五、發明說明(1) 【發明領域】 本發明係有關於一種彩色遽光片(color filter)的 製造方法,特別是有關於一種四晝素配置型之次微来 (submicron )彩色濾光片的製造方法。 【習知技術】 彩色遽光片是固態影像裝置(solid state imaging dev i ce )彩色化的必要材料。一般固態影像裝置在半導體 矽基底内會具有一光二極體(photodiode ),做為感測區 (sensor area),而彩色濾光片位於光二極體上方。當 入射光通過彩色濾光片後,會被過濾分成三種原色光,紅 (R)、綠(G)和藍(B),然後再被對應的光二極體吸 收與感測。 傳統之固態影像裝置的製造方法,如下所示,第1圖 係繪示傳統之固態影像裝置的剖面圖。首先在半導體發基 底100中形成光二極體102,而每一個光二極體102均有其 對應的電晶體1 04,用以讀取影像資料。之後,於電晶體 104上方覆蓋一層透明且平坦化的氧化層1〇6,接著於此平 坦化的氧化層1 06上形成彩色濾光片1 08。繼續於彩色濾光 片1 0 8的上方形成另一層透明且平坦化的氧化層11 〇,然後 在此平坦化的氧化層11 〇上形成微透鏡11 2。 而隨著目前提高影像靈敏度(sensitivity)和解析 度(resolution)及降低成本的趨勢,其製程已由微米走 進次微米時代,因此畫素的尺寸必須由5微米縮小至〇. 35 微米以下。但是’卻使得次微米彩色濾光片的技術遭遇一451488 '' '' V. Description of the invention (1) [Field of the invention] The present invention relates to a method for manufacturing a color filter, and in particular to a submicron of a four-day element configuration type. Manufacturing method of color filter. [Know-how] Color calenders are necessary materials for solid-state imaging devices (solid state imaging devices). Generally, a solid-state imaging device has a photodiode in a semiconductor silicon substrate as a sensor area, and a color filter is located above the photodiode. After the incident light passes through the color filter, it is filtered into three primary colors, red (R), green (G), and blue (B), and then absorbed and sensed by the corresponding photodiode. The manufacturing method of a conventional solid-state imaging device is shown below. FIG. 1 is a cross-sectional view showing a conventional solid-state imaging device. First, a photodiode 102 is formed in a semiconductor light emitting substrate 100, and each photodiode 102 has a corresponding transistor 104 for reading image data. After that, a transparent and planarized oxide layer 106 is covered over the transistor 104, and then a color filter 108 is formed on the planarized oxide layer 106. Continue to form another transparent and planarized oxide layer 11 0 over the color filter 108, and then form a microlens 112 on the planarized oxide layer 110. With the current trend of increasing the sensitivity and resolution of images and reducing costs, the process has moved from micrometers to the submicron era, so the pixel size must be reduced from 5 micrometers to less than 0.35 micrometers. But ’has made the technology of sub-micron color filters

