JPS63189916A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPS63189916A
JPS63189916A JP2201087A JP2201087A JPS63189916A JP S63189916 A JPS63189916 A JP S63189916A JP 2201087 A JP2201087 A JP 2201087A JP 2201087 A JP2201087 A JP 2201087A JP S63189916 A JPS63189916 A JP S63189916A
Authority
JP
Japan
Prior art keywords
section
conductivity type
fet
feedback
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2201087A
Other languages
Japanese (ja)
Inventor
Jiro Koide
二郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2201087A priority Critical patent/JPS63189916A/en
Publication of JPS63189916A publication Critical patent/JPS63189916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable constant current circuit by using a reference signal generating part, an error amplifier part, a feedback part, and a feedback control circuit having an output control part. CONSTITUTION:The titled circuit is constituted of the reference signal generating part 1 having MOSFETs 6, 7, the error amplifier part 2 having FETs 8, 9, the output control part 4 having an FET 10, and the feedback part 3. The current factors of respective FETs are respectively defined as betaP6, betaN7, betaN8, betaP9, betaP10 and respective gate threshold voltages are defined as VTP6, VTN7, VTN8, VTP9, VTP10. Consequently, the output voltage V0 of the amplifier 2 is obtained by the equality I. In this case, VDD is power supply voltage. Thereby, the output current I0 of the FET 10 in the control part 4 is approximately expressed by the equality II by setting up constants satisfying (betaP6/betaN7)<1/2<1 and betaP9=betaN8 in the equality I.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補形金属酸化膜集@I@路技術における電子
回路の分野に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the field of electronic circuits in complementary metal oxide film technology.

〔発明の概要〕[Summary of the invention]

本発明は相補形金属酸化膜半導体(以下(3MO8と略
す)集積回路において、基準信号発生部、誤差増幅部、
帰還部、出力制御部を有する帰還制御回路を用−ること
により安定した定電流回路を提供するものである。
The present invention provides a complementary metal oxide semiconductor (hereinafter abbreviated as 3MO8) integrated circuit including a reference signal generation section, an error amplification section,
A stable constant current circuit is provided by using a feedback control circuit having a feedback section and an output control section.

〔従来の技術〕[Conventional technology]

従来よりaMos回路による定電流回路技術はあった。 Conventionally, constant current circuit technology using an aMOS circuit has been available.

嬉3図、第4図はその従来例である。第3図は抵抗31
とNチャネルMO!971!:T52とを直列接続し、
NfarネルMO8F1!!T35で、ミラー回路を形
成した定電流回路例である。この方式では回路構成は簡
単であるが、出力端子34に於ける電流値が抵抗51を
流す電流で定まるため、抵抗31の温度特性、製造ばら
つきによって大きく変動してしまう、tた印加される電
源電圧が変化しても、出力電流が変動してしまうという
大きな欠点を持っている。
Figures 3 and 4 are conventional examples. Figure 3 shows resistance 31
And N channel MO! 971! : Connect in series with T52,
Nfar channel MO8F1! ! This is an example of a constant current circuit in which a mirror circuit is formed at T35. This method has a simple circuit configuration, but since the current value at the output terminal 34 is determined by the current flowing through the resistor 51, it varies greatly depending on the temperature characteristics of the resistor 31 and manufacturing variations. A major drawback is that the output current fluctuates even when the voltage changes.

第4図ではデプリーシ曹ンMO!37EiT41とNチ
ャネルエンハンスメントlFET42.45で定電流ミ
ラー回路を構成している。この回路は電源電圧変動抑制
効果は十分得られる。しかし温度が大幅に変化した時に
は、?lCT41のゲート閾値電圧の低下を招き、出力
定流値が温度に対して自乗の特性で急増するという欠点
を持っている。
In Figure 4, Depricious MO! A constant current mirror circuit is composed of the 37EiT41 and the N-channel enhancement IFET42.45. This circuit can sufficiently suppress power supply voltage fluctuations. But what happens when the temperature changes significantly? This has the disadvantage that the gate threshold voltage of the lCT 41 decreases, and the output constant current value rapidly increases with a square characteristic with respect to temperature.

回路の良し悪しは特性のみならず、集積化の難易度が重
要である1例えば先の従来例を低定電流用に集積化する
場合、次のような問題が起こる。
The quality of a circuit is determined not only by its characteristics but also by the degree of difficulty in its integration.1 For example, when integrating the prior art example mentioned above for low constant current use, the following problems occur.

第3図の方式では定電流値が抵抗素子の抵抗値に依存し
ている。従って定電流値を低くすると■抵抗形成に大面
積を要する。■集積回路上のレイアウト自由度が激減す
る。■高集積化に限度がある、等、多くの欠点が生じる
。第4図の方式では集積回路に向いているものの特性上
の欠点は改善の余地がない。
In the method shown in FIG. 3, the constant current value depends on the resistance value of the resistance element. Therefore, if the constant current value is lowered, a large area is required to form the resistor. ■The degree of freedom in layout on integrated circuits is drastically reduced. ■There are many drawbacks, such as there is a limit to high integration. Although the method shown in FIG. 4 is suitable for integrated circuits, there is no room for improvement in the drawbacks in its characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来例に見られる欠点を解決するものであり、
回路規模を抑え、しかも温度特性、出力電流精度を低い
ばらつきで達成できる定電流回路を提供することにある
The present invention solves the drawbacks seen in the conventional examples,
The object of the present invention is to provide a constant current circuit that can suppress the circuit scale and achieve temperature characteristics and output current accuracy with low variation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では基準信号発生部、誤差増幅部、帰還部、出力
制御部からなる電子回路に於いて、第1の導電形デブリ
ーシ璽ンIFI!:Tと第2の導電形エンハンスメン)
IPETを直列接続し、前記第1の71丁のゲート電極
とソース電極を接続し、前記第2のFETのゲート電極
はドレイン電極と接続してなる基準信号発生部と、 第1の導電形エンハンスメントI目と第2の導電形エン
ハンスメント78丁を直列接続し、前記第2のIPχT
のゲート電極とドレイン電極を接続して成る帰還部とを
有し、 前記基準信号発生部の第1.第2のIFII!Tのドレ
イン電極相互接続点を前記誤差増幅部の非反転入力端子
へ、一方前記帰還部の第1.第2の?Iliでのドレイ
ン電極相互接続点を前記誤差増幅部の反転入力端子へ接
続し、誤差項幅部出力端子を前記出力制御部入力端子及
び前記帰還部の第1の導電形IFmTのゲート電極へ接
続して構成される。
In the present invention, in an electronic circuit consisting of a reference signal generation section, an error amplification section, a feedback section, and an output control section, a first conductive type deblessing circuit IFI! :T and second conductivity type enhancer)
a reference signal generating section in which IPETs are connected in series, the gate electrode and source electrode of the first 71 FETs are connected, and the gate electrode of the second FET is connected to the drain electrode; and a first conductivity type enhancement member. The Ith and 78 second conductive type enhancements are connected in series, and the second IPχT
a feedback section formed by connecting a gate electrode and a drain electrode of the reference signal generating section; Second IFII! the drain electrode interconnection point of T to the non-inverting input terminal of the error amplification section, while the first .T of the feedback section. The second? The drain electrode interconnection point at Ili is connected to the inverting input terminal of the error amplifier section, and the error term width section output terminal is connected to the output control section input terminal and the gate electrode of the first conductivity type IFmT of the feedback section. It is composed of

〔作用/実施例〕[Action/Example]

第1図は本発明の基本概念図である1図中1は基準信号
発生部、2は公知の一般的な0MO8差動増差動上用−
た誤差増幅部、3は帰還部、4は出力制御部、5は出力
端子である。
FIG. 1 is a basic conceptual diagram of the present invention. In the figure, 1 is a reference signal generation section, and 2 is a well-known general 0MO8 differential amplifier differential amplifier.
3 is a feedback section, 4 is an output control section, and 5 is an output terminal.