451488_ 五、發明說明(2) 些問題,此問題將配合第2A圖至第2C圖於下文做詳細說 明。 第2A圖至第2C圖係繪示上述之彩色濾光片丨〇8的詳細 製造流程頂視圖。固態影像裝置之彩色濾光片j 〇8常用的 圖樣配置為四晝素配置型,其中紅色和藍色的圖案比例 (pattern ratio 或稱 field rati〇)均為25¾,而綠色的 圖案比例則占50%。首先於氧化層丨06上塗佈一層藍色光 阻’經曝光顯影後,定義出彩色濾光片之藍色晝素B,如 第2 A圖所示。 繼續於氧化層106上塗佈一層綠色光阻,經曝光顯影 後定義出彩色^慮光片之綠色畫素G ’如第2 B圖所示。然 而’由於綠色畫素G的圖案比例占50%,在曝光過程中,係 曝出孔洞1 0 9的圖案,此孔洞1 〇 9係用以玫置後續將形成之 紅色晝素R。但是對定義孔洞丨09圖案而言,會因為干射現 象而使其解析度較差,除了會使定義出的綠色晝素6之輪 廓較差外,還容易在孔洞109中產生殘留物。—’ ,,在氧化層106上塗佈一層紅色光阻,'經曝光顯影 後’疋義出彩色濾光片之紅色晝素R,如第2C圖所示,由 於孔洞109的輪廓已小於預定的尺寸,再加上孔洞 的綠色晝素G之殘留物,都會影響紅色畫素R的效能,進而 【發明之目的和概要】 有鑑於上述之畫素尺寸縮小時所面臨之問題, 提供一種可以提高次微米彩色濾光片的效能之方法。月451488_ V. Description of the invention (2) These problems will be explained in detail below in conjunction with Figures 2A to 2C. Figures 2A to 2C are top views showing the detailed manufacturing process of the color filter described above. The color filter j 〇8 of the solid-state imaging device is commonly used in a four-day pattern configuration, where the pattern ratio of red and blue (field rati〇) is 25¾, and the ratio of green pattern accounts for 50%. First, a layer of blue photoresist is coated on the oxide layer 06, and after exposure and development, the blue daylight B of the color filter is defined, as shown in FIG. 2A. Continue coating a layer of green photoresist on the oxide layer 106. After exposure and development, the green pixels G 'of the color filter are defined as shown in FIG. 2B. However, since the pattern ratio of the green pixel G accounts for 50%, during the exposure process, a pattern of holes 109 is exposed, and this hole 109 is used to place the red daylight R that will be formed later. However, for the definition of the pattern of holes 丨 09, the resolution is poor due to the phenomenon of dry shots. In addition to making the defined contour of the green daylight 6 poor, it is also easy to produce residues in the holes 109. — ', A red photoresist is coated on the oxide layer 106, and the red daylight R of the color filter is defined after exposure and development, as shown in FIG. 2C, because the outline of the hole 109 is smaller than the predetermined The size of the pixel, plus the residue of the green dipeptide G in the hole, will affect the performance of the red pixel R. [Objective and Summary of the Invention] In view of the problems faced when the size of the pixel is reduced, a method is provided. Method to improve the performance of sub-micron color filters. month

4 51 4B8 五、發明說明(3) 此外,本發明提供一種四畫素配置型之次微米彩色據 光片的製造方法,可以有效降低綠色畫素殘餘物留在其他 非綠色晝素區域的可能。 再者,本發明提供一種四晝素配置型之次微米彩色據 光片的製造方法,可以使綠色晝素具有良好輪廓。 本發明係針對於上述習知技術之缺點而提出改良,本 發明之次微米彩色濾光片的製造方法,包括:覆蓋一層藍 色光阻’經過一次曝光顯影製程後,形成藍色畫素,之後 覆蓋一層綠色光阻,進行兩次曝光步驟,而每一次曝光的 圖案比例為25% ’再進行一次顯影步驟形成綠色晝素,最 後覆蓋一層紅色光阻,經過一次曝光顯影製程後,形成紅 色晝素’即完成彩色濾光片。其中,藍色晝素和紅色晝素 的製程順序亦可對調。 本發明提供一種應用於固態影像處理裝置之次微米卷 色,光片的製造方法,包括:在感測區上形成内連線,且 覆蓋一層平坦的介電層後,於其上方覆蓋一層藍色光阻, 經過:次曝光顯影製程後,形成藍色畫素,之後覆篕一層 綠色光阻’進行兩次曝光製程,每一次曝光的圖案比例為 25\’再進行顯影製程形成綠色晝素,最後再覆蓋一層紅 色^阻’經過一次曝光顯影製程後,形成紅色畫素,即完 f彩色遽光片°其中,藍色晝素和紅色晝素的製程順序亦 相對調°最後於彩色濾光片上形成另一層平坦的介電 ^ 於其上方形成與感測區相對應的微透鏡。 根據本發明之一較佳實施例,上述之紅色光阻的材質4 51 4B8 V. Description of the invention (3) In addition, the present invention provides a method for manufacturing a four-pixel configuration type sub-micron color light sheet, which can effectively reduce the possibility that green pixel residues remain in other non-green daylight regions. . In addition, the present invention provides a method for manufacturing a sub-micron color data sheet of the four-day-horizon configuration type, which can make the green day-horizon have a good profile. The present invention proposes improvements to the shortcomings of the above-mentioned conventional technology. The method for manufacturing a sub-micron color filter of the present invention includes: covering a layer of blue photoresist to form a blue pixel after an exposure and development process, and thereafter Cover a layer of green photoresist, and perform two exposure steps, and the pattern ratio of each exposure is 25%. 'Another development step is performed to form a green daylight, and finally a layer of red photoresist is covered. After an exposure and development process, a red daylight is formed The prime 'finishes the color filter. Among them, the process sequence of blue daylight and red daylight can also be reversed. The invention provides a method for manufacturing a sub-micron color roll and a light sheet applied to a solid-state image processing device. The method includes: forming an interconnect on a sensing area, covering a flat dielectric layer, and covering the layer with a blue layer. The color photoresist is formed into blue pixels after the exposure and development process, and then covered with a layer of green photoresist to perform two exposure processes. The pattern ratio of each exposure is 25 \ ', and then the development process is performed to form green daylight. Finally, it is covered with a layer of red color. After one exposure and development process, red pixels are formed, that is, the color phosphor film is completed. Among them, the process sequence of blue daylight and red daylight is relatively adjusted. Finally, the color filter is used. Another layer of flat dielectric is formed on the chip, and a microlens corresponding to the sensing area is formed thereon. According to a preferred embodiment of the present invention, the material of the above-mentioned red photoresist