第2図は本発明の具体的実施例である0図中1は基準信
号発生部、2は誤差増幅部、3は帰還部、4は出力制御
部、5は出力端子、6はPチャネルデプリーシw7MO
8IFET、7及び8はNチャネルエンハンスメントa
osymT、q及び10はPチャネルエンハンスメント
MO3PF!Tである。ここで1の基準電圧発生部は、
PチャネルMO5?1ftT6と、NチャネルMO31
F]!!T7を直列接続している。PチャネルMOf9
1FInT6は、ゲート電極をソース電極と接続するこ
とにより、定電流特性を示す飽和領域で動作する。・一
方NチャネルMO37KT7は、ゲート電極とドレイン
電極とを接続することによって常に(ドレイン−ソース
電圧)〉(実効ゲート電圧)が成立し、飽和領域での動
作が可能になる。
Fig. 2 shows a specific embodiment of the present invention. Purishi w7MO
8IFET, 7 and 8 are N-channel enhancement a
osymT, q and 10 are P channel enhancement MO3PF! It is T. Here, the reference voltage generating section 1 is
P channel MO5?1ftT6 and N channel MO31
F]! ! T7 are connected in series. P channel MOf9
1FInT6 operates in a saturation region exhibiting constant current characteristics by connecting the gate electrode to the source electrode. - On the other hand, in the N-channel MO37KT7, by connecting the gate electrode and the drain electrode, (drain-source voltage)>(effective gate voltage) is always established, and operation in the saturation region is possible.

帰還部3も同様にPチャネルMO3711!T9とNチ
ャネルMO37mT8とを直列接続し、MO3IFKT
8については飽和領域での動作をさせるべく、ゲート電
極をドレイン電極へ接続している。MO87I!!T9
のゲート電極がここで構成される帰還部30入力端子に
相当する。
Similarly, the feedback section 3 also has a P-channel MO3711! Connect T9 and N channel MO37mT8 in series, MO3IFKT
Regarding No. 8, the gate electrode is connected to the drain electrode in order to operate in the saturation region. MO87I! ! T9
The gate electrode corresponds to the input terminal of the feedback section 30 configured here.

誤差増幅部2の出力端子は出力制御部を構成するMO8
1M!:T10のゲート電極と、帰還部のMO8IFF
!T9のゲート電極へ接続されている。
The output terminal of the error amplification section 2 is MO8 which constitutes the output control section.
1M! : Gate electrode of T10 and MO8IFF of feedback section
! Connected to the gate electrode of T9.

以下、具体的構成要素について素子パラメータを設定し
作用の説明をする。
Hereinafter, element parameters will be set for specific constituent elements and their effects will be explained.

各素子のパラメータβ(を流係数)un?o(ゲート閾
値電圧)を MO8IFET64βPa t vt+psMOf9F
ET7−nβN7 * V?N7M08IFET8−4
βN8 p vtssMO3IFET9nβPI  e
  VTP*M  O3F  ml!  T1 0n 
βF’lOt  vチルt。
Parameter β (flow coefficient) of each element un? o (gate threshold voltage) MO8IFET64βPa t vt+psMOf9F
ET7-nβN7 *V? N7M08IFET8-4
βN8 p vtssMO3IFET9nβPI e
VTP*M O3F ml! T1 0n
βF'lOt vchillt.