第7頁 45M88 五、發明說明(4) 為含紅色染料之負光阻,綠色光阻的材質為含綠色染料之 負光阻,藍色光阻的材質為含藍色染料之負光阻。藉由上 述改善曝光品質的方法,可以使畫素的尺寸可以縮小至3 微米以·p。 為讓本發明之上述目的、特徵及優點能更明顯易懂’ 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如 下: 【圖式簡單說明】 第1圖係繪示習知之固態影像裝置的剖面圖。 第2A圖至第2C圖係繪示習知之彩色濾光片的製造流程 頂視圖。 第3圖係繪示根據本發明一較佳實施例之一種固態影 像裝置的剖面圖。 第4A圖至第4D圖係第3圖之彩色滤光片的製造流程頂 視圖。 【符號說明】 100〜半導體矽基底; 300〜基底紅色晝素; B〜藍色晝素; G〜綠色畫素; 、G2〜綠色晝素圖案 112、340〜微透鏡; 108、308〜彩色濾光片; 1 02、302~ 光二極體; 104、304~電晶體, 106、110〜氧化層; 1 0 9〜孔洞; 306、316、326、336〜介電 層 實施例Page 7 45M88 V. Description of the invention (4) It is a negative photoresist containing a red dye. The material of the green photoresist is a negative photoresist containing a green dye. The material of a blue photoresist is a negative photoresist containing a blue dye. By the above-mentioned method for improving the exposure quality, the pixel size can be reduced to 3 micrometers or more. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible ', a preferred embodiment is given below, and in conjunction with the accompanying drawings, the detailed description is as follows: [Simplified description of the drawings] FIG. 1 is a drawing A cross-sectional view of a conventional solid-state imaging device. Figures 2A to 2C are top views showing the manufacturing process of a conventional color filter. FIG. 3 is a cross-sectional view of a solid-state imaging device according to a preferred embodiment of the present invention. Figures 4A to 4D are top views of the manufacturing process of the color filter of Figure 3. [Symbol description] 100 ~ semiconductor silicon substrate; 300 ~ substrate red daylight; B ~ blue daylight; G ~ green pixel; G2 ~ green daylight pattern 112, 340 ~ micro lens; 108,308 ~ color filter Light sheet; 102, 302 ~ photodiode; 104, 304 ~ transistor, 106,110 ~ oxide layer; 109 ~ hole; 306,316,326,336 ~ dielectric layer embodiment

4 5 1 48 g 五、發明說明(5) 在曝光製程中,對孔洞的解析度和塊狀物的解析度有 極大的不同,因為孔洞易有十射現象的干擾,故孔洞的解 析度較為差。因此,本發明在四晝素配置型之次微米彩色 慮光片的製造方法中,避免定義孔洞的圖案,以提高彩色 濾光片的紅色、藍色和綠色畫素之效能。 首先請參照第3圖,其係繪示本發明之固態影像裝置 的剖面圖。在基底300中形成光二極體302,此光二極體 3 02即為感測區。每一個光二極體3〇2均有其對應的電晶體 3 0 4 ’用以讀取感測區所產生的電荷資料,再藉由一系列 的電路設計而轉換為影像。之後,於電晶體3〇4上方覆蓋 一層透明且平坦化的介電層3〇6,其材質比如是氧化珍。 接著進行内連線的製程’以在介電層3〇6上方形成内 連線結構,此内連線結構可以是多重内連線結構或是單層 的内連線結構’以將各元件做電性連接。在第3 A圖中係以 二層的内連線結構為例,圖中標號3〇7a和3〇7b係分別表示 第一層和第二層的導線,而導線30 7a和3〇7b之間係以透明 的介電層316做為電性隔離之用,其中介電層316的材質比 如是氧化矽。之後於第三層的導線3〇7b上方覆蓋一層透明 且平坦化的介電層326,其材質比如是氧化矽。 接著於此平坦化的介電層326上形成藍綠紅的彩色渡 光片308 ’其詳細的製造流程如第“圖至的 所示。 層彩是以:法係其塗料佈4 5 1 48 g 5. Description of the invention (5) In the exposure process, the resolution of the holes is very different from the resolution of the blocks. Because the holes are prone to interference by the radiant phenomenon, the resolution of the holes is relatively high. difference. Therefore, the present invention avoids defining the pattern of holes in the manufacturing method of the sub-micron color light-reflective sheet of the four-day configuration type to improve the efficiency of the red, blue, and green pixels of the color filter. First, please refer to FIG. 3, which is a sectional view showing a solid-state imaging device according to the present invention. A photodiode 302 is formed in the substrate 300, and the photodiode 302 is a sensing area. Each photodiode 302 has its corresponding transistor 3004 'to read the charge data generated in the sensing area, and then convert it into an image through a series of circuit designs. After that, a transparent and flattened dielectric layer 306 is covered on top of the transistor 304, and the material is, for example, oxide. Then perform the interconnection process 'to form an interconnection structure above the dielectric layer 306. This interconnection structure can be a multiple interconnection structure or a single-layer interconnection structure' to make each component Electrical connection. In Figure 3A, the two-layer interconnect structure is taken as an example. The reference numerals 307a and 307b in the figure indicate the wires of the first and second layers, respectively, and the wires 30 7a and 307b A transparent dielectric layer 316 is used for electrical isolation. The material of the dielectric layer 316 is, for example, silicon oxide. Then, a transparent and planarized dielectric layer 326 is covered on the third layer of the conductive wire 307b, and the material is, for example, silicon oxide. Then, a blue-green-red color doped sheet 308 ′ is formed on the planarized dielectric layer 326. The detailed manufacturing process is as shown in the following figure. The layer color is:

451488 , > 五、發明說明(6) (pigment )的負光阻,之後進行一次曝光製程和一次顯 影製程’使已曝光的區塊硬化,以使此藍色光阻轉為許多 塊狀的藍色晝素B ’此藍色晝素B的圖案比例為25%。 Ρ 接著於介電層326上塗佈一層綠色光阻,此綠色光阻為一 種含綠色染料的負光阻’會覆蓋在藍色晝素的其他區域。 接著進行第一階段的曝光製程,以定義出一部份的綠 色晝素圖案G1 ’其圖案比例為2 5 % *如第4 Β圖所示。繼續 進行第二階段的曝光製程,以定義出另一部份的綠色晝素 圖案G2,其圖案比例亦為25%,如第4C圖所示。之後進行' —次的顯影製程,使綠色晝素圖案G1和G2硬化後,轉為綠 色晝素G,如第4D圖所示。 由於綠色晝素G在曝光的過程中,係分兩次曝出塊狀 圖案,因此所形成的綠色畫素G可以具有良好輪廓,使得 在使用既有的彩色光阻材質下,得以提高綠色晝素G的圖 案之正確性。此外,在非綠色晝素G區域的殘餘物亦有效 地降低。 之後於介電層326上塗佈一層彩色光阻,例如是紅色 光阻,其為一種含紅色染料的負光阻,並進行一次曝光製 種和一次顯影製程,以使紅色光阻轉為紅色晝素R ,如第 4D圖所示。 值得注意的是,亦可以先形成紅色晝素R,再依序形 成綠色晝素G和藍色晝素Β。 請繼續參照第3圖,於彩色濾光片308的上方形成另— 層透明且平坦化的介電層336,其材質比如是氧化矽。然451488, > 5. Description of the invention (6) (pigment) negative photoresist, and then performing an exposure process and a development process to 'harden the exposed blocks, so that this blue photoresist is turned into many block blue Color dipeptide B 'The pattern ratio of this blue dipeptide B is 25%. P then coats a layer of green photoresist on the dielectric layer 326. This green photoresist is a negative photoresist containing a green dye 'and will cover other areas of the blue daylight. Then, the first stage of the exposure process is performed to define a part of the green daylight pattern G1 ′ whose pattern ratio is 25% * as shown in FIG. 4B. Continue the second stage of the exposure process to define another part of the green daylight pattern G2, whose pattern ratio is also 25%, as shown in Figure 4C. After that, the development process is performed one time to harden the green daylight patterns G1 and G2, and then turn to green daylight G, as shown in FIG. 4D. Since the green daylight G is exposed to a block pattern twice during the exposure process, the formed green pixel G can have a good outline, so that the green daylight can be improved by using the existing color photoresist material. The correctness of the pattern of prime G. In addition, residues in non-green diurnal G regions were effectively reduced. A layer of color photoresist is then coated on the dielectric layer 326, such as a red photoresist, which is a negative photoresist containing a red dye, and undergoes an exposure seeding and a development process to turn the red photoresist into red. Days R, as shown in Figure 4D. It is worth noting that it is also possible to form the red lutein R first, and then sequentially form the green lutein G and the blue lutein B. Please continue to refer to FIG. 3, another transparent and planarized dielectric layer 336 is formed on the color filter 308, and the material is, for example, silicon oxide. Of course