まず誤差増幅部2の演算増幅器反転入力側信号は、上記
素子数を用いて V (−)”:vyl +(、/ FIB//N?)A
・ l Vrps l  ・・・・”(1)同様に非反
転入力側はlFET9の電流xPIが入り、 V(+)=VyNs+(2Ips/βNS )/2””
(2)従って帰還ループが(1) I (2)式を平衡
させるため、誤差増幅部2の出力電圧v0は ・・・・・・(3) で与えられる。ここでvDD は電源電圧である、よっ
て(3)式中 (βpH/β87 Y” << 1 *
βPI=βNSとなる定数設定を行なえば出力制御部の
MO8?II!T10の出力電流工。は近似的にIO:
 βPIG (To−vyHo)”/2中βFIO(V
eNt−vtss  )”/2       ”(4)
となる。ただしV?F6””?P10  (同一工程で
形成されるため、一般的にかなり精度よく成立′する)
即ち得られる定電流値工。には、電源電圧環が無くNチ
ャネA/MO8’l/]!Tのv?H差のみが含まれる
First, the operational amplifier inverting input side signal of the error amplification section 2 is expressed as V (-)'': vyl + (, /FIB//N?)A using the above number of elements.
・l Vrps l..."Similarly to (1), the current xPI of lFET9 enters the non-inverting input side, and V(+)=VyNs+(2Ips/βNS)/2""
(2) Therefore, since the feedback loop balances the equation (1) I (2), the output voltage v0 of the error amplifying section 2 is given by (3). Here, vDD is the power supply voltage, so in formula (3), (βpH/β87 Y” << 1 *
If you set the constant so that βPI = βNS, the MO8 of the output control section? II! T10 output current. is approximately IO:
βPIG (To-vyHo)”/2 medium βFIO(V
eNt-vtss)”/2”(4)
becomes. However, V? F6""? P10 (Since it is formed in the same process, it is generally achieved with high accuracy)
That is, the constant current value obtained. There is no power supply voltage ring in N-channel A/MO8'l/]! T's v? Only the H difference is included.

〔発明の効果〕〔Effect of the invention〕

従って本発明によれば以下のような効果を得られる。 Therefore, according to the present invention, the following effects can be obtained.

(1)  出力定電流値は帰還部、基準信号発生部で飽
和領域動作させるPETのゲート閾値差で支配されるた
め、電源電圧変動の影響を受けない。
(1) Since the output constant current value is controlled by the gate threshold difference of the PET operated in the saturation region in the feedback section and the reference signal generation section, it is not affected by power supply voltage fluctuations.

(2)  半導体素子が本来有している温度特性のうち
、ゲート閾値電圧の温度変化に対しては、差分な用いて
いるため相殺され、温度特性が著しく改善される。
(2) Among the temperature characteristics that a semiconductor element originally has, changes in gate threshold voltage due to temperature are canceled out because they are used differentially, and the temperature characteristics are significantly improved.

(8)  またゲート閾値電圧そのものの製造上のばら
つきは絶対値の変動であるため、電圧差を利用する本発
明に於いては影響を受けにくい、即ち製造ばらつきも顕
著に改善されることになる。
(8) Furthermore, since manufacturing variations in the gate threshold voltage itself are fluctuations in absolute values, the present invention, which utilizes voltage differences, is less susceptible to this effect, which means that manufacturing variations are also significantly improved. .

(4)実施例で用いたデプリーシ璽ンIF11fTは、
0M0i9プロセス上極めて容易に形成できる0例えば
シリコンゲートセルファラインプロセスでは、Pチャネ
ルエンハンスメントIFKT[をn  ポリシリコンで
構成する場合、ポリシリコンの゛一部分へP+拡散を入
れることができれば、デプリーシ曹ン形FETは同時形
成が可能である。
(4) The depletion seal IF11fT used in the example is:
For example, in the silicon gate self-line process, when the P channel enhancement IFKT is made of n polysilicon, if a P+ diffusion can be introduced into a portion of the polysilicon, a depletion silicon FET can be formed. can be formed simultaneously.

(5)  ゲート閾値電圧差をn ポリシリコン、P+
ポリシリコンのIFI!tTのゲート閾値電圧差で実現
すれば、素子形成材料の仕事関数の差分として発生させ
ることができ、理論的にも安定した定電流用バイアス電
圧が得られる。
(5) Gate threshold voltage difference n Polysilicon, P+
Polysilicon IFI! If realized with a gate threshold voltage difference of tT, it can be generated as a difference in the work functions of the element forming materials, and a theoretically stable bias voltage for constant current can be obtained.

(6)  回路規模は多少太き−が、すべて能動素子で
構成することができ、集積回路に適している。
(6) Although the circuit size is somewhat large, it can be composed entirely of active elements and is suitable for integrated circuits.

またレイアウトの制約要素にもならない。Also, it does not become a constraining element for layout.

(7)  定電流値を変更するには出力制御部に用いる
?11iTの電流係数設定を変えるだけでよい。従って
精度よく設定変更できる。
(7) Is it used in the output control section to change the constant current value? All you need to do is change the current coefficient setting of 11iT. Therefore, settings can be changed with high precision.

また本発明の応用範囲は広い0例えば温度特性が優れる
ため本発明の定電流回路を用い、PN接合グイ、オード
を定電流駆動すれば、ダイオード順方向電圧の温度特性
を積極的に利用した温度センサが組み込める。
In addition, the present invention has a wide range of applications.For example, since the temperature characteristics are excellent, if the constant current circuit of the present invention is used to drive the PN junction and the ode at a constant current, the temperature characteristics of the forward voltage of the diode can be actively utilized. Sensors can be incorporated.

コンデンサを充放電させる時定数回路へ本発明の定電流
回路を用いれば精度のよいタイマ回路への応用ができる
If the constant current circuit of the present invention is used in a time constant circuit for charging and discharging a capacitor, it can be applied to a highly accurate timer circuit.

演算増幅器用定電流源へ応用すれば電源電圧変動除去比
の改善、増幅度の安定化等が期待できる、また電流重み
付は式D / A変換回路用定電流源としても十分利用
できる、等々その他への応用例が多数考えられる。
If applied to a constant current source for operational amplifiers, it can be expected to improve the power supply voltage fluctuation rejection ratio and stabilize the amplification degree, and current weighting can also be fully used as a constant current source for formula D/A conversion circuits. There are many other possible applications.

尚これまで説明してきた効果は、実施例に於けるPチャ
ネル、NチャネルMO!91FETの接続関係を入れ替
えた形でも同様に得られることは言うまでもな−。
The effects explained so far are P channel and N channel MO! in the embodiment. It goes without saying that the same result can be obtained by replacing the connection relationships of the 91FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2図は実施例、第3図
及び第4図は従来例を示す図である。 図中、 1・・・・・・・・・基準信号発生部 2・・・・・・・・・誤差増幅部 5・・・・・・・・・帰還部 4・・・・・・・・・出力制御部 5・・・・・・・・・出力端子 6・・・・・・・・・Pチャネルテプリーシ冒ンMO5
IFE7.8・・・NチャネルエンハンスメントMO3
IF]nT 9.111・・・・・・PチャネルエンハンスメントM
OsyI!!’r 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士最上筋(他1名) 云 3:t41とマ ¥+1聰 n′2−恥
FIG. 1 is a basic conceptual diagram of the present invention, FIG. 2 is an embodiment, and FIGS. 3 and 4 are diagrams showing conventional examples. In the figure, 1...Reference signal generation section 2...Error amplification section 5...Feedback section 4... ...Output control unit 5...Output terminal 6...P channel input MO5
IFE7.8...N channel enhancement MO3
IF]nT 9.111...P channel enhancement M
OsyI! ! 'r Above Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Mogamisuji (1 other person) Yu 3: T41 and Ma ¥ + 1 聰n' 2 - Shame

Claims (2)