451488 五、發明說明(7) 後在此平坦化的介電層336上形成微透鏡340,此微透鏡 340對應於光二極體302。 【發明之特徵與效果】 综上所述,本發明至少具有下列優點: 1. 本發明藉由將綠色光阻分兩次進行曝光,以塊狀圖 案的方式曝光形成綠色晝素。 2. 本發明之四畫素配置型之次微米彩色濾光片的製造 方法,可以有效降低綠色畫素殘餘物留在其他非綠色晝素 區域。 3. 本發明之四晝素配置型之次微米彩色濾光片的製造 方法,可以使綠色晝素具有良好輪廓。 4. 本發明之四晝素配置型之次微米彩色濾光片的每一 藍色、綠色和紅色晝素之間,具有良好的區隔。 5. 本發明可以在使用既有的綠色光阻材質下,提高四 晝素配置型之次微米彩色濾光片的綠色晝素圖案之正確 性,因此節省了開發新材料的成本。 6·本發明的製程相當簡單,極容易與目前的製程相 容。 雖然本發明已以較佳實施例揭露如上,然其成非用以 限制本發明’任何熟習此項技藝者,在不脫離本發明之精 神和範圍内’當可做更動與潤飾,因此本發明之保護範圍 當事後附之申請專利範圍所界定者為準。451488 5. Description of the invention (7) A microlens 340 is formed on the planarized dielectric layer 336, and the microlens 340 corresponds to the photodiode 302. [Features and Effects of the Invention] In summary, the present invention has at least the following advantages: 1. The present invention forms green daylight by exposing the green photoresist twice and exposing it in a block pattern. 2. The manufacturing method of the sub-micron color filter of the four-pixel configuration type of the present invention can effectively reduce the residual of green pixels in other non-green daylight regions. 3. The method for manufacturing a sub-micron color filter of the four-day pigment configuration type according to the present invention can make the green color pigment have a good profile. 4. Each of the blue, green and red color elements of the sub-micron color filter of the four-day element configuration type of the present invention has a good separation. 5. The present invention can improve the accuracy of the green daylight pattern of the sub-micron color filter of the four day element configuration type using the existing green photoresist material, thereby saving the cost of developing new materials. 6. The process of the present invention is quite simple and is easily compatible with the current process. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention to "any person skilled in the art can be modified and retouched without departing from the spirit and scope of the present invention. The scope of protection shall be defined by the scope of the patent application attached after the event.

第11頁Page 11

Claims (1)