【特許請求の範囲】[Claims] (1)基準信号発生部、誤差増幅部、帰還部、出力制御
部からなる電源回路に於いて、おのおの(a)第1の導
電形デプリーション電界効果トランジスタ(以下FET
と略す)と第2の導電形エンハンスメントFETとを直
列接続し、前記第1のFETのゲート電極と、ソース電
極とを接続し、前記第2のFETのゲート電極はドレイ
ン電極と接続してなる基準信号発生部と、 (b)第1の導電形エンハンスメントFETと、第2の
導電形エンハンスメントFETとを直列接続し、前記第
2のFETのゲート電極とドレイン電極を接続して成る
帰還部とを有し、 (c)前記基準信号発生部の第1、第2のFETのドレ
イン電極相互接続点を前記誤差増幅部非反転入力端子へ
接続し、前記帰還部の第1、第2のFETのドレイン電
極相互接続点を前記誤差増幅部反転入力端子へ接続し、
一方前記誤差増幅部出力端子は前記出力制御部入力端子
並びに前記帰還部の第1の導電形エンハンスメントFE
Tのゲート電極へ接続することによって構成されること
を特徴とする定電流回路。
(1) In a power supply circuit consisting of a reference signal generation section, an error amplification section, a feedback section, and an output control section, each of (a) a first conductivity type depletion field effect transistor (hereinafter referred to as FET)
) and a second conductivity type enhancement FET are connected in series, the gate electrode of the first FET is connected to the source electrode, and the gate electrode of the second FET is connected to the drain electrode. (b) a feedback section formed by connecting a first conductivity type enhancement FET and a second conductivity type enhancement FET in series, and connecting a gate electrode and a drain electrode of the second FET; (c) connecting the drain electrode interconnection point of the first and second FETs of the reference signal generating section to the non-inverting input terminal of the error amplifying section, and connecting the first and second FETs of the feedback section; connecting a drain electrode interconnection point of to the inverting input terminal of the error amplifying section;
On the other hand, the error amplification section output terminal is connected to the output control section input terminal and the first conductivity type enhancement FE of the feedback section.
A constant current circuit characterized in that it is configured by connecting to a gate electrode of a T.
(2)前記帰還部、前記誤差増幅部を構成する第1、第
2の導電形FETが、第1の導電形を第2の導電形、第
2の導電形を第1の導電形へ置換えて成る特許請求の範
囲第1項記載の定電流回路。
(2) The first and second conductivity type FETs constituting the feedback section and the error amplification section replace the first conductivity type with the second conductivity type, and replace the second conductivity type with the first conductivity type. A constant current circuit according to claim 1, comprising:
JP2201087A 1987-02-02 1987-02-02 Constant current circuit Pending JPS63189916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201087A JPS63189916A (en) 1987-02-02 1987-02-02 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201087A JPS63189916A (en) 1987-02-02 1987-02-02 Constant current circuit

Publications (1)

Publication Number Publication Date
JPS63189916A true JPS63189916A (en) 1988-08-05

Family

ID=12071030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201087A Pending JPS63189916A (en) 1987-02-02 1987-02-02 Constant current circuit

Country Status (1)

Country Link
JP (1) JPS63189916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216171A (en) * 2011-03-25 2012-11-08 Seiko Instruments Inc Reference voltage circuit
WO2018088373A1 (en) * 2016-11-10 2018-05-17 国立大学法人東北大学 Bias circuit and amplification apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216171A (en) * 2011-03-25 2012-11-08 Seiko Instruments Inc Reference voltage circuit
WO2018088373A1 (en) * 2016-11-10 2018-05-17 国立大学法人東北大学 Bias circuit and amplification apparatus
JPWO2018088373A1 (en) * 2016-11-10 2019-10-03 国立大学法人東北大学 Bias circuit and amplifier
US10897230B2 (en) 2016-11-10 2021-01-19 Tohoku University Bias circuit and amplification apparatus

Similar Documents

Publication Publication Date Title
US7187235B2 (en) Class AB rail-to-rail operational amplifier
EP0403195B1 (en) Current mirror circuit
US3984780A (en) CMOS voltage controlled current source
JPS63153903A (en) Amplifier circuit
US5612614A (en) Current mirror and self-starting reference current generator
US4697154A (en) Semiconductor integrated circuit having improved load drive characteristics
US4573020A (en) Fully differential operational amplifier with D.C. common-mode feedback
JPH01311608A (en) Voltage/current converter
EP0173370B1 (en) Amplifier arrangement
US20060132224A1 (en) Circuit for generating reference current
JP3195770B2 (en) Reference voltage generation circuit
US20110169551A1 (en) Temperature sensor and method
JP3081210B2 (en) Linear gain amplifier
JPS63189916A (en) Constant current circuit
US6556070B2 (en) Current source that has a high output impedance and that can be used with low operating voltages
JP2550871B2 (en) CMOS constant current source circuit
JPH07249946A (en) Ab class push-pull driving circuit, its driving method and ab class electronic circuit
JPH08307224A (en) Operational amplifier circuit
US11742812B2 (en) Output pole-compensated operational amplifier
JP2798022B2 (en) Reference voltage circuit
JPS62272605A (en) Mos amplifier circuit
JPS6221404B2 (en)
JP3325707B2 (en) Operational amplifier
JPH04185005A (en) Amplifying circuit
JP2900413B2 (en) Reference voltage generation circuit