4514B8 "" _ 11 · 六、申請專利範^ ^ ' 1. 一種次微米彩色濾光片的製造方法,該製造方法包 括下列步驟: 於一物質層上塗佈一第一彩色光阻; ^ 進行一第一曝光製程和〆第一顯影製程,以使該第一 彩色光阻轉為複數個第一彩色畫素; 於該物質層上塗佈一綠色光阻; 進行一第二曝光製程,以定義出一部份綠色晝素圖 案; 進行一第三曝光製程,以定義出另—部份綠色晝素圖 茶, 進行一第二顯影製程,以形成複數個綠色晝素; 於該物質層上塗佈一第二彩色光阻;以及 、, 進行一第四曝光製程和一第三顯影製程、以使該第二 彩色光阻轉為複數個第二彩色晝素e 2. 如申請專利範圍第1項所述之製造方法,其中該第 一彩色光阻為一藍色光阻,該第一彩色晝素為一藍色晝 素’該第二彩色光阻為一紅色光阻,該第二彩色晝素為一 紅色晝素。 — 3. 如申請專利範圍第1項所述之製造方法,其中該第 一彩色光阻為—紅色光阻’該第一彩色晝素為一紅色晝 素’該第二彩色光阻為一藍色光卩且’該第二彩色晝素為一 藍色晝素。 4. 如申請專利範圍第2項所述之製造方法,其中該紅 色光阻為負光阻,該藍色光阻為負光阻’該綠色光阻為負4514B8 " " _ 11 · VI. Patent Application ^ ^ '1. A method for manufacturing a sub-micron color filter, the manufacturing method includes the following steps: coating a first color photoresist on a material layer; ^ Performing a first exposure process and a first development process to convert the first color photoresist into a plurality of first color pixels; coating a green photoresist on the material layer; performing a second exposure process To define a part of the green daylight pattern; to perform a third exposure process to define another-part of the green daylight map tea, and to perform a second development process to form a plurality of green daylight elements; A second color photoresist is coated on the layer; and, a fourth exposure process and a third development process are performed to turn the second color photoresist into a plurality of second color photon e 2. if applying for a patent The manufacturing method according to item 1 of the scope, wherein the first color photoresist is a blue photoresist, the first color photon is a blue photon, the second color photoresist is a red photoresist, The two-color daylight is a red daylight. — 3. The manufacturing method as described in item 1 of the scope of patent application, wherein the first color photoresist is-a red photoresist 'the first color photon is a red photon' and the second color photoresist is a blue The color is bright and 'the second color daylight is a blue daylight. 4. The manufacturing method described in item 2 of the scope of patent application, wherein the red photoresistor is a negative photoresistor, the blue photoresistor is a negative photoresistor, and the green photoresistor is a negative photoresistor. 第12頁 六、申請專利範圍 光阻。 5. 如申請專利範圍第3項所述之製造方法,其中該紅 色光阻為負光阻’該藍色光阻為負光阻’該綠色光阻為負 光阻。 包括: 該基底上具有 6. —種次微米彩色濾光片的製造方法 提供一基底,該基底中具有一感測區 一電晶體,用以控制該感測區; 於該電晶體上覆蓋一第一介電層·, 用以控制該電 於該第一介電層上形成一内連線結 晶體; 於該内連線結構上形成一第二介 於該第二介電層上形成塗佈一 進行一第一曝光製程和一第一〉色光阻, 彩色光阻轉為複數個第一彩色書去製程,以使該第· 於該第二介電層上塗佈n且; 進行一第二曝光製程,以定蠤 案; 義出—部份綠色晝素圖 部份綠色晝素圖 案進行一第三曝光製程,以定義出另 進行一第二顯影製程,使該些 個綠色畫素; —' 色畫素圖案轉為複數 於該第二介電層上塗佈一第_ 進行一第四曝光製程和一第三阻;以及 彩色光阻轉為複數個第二彩色晝素;^製程,以使該第二 I1H 第13 X 451488 ' 六、申請專利範圍 於該些第一彩色、綠色和第二彩色晝素上形成一第三 介電層;以及 於該第三介電層上形成一微透鏡。 7. 如申請專利範圍第6項所述之方法,其中該第一介 電層、該第二介電層和該第三介電層的材質包括氧化矽。 8. 如申請專利範圍第6項所述之製造方法,其中該第 一彩色光阻為一藍色光阻,該第一彩色晝素為一藍色晝 素,該第二彩色光阻為一紅色光阻,該第二彩色晝素為一 紅色晝素。 9. 如申請專利範圍第6項所述之製造方法,其中該第 一影色光阻為一紅色光阻’該第一彩色晝素為一紅色晝 素,該第二彩色光阻為一藍色光阻,該第二彩色晝素為一 藍色晝素。 1 〇.如申請專利範圍第8項所述之製造方法,其中該紅 色光阻為負光阻,該藍色光阻為負光阻,該綠色光阻為負 光阻。 11.如申請專利範圍第9項所述之製造方法,其中該紅 色光阻為負光阻,該藍色光阻為負光阻,該綠色光阻為負 光阻。Page 12 6. Scope of Patent Application Photoresist. 5. The manufacturing method according to item 3 of the scope of patent application, wherein the red photoresist is a negative photoresist, the blue photoresist is a negative photoresist, and the green photoresist is a negative photoresist. The method includes: manufacturing a sub-micron color filter on the substrate, providing a substrate, the substrate having a sensing region and a transistor for controlling the sensing region; covering the transistor with a A first dielectric layer for controlling the formation of an interconnect crystal on the first dielectric layer; forming a second interlayer coating on the interconnect structure to form a coating on the second dielectric layer A first exposure process and a first> color photoresist are performed, and the color photoresist is converted into a plurality of first color book processes, so that the first layer is coated with n on the second dielectric layer, and a first The second exposure process is to determine the plan; the definition-part of the green daytime picture part of the green daytime picture pattern to perform a third exposure process to define another second development process to make these green pixels; — 'The color pixel pattern is converted into a plurality of first coatings on the second dielectric layer for a fourth exposure process and a third resistance; and the color photoresist is converted into a plurality of second color daylight elements; To make the second I1H No. 13 X 451488 'Six, apply for a patent Forming a third dielectric layer on the first color, green, and second color daylight; and forming a microlens on the third dielectric layer. 7. The method according to item 6 of the scope of patent application, wherein the materials of the first dielectric layer, the second dielectric layer, and the third dielectric layer include silicon oxide. 8. The manufacturing method as described in item 6 of the scope of patent application, wherein the first color photoresist is a blue photoresist, the first color photon is a blue photon, and the second color photoresist is a red Photoresistance, the second colored daylight is a red daylight. 9. The manufacturing method as described in item 6 of the scope of patent application, wherein the first shadow color photoresist is a red photoresist, the first color daylight is a red daylight, and the second color photoresist is a blue light. The second color lutein is a blue lutein. 10. The manufacturing method as described in item 8 of the scope of the patent application, wherein the red photoresist is a negative photoresist, the blue photoresist is a negative photoresist, and the green photoresist is a negative photoresist. 11. The manufacturing method according to item 9 of the scope of patent application, wherein the red photoresist is a negative photoresist, the blue photoresist is a negative photoresist, and the green photoresist is a negative photoresist. 第14頁Page 14
TW89112060A 2000-06-20 2000-06-20 Method of manufacturing submicron color filter TW451488B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89112060A TW451488B (en) 2000-06-20 2000-06-20 Method of manufacturing submicron color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89112060A TW451488B (en) 2000-06-20 2000-06-20 Method of manufacturing submicron color filter

Publications (1)

Publication Number Publication Date
TW451488B true TW451488B (en) 2001-08-21

Family

ID=21660152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89112060A TW451488B (en) 2000-06-20 2000-06-20 Method of manufacturing submicron color filter

Country Status (1)

Country Link
TW (1) TW451488B (en)

Similar Documents

Publication Publication Date Title
US4721999A (en) Color imaging device having white, cyan and yellow convex lens filter portions
CN100383978C (en) Image sensor having large micro-lenses at the peripheral regions
US7875947B2 (en) Filter, color filter array, method of manufacturing the color filter array, and image sensor
JPH05134109A (en) Manufacture of color filter
US20070102716A1 (en) Image sensor and fabricating method thereof
JPH11150252A (en) Color solid-state image-pickup element and its manufacturing method
KR20080058549A (en) Image sensor and method of manufacturing image sensor
US20050281942A1 (en) Method for forming microlens of image sensor
JP2006186203A (en) Solid-state image pick-up device, manufacturing method therefor, and camera
US9570492B2 (en) Pixel array of image sensor and method of fabricating the same
TW451488B (en) Method of manufacturing submicron color filter
JPS5817405A (en) Multicolored optical filter and its manufacture
JP2009152314A (en) Image sensor and its manufacturing method
JPH0997887A (en) Solid-state image pickup device and manufacture thereof
JP2002176156A (en) Method for manufacturing solid-state image pickup element
JP2002107531A (en) Color filter and color image pickup device
JP2001021715A (en) Color filter and manufacture thereof
TW533589B (en) Manufacturing method of color filter
JPH10209420A (en) Manufacture of solid-state imaging element
JPS63155002A (en) Production of solid-state image pickup device
US20080122021A1 (en) Image sensor
KR20080051541A (en) Image sensor and method of mamufacturing the image sensor
KR100793563B1 (en) The method of fabrication for CMOS image sensor
JP2556856B2 (en) Color solid-state image sensor
KR930003614B1 (en) Making method of color filter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent