JPS631898B2 - - Google Patents

Info

Publication number
JPS631898B2
JPS631898B2 JP57021959A JP2195982A JPS631898B2 JP S631898 B2 JPS631898 B2 JP S631898B2 JP 57021959 A JP57021959 A JP 57021959A JP 2195982 A JP2195982 A JP 2195982A JP S631898 B2 JPS631898 B2 JP S631898B2
Authority
JP
Japan
Prior art keywords
resin
port
ion exchange
water
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57021959A
Other languages
Japanese (ja)
Other versions
JPS58139747A (en
Inventor
Shinichi Usui
Shigeo Mya
Iwao Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57021959A priority Critical patent/JPS58139747A/en
Publication of JPS58139747A publication Critical patent/JPS58139747A/en
Publication of JPS631898B2 publication Critical patent/JPS631898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、純水製造復水脱塩、その他液体の精
密浄化処理を必要とする液体処理に用いられるイ
オン交換操作に関与するイオン交換樹脂の移送方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to ion exchange resins involved in ion exchange operations used in pure water production, condensate desalination, and other liquid treatments that require precise purification of liquids. This relates to a method of transporting.

〔従来の技術〕[Conventional technology]

従来、水素形(H形)の強酸性カチオン交換樹
脂(以下「CR」とする)と水酸形(OH形)の
強塩基性アニオン交換樹脂(以下「AR」とす
る)を混合して充填した混床式イオン交換塔は純
水製造や復水脱塩の分野で数多く使用されてい
る。この混床式イオン交換塔における使用済樹脂
の再生方法には塔外再生と塔内再生の2つがある
が、復水脱塩装置では一般に塔外再生式が用いら
れる。塔外再生式の場合の通常再生手順を示す
と、まず混床式イオン交換塔(以下脱塩塔とす
る)内の樹脂を再生塔(第1再生塔)に移送し、
第1再生塔内で逆流を行つて上層にAR層、下層
にCR層を形成させる。CRとARとでは水に対す
る比重が異なるため、逆洗によつてこのような成
層がなされるのである。しかるのちに上層のAR
はさらに別の再生塔(第2再生塔)に移送し、第
1再生塔にはCRを残留させる。第1再生塔では
塩酸、硫酸などの酸を通液してCRを再生し、第
2再生塔では苛性ソーダなどのアルカリを通液し
てARを再生する。そして酸、アルカリの通液
後、両樹脂をそれぞれ洗浄し、洗浄後は両樹脂と
も樹脂混合塔と呼ばれる塔に移送し、その塔内で
空気によつてCRとARを混合する。このように
して脱塩塔内の樹脂を再生する。なお樹脂混合塔
をもたず脱塩塔内でCRとARの混合を行う方法
や、第2再生塔をもたず第1再生塔で酸、アルカ
リを通液する方法など、多少の変法がある。
Conventionally, hydrogen type (H type) strongly acidic cation exchange resin (hereinafter referred to as ``CR'') and hydroxyl type (OH type) strongly basic anion exchange resin (hereinafter referred to as ``AR'') were mixed and filled. Mixed bed ion exchange towers are widely used in the fields of pure water production and condensate desalination. There are two methods for regenerating the spent resin in this mixed bed type ion exchange tower: external regeneration and in-column regeneration, and the external regeneration method is generally used in condensate desalination equipment. The normal regeneration procedure in the case of the external regeneration method is as follows: First, the resin in the mixed bed ion exchange tower (hereinafter referred to as the desalination tower) is transferred to the regeneration tower (first regeneration tower).
A reverse flow is performed in the first regeneration tower to form an AR layer in the upper layer and a CR layer in the lower layer. CR and AR have different specific gravity to water, so backwashing creates this stratification. Later, the upper layer AR
is further transferred to another regeneration tower (second regeneration tower), and CR remains in the first regeneration tower. In the first regeneration tower, an acid such as hydrochloric acid or sulfuric acid is passed to regenerate CR, and in the second regeneration tower, an alkali such as caustic soda is passed to regenerate AR. After passing the acid and alkali, both resins are washed, and after washing, both resins are transferred to a tower called a resin mixing tower, where CR and AR are mixed using air. In this way, the resin in the desalting tower is regenerated. There are some modified methods, such as a method that does not have a resin mixing tower and mixes CR and AR in the demineralization tower, and a method that does not have a second regeneration tower and passes acid and alkali through the first regeneration tower. There is.

近年、高度な処理水質が要求されるようになる
とともに、前記の再生手順におけるCRとARの
分離の程度も問題にされるようになつてきた。す
なわち第1再生塔内で逆洗分離した後、上層の
ARを第2再生塔に移送するといつても、CRと
ARは互いに接触しているため、両者を完全に分
離することは通常の手段では不可能である。した
がつて一部のCRがAR再生用の第2再生塔に混
入したり、一部のARがCR再生用の第1再生塔
に残留したりすることが避けられない。CRが第
2再生塔に混入すると、そこで例えば苛性ソーダ
と接触しCRはNa形となる。ARが第1再生塔に
残留すると、そこで硫酸や塩酸と接触しARは
HSO4形やCI形になる。以前には少量のこうした
不純物イオン形(H形、OH形以外)の生成はそ
れほど問題とならなかつたが、最近は高度な処理
水質が要求されてきている純水製造では、不純物
イオン形のCRやARの存在は不純物イオンリー
クの原因となるので、その生成を極力抑える傾向
にある。
In recent years, with the demand for high quality treated water, the degree of separation of CR and AR in the above-mentioned regeneration procedure has also become an issue. In other words, after backwashing and separation in the first regeneration tower, the upper layer
Whenever you transfer AR to the second regeneration tower, CR and
Since the ARs are in contact with each other, it is impossible to completely separate the two using normal means. Therefore, it is inevitable that some CR gets mixed into the second regeneration tower for AR regeneration, or that some AR remains in the first regeneration tower for CR regeneration. When CR enters the second regeneration tower, it comes into contact with, for example, caustic soda, and becomes Na form. When AR remains in the first regeneration tower, it comes into contact with sulfuric acid and hydrochloric acid, and AR is
It becomes HSO 4 type and CI type. In the past, the generation of small amounts of impurity ion forms (other than H type and OH type) did not pose much of a problem, but recently, in pure water production that requires high quality treated water, CR of impurity ion form Since the presence of and AR causes impurity ion leakage, there is a tendency to suppress their generation as much as possible.

このような不純物イオン形の樹脂の生成を抑え
るためには、CRとARをより厳密に分離する必
要があり、このため既に公知となつている方法と
してCRとARの混合樹脂を再生塔にて逆洗分離
するに当り、別途に用意したCRとARを添加し
た後に逆洗分離を行い、添加量に見合うだけの分
離界面付近の樹脂を除いたCRとARをそれぞれ
酸とアルカリで再生して脱塩に使用し、分離界面
付近の樹脂は別途保管して次回の再生時に逆洗分
離の前に添加する樹脂として用いる方法がある。
In order to suppress the formation of such impurity ion-type resins, it is necessary to separate CR and AR more strictly, and for this reason, as a known method, a mixed resin of CR and AR is used in a regeneration tower. During backwash separation, backwash separation is performed after adding CR and AR prepared separately, and the CR and AR are regenerated with acid and alkali, respectively, with the resin near the separation interface removed in an amount commensurate with the amount added. There is a method in which the resin near the separation interface is stored separately and used as a resin to be added before backwash separation during the next regeneration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来方式を実行するには、逆洗分離して上
層AR、下層がCRとなるように2層を形成させ
た後に、分離界面よりも上方からARを引抜く工
程(イ)、分離界面よりも下方からARとCRを引抜
く工程(ロ)の2つの工程を行う必要がある。すなわ
ち逆洗分離した後の樹脂層をARだけから成る上
部、ARとCRの分離界面を含み両樹脂を含む中
間部、CRだけから成る下部の3部に分割するわ
けである。この場合、工程(イ)と工程(ロ)はどちらを
先にしても同じ効果をもつ。工程(イ)を先に行う場
合には、上部、中間部、下部の順に1部ずつ引抜
いていくわけであるが、工程(ロ)を先に行う場合に
は、上部と中間部を一括して引抜いて別の再生塔
に移送し、別の再生塔で再度逆洗してから上部だ
けを引抜くことになる。両者にはそれぞれ一長一
短がありどちらがすぐれているとはいえない(第
1図参照)。
To carry out this conventional method, after backwashing and separating to form two layers, the upper layer AR and the lower layer CR, there is a step (a) in which AR is pulled out from above the separation interface. It is also necessary to perform two steps (b) to pull out the AR and CR from below. That is, the resin layer after backwashing and separation is divided into three parts: an upper part consisting only of AR, an intermediate part containing the separation interface of AR and CR and containing both resins, and a lower part consisting only of CR. In this case, process (a) and process (b) have the same effect no matter which one is done first. If step (a) is done first, the top, middle, and bottom parts are pulled out one by one, but if step (b) is done first, the top and middle parts are pulled out all at once. It is then pulled out and transferred to another regeneration tower, backwashed again in the other regeneration tower, and then only the upper part is pulled out. Both have their advantages and disadvantages, and it cannot be said that one is better than the other (see Figure 1).

本発明は、これら二つの工程のうち工程(ロ)即ち
分離界面よりも下方からARとCRを引抜く工程
を実行する場合に関するものであり、この工程(ロ)
に用いられる中間部(または上部と中間部)樹脂
引抜き方法としては、樹脂層全体を逆洗しながら
下部樹脂の膨張を加味して設定した引抜き位置に
開口させた引抜き口から引抜く方法と、引抜き位
置に移送水吹出し口と引抜き口とを設けて移送水
を吹出しながら引抜く方法が従来から用いられて
きたが、前者の方法では引抜き量が逆洗流速のわ
ずかな変動によつて変化するといつた操作上の不
安定さが残る。一方後者の方法ではそうした不安
定さはないが、中間部または上部に含まれるAR
が下部樹脂の上に堆積して引抜かれずに残ること
が多い。下部樹脂にARが混入することは当初の
目的に反するので避けなければならない。下部樹
脂の上に堆積して残るARの量はもちろん引抜き
口と分離界面の位置関係に依存するが、分離界面
よりかなり下の位置に引抜き口を設定してもやは
り微量のARが残留することは避けられない。こ
れは後者の方法では引抜き口と移送水吹出し口と
が同じ高さにあるため、引抜き口のレベルの樹脂
の流動状態が悪く、引抜き口から離れた位置に存
在するARがなかなか完全には流出しないことに
よる。
The present invention relates to the case of executing step (b) of these two steps, that is, the step of pulling out AR and CR from below the separation interface, and this step (b)
The middle part (or upper and middle part) resin drawing methods used in Conventionally, a method has been used in which a transfer water outlet and a draw-out port are provided at the draw-out position and the transfer water is blown out while being drawn out. Operational instability remains. On the other hand, the latter method does not have such instability, but the AR included in the middle or upper part
is often deposited on the lower resin and remains without being pulled out. Contamination of the lower resin with AR goes against the original purpose and must be avoided. The amount of AR deposited and remaining on the lower resin naturally depends on the positional relationship between the extraction port and the separation interface, but even if the extraction port is set far below the separation interface, a small amount of AR will still remain. is unavoidable. This is because in the latter method, the extraction port and the transfer water outlet are at the same height, so the flow state of the resin at the level of the extraction port is poor, and it is difficult for the AR that is located away from the extraction port to completely flow out. By not doing it.

本発明はこれら従来の欠点を解消するもので、
樹脂の引抜き量(裏を返せば残す量)が一定して
いて変動のないこと、上層のARがCRだけから
成るはずの下部樹脂の上に残留しないことで再生
処理を効率よく行える方法とすることにあり、中
間部(または中間部と上部)樹脂の引抜きを2段
階に行い、下部樹脂上面へのARの残留をほとん
どなくし従来方法の欠点を補う有用な方法を提供
することを目的としたものである。
The present invention solves these conventional drawbacks,
The amount of resin extracted (the amount that remains when turned over) is constant and does not fluctuate, and the upper layer AR does not remain on the lower resin, which should consist only of CR, making the recycling process more efficient. In particular, we aimed to provide a useful method that compensates for the shortcomings of the conventional method by performing the drawing of the middle part (or the middle part and the upper part) resin in two stages and almost eliminating the residual AR on the upper surface of the lower part resin. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、逆洗により上下二層に分離されうる
イオン交換樹脂を備えた混床式イオン交換塔にお
いて、逆洗により分離された下層のイオン交換樹
脂層中の上方部に設定した移送水噴出部より移送
水を噴出し、該噴出部付近に設けた樹脂の正引抜
き口と、また、前記噴出部より上方のイオン交換
樹脂層又は上下二層の界面付近に設けた樹脂の副
引抜き口とを用いて樹脂を引抜く際に、前記副引
抜き口からその上方の樹脂を引抜いたのち、正引
抜き口よりその上方の樹脂を正引抜き口から引抜
くことを特徴とするものである。
The present invention provides a mixed bed type ion exchange tower equipped with an ion exchange resin that can be separated into upper and lower layers by backwashing, and a transfer water jet set in the upper part of the lower ion exchange resin layer separated by backwashing. Transfer water is spouted from the jetting section, and a resin main draw-out port is provided near the jetting section, and a resin sub-pulling port is provided near the ion exchange resin layer above the spouting section or the interface between the upper and lower two layers. When drawing out the resin using the auxiliary drawing port, the resin above the sub-drawing port is first pulled out, and then the resin above the main drawing port is pulled out from the normal drawing port.

〔作用〕[Effect]

この方法では分離界面より下方からARとCR
とを引抜く引抜き口(以下正引抜き口と称す)と
ほぼ同じ高さに移送水吹出し用の配水管を設けて
移送水噴出部とし、その配水管および正引抜き口
の上方であつて上記分離界面より下の高さ又は分
離界面付近に副引抜き口を設けて、まず配水管か
ら移送水を吹出して引抜く樹脂を逆洗し、次に副
引抜き口を開けて樹脂の引抜きを行い、副引抜き
口より上の樹脂がほぼ完全に流出した後に副引抜
き口を閉じて正引抜き口から正引抜き口より上の
樹脂を引抜くものである。
In this method, AR and CR are connected from below the separation interface.
A water pipe for blowing out the transferred water is provided at almost the same height as the drawing port (hereinafter referred to as the normal drawing port) from which the water is drawn out, and the water pipe is used as the transferred water spouting part, and above the water pipe and the normal drawing port, the above-mentioned separation pipe is provided. A sub-drawing port is provided at a height below the interface or near the separation interface, and the transferred water is first blown out from the water pipe to backwash the resin to be pulled out, then the sub-drawing port is opened to draw out the resin, and the sub-drawing port is opened to draw out the resin. After the resin above the drawing port has almost completely flowed out, the sub drawing port is closed and the resin above the main drawing port is pulled out from the main drawing port.

この場合副引抜き口から樹脂を引抜いていると
きには、配水管から副引抜き口までの高さの部分
が逆洗状態になつており、副引抜き口の設置して
あるレベルは流動状態であつて樹脂の移動がスム
ーズに行われるため、副引抜き口より上の樹脂は
ほとんど残留しない。また副引抜き口より上の樹
脂がほぼ完全に流出した後に副引抜き口を閉じて
正引抜き口から樹脂を引抜くので、正引抜き口の
レベルの流動状態が悪かつたとしても、下部の樹
脂の上面に残留するのは配水管と副引抜き口の間
の樹脂すなわちCRであり、ARは残留すること
はない。なお副引抜き口と配水管(または正引抜
き口)との距離は副引抜き口のレベルが十分に流
動状態になつていればよく、通常50mm以上あれば
よい。また副引抜き口はCRとARの分離界面よ
りは下にならなければならない。正引抜き口と配
水管との位置関係は正引抜き口の形状や配水管の
形状によつても若干変わつてくるので厳密に規定
することはできないが、正引抜き口と配水管のレ
ベルが大きくくいちがわないように考慮する。原
則として正引抜き口と配水管はほぼ同じレベル又
はその近傍にあるものとするのがよい。
In this case, when the resin is being pulled out from the sub-drawing port, the height from the water pipe to the sub-drawing port is in a backwash state, and the level where the sub-drawing port is installed is in a fluid state and the resin is in a fluid state. Because the movement is smooth, almost no resin remains above the sub-extraction port. In addition, after the resin above the sub-drawing port has almost completely flowed out, the sub-drawing port is closed and the resin is pulled out from the normal drawing port, so even if the flow condition at the level of the normal drawing port is poor, the resin at the bottom will still flow out. What remains on the top surface is the resin between the water pipe and the sub-outlet, that is, CR, and no AR remains. The distance between the auxiliary outlet and the water pipe (or the main outlet) is sufficient as long as the level of the auxiliary outlet is in a sufficiently fluid state, and usually it is 50 mm or more. Also, the sub-extraction port must be below the separation interface between CR and AR. The positional relationship between the forward outlet and the water pipe varies slightly depending on the shape of the forward outlet and the shape of the water pipe, so it cannot be strictly specified, but it is important to note that the positional relationship between the forward outlet and the water pipe is very close to each other. Consider this so that there is no difference. As a general rule, it is best to have the normal outlet and the water pipes at or near the same level.

〔実施例〕〔Example〕

次に本発明の実施態様を第2図を参照して説明
すると、イオン交換樹脂塔1はその上部及び下部
に集配水管2,3が配備され、その中間部に樹脂
移送用の移送水吹出用配水管4(以下単に配水管
と略称す)が内装され上下二層に分離されたイオ
ン交換樹脂即ちAR層9とCR層10を持つてい
る。前記配水管4は分離界面付近の下層のCR層
上方部に位置し同一レベルに樹脂引抜き用の正引
抜き口6とそれより上方位置に所定レベル間隔を
あけて副引き口5を塔本体に設けると共に、下部
に底部引抜き口7と塔頂部に給排気口8を開閉自
在に配備してある。
Next, an embodiment of the present invention will be described with reference to FIG. 2. The ion exchange resin tower 1 is provided with water collection and distribution pipes 2 and 3 at the upper and lower parts thereof, and the intermediate part thereof is for discharging water for transferring the resin. A water pipe 4 (hereinafter simply referred to as water pipe) is installed inside and has an ion exchange resin separated into upper and lower two layers, that is, an AR layer 9 and a CR layer 10. The water pipe 4 is located above the lower CR layer near the separation interface, and has a normal drawing port 6 for resin drawing at the same level and a secondary drawing port 5 at a predetermined level interval above it in the tower body. In addition, a bottom extraction port 7 is provided at the bottom and a supply/exhaust port 8 is provided at the top of the tower so that they can be opened and closed.

そして前記正引抜き口6の高さより上の樹脂を
引抜く場合には、まず配水管4から移送水を吹出
し頂部集配水管2から排出させることによつて、
配水管4より上層部分を逆洗する。次に副引抜き
口5を開いて樹脂の引抜きを始める。このとき頂
部集配水管2からの排水は止めるが、適当な時に
給排気口8より圧力流体例えば圧力空気を導入す
るとよい。前記配水管4と副引抜き口5の間の高
さの部分を逆洗状態に保つたままで副引抜き口5
からの樹脂の引抜きを行い、副引抜き口5から樹
脂がほとんど排出されなくなつたら、正引抜き口
6を開いて副引抜き口5を閉じる。このような手
順によつて正引抜き口6より上層部分の樹脂を引
抜く。
When the resin above the height of the normal extraction port 6 is to be pulled out, the transferred water is first blown out from the water pipe 4 and discharged from the top water collection and distribution pipe 2.
Backwash the upper part of the water pipe 4. Next, the sub-drawing port 5 is opened to begin drawing out the resin. At this time, drainage from the top water collection and distribution pipe 2 is stopped, but it is preferable to introduce pressurized fluid, such as pressurized air, from the supply/exhaust port 8 at an appropriate time. While maintaining the height between the water pipe 4 and the sub-outlet 5 in a backwashed state, the sub-outlet 5 is opened.
When the resin is pulled out from the auxiliary drawing port 5 and almost no resin is discharged from the sub-drawing port 5, the main drawing port 6 is opened and the sub-drawing port 5 is closed. Through such a procedure, the resin in the upper layer is pulled out through the normal pull-out port 6.

以上の手順は本発明を実行する場合の代表的手
順を示したもので、本発明の実行手順は上記手順
に限定されるわけではない。
The above procedure shows a typical procedure for carrying out the present invention, and the procedure for carrying out the present invention is not limited to the above procedure.

このように樹脂引抜きを行えばARはイオン交
換樹脂塔1内には殆ど残留しないですむ。
If the resin is extracted in this way, almost no AR will remain in the ion exchange resin column 1.

なおこの樹脂引抜きに際し必要に応じ上層部分
の排出が完了したのち底部集配水管3から逆洗水
を導入して頂部集配水管2から排出させることに
より下層部分を逆洗し、底部引抜き口7を開けて
下層部分の引抜きを行つてもよく引抜きを開始し
たら頂部集配水管2からの配水を止め、給排気口
8より圧力空気を導入する。このようにして上層
部分と下層部分を分けて引抜くこともでき、上層
部分のうちの副引抜き口5より上方の部分が下層
部分に混入することはない。
When drawing out the resin, if necessary, after the discharge of the upper layer is completed, backwash water is introduced from the bottom water collection and distribution pipe 3 and discharged from the top water collection and distribution pipe 2 to backwash the lower layer, and the bottom extraction port 7 is opened. The lower part may be pulled out by using the water supply pipe 2. When the drawing starts, the water distribution from the top water collection and distribution pipe 2 is stopped, and pressurized air is introduced from the supply/exhaust port 8. In this way, the upper layer portion and the lower layer portion can be pulled out separately, and the portion of the upper layer portion above the sub-drawing port 5 does not mix into the lower layer portion.

第3図の具体例では底部集配水管12と配水管
13を有する塔本体のカラム(内径470mm)11
に副引抜き口14と正引抜き口15及び底部引抜
き口16を設けたもので、カラム11に強酸性カ
チオン交換樹脂17(Dowex HCR−W2)のH
形を副引抜き口の上方50mmの高さまで充填し1
7、続いて強塩基性アニオン交換樹脂18
(Dowex SBR−P−C)のOH形を層高300mmの
高さに充填した。なお配水管13及び正引抜き口
15のカラム底からの高さは750mm、副引抜き口
14のカラム底からの高さは850mmである。
In the specific example shown in Fig. 3, the column (inner diameter 470 mm) 11 of the tower body has a bottom water collection and distribution pipe 12 and a water distribution pipe 13.
The column 11 is equipped with a sub-drawing port 14, a normal drawing port 15, and a bottom drawing port 16.
Fill the shape to a height of 50 mm above the sub-extraction port.
7, followed by strongly basic anion exchange resin 18
(Dowex SBR-P-C) OH type was filled to a bed height of 300 mm. The height of the water pipe 13 and the main draw-out port 15 from the column bottom is 750 mm, and the height of the sub-draw port 14 from the column bottom is 850 mm.

まず底部集配水管12より水を導入して全層を
逆洗し、沈整させたのちに配水管13より水を導
入して配水管13より上の樹脂だけを逆洗した。
上の樹脂が充分に展開したら副引抜き口14から
樹脂がほとんど流出しなくなつた時点で副引抜き
口を閉じて正引抜き口15を開き、正引抜き口よ
り上の樹脂を流出させた。流出後、残つた下の樹
脂を逆洗したが、SBR−P−Cの残留は認めら
れなかつた。
First, water was introduced from the bottom water collection and distribution pipe 12 to backwash the entire layer and settle, and then water was introduced from the water distribution pipe 13 to backwash only the resin above the water distribution pipe 13.
When the upper resin was sufficiently developed and almost no resin flowed out from the sub-drawing port 14, the sub-drawing port was closed and the normal drawing port 15 was opened to allow the resin above the normal drawing port to flow out. After the spill, the remaining resin underneath was backwashed, but no SBR-P-C residue was observed.

比較例 第3図例の装置を用いて、実施例と同じ樹脂充
填を行つた。まず全層逆洗し、沈整させたのちに
配水管13から水を導入して配水管より上の樹脂
だけを逆洗し、上の樹脂が充分に展開した時点で
正引抜き口15を開き、正引抜き口より上の樹脂
を流出させた。流出後残つた下の樹脂を逆洗した
ところ、表層にSBR−P−Cが厚さ4mmほど残
留していた。
Comparative Example Using the apparatus shown in FIG. 3, the same resin filling as in the example was carried out. First, the entire thickness is backwashed, and after settling, water is introduced from the water pipe 13 to backwash only the resin above the water pipe, and when the resin on the top is fully developed, the forward withdrawal port 15 is opened. , the resin above the normal withdrawal port was flowed out. When the lower resin remaining after the spill was backwashed, SBR-P-C remained on the surface layer to a thickness of about 4 mm.

〔発明の効果〕〔Effect of the invention〕

本発明は、逆洗により上下二層に分離されうる
イオン交換樹脂を備えた混床式イオン交換塔にお
いて、逆洗により分離された下層のイオン交換樹
脂層中の上方部に設定した移送水噴出部より移送
水を噴出し、該噴出部付近に設けた樹脂の正引抜
き口と、また前記噴出部より上方のイオン交換樹
脂層又は上下二層の界面付近に設けた樹脂の副引
抜き口とを用いて樹脂を引抜く際に、前記副引抜
き口からその上方の樹脂を引抜いたのち、正引抜
き口よりその上方の樹脂を正引抜き口から引抜く
ことにより中間部(または中間部と上部)樹脂の
引抜きを2段階に行い、下部のカチオン交換樹脂
上面への強塩基性アニオン交換樹脂の残留がほと
んどなく樹脂の引抜きレベルも一定していて変動
がないので安定した処理を効率よく行えて従来方
法の欠点を補うことができる利益がある。
The present invention provides a mixed bed type ion exchange tower equipped with an ion exchange resin that can be separated into upper and lower layers by backwashing, and a transfer water jet set in the upper part of the lower ion exchange resin layer separated by backwashing. Transfer water is spouted from the jetting section, and a resin main withdrawal port provided near the jetting section and a resin secondary withdrawal port provided near the ion exchange resin layer or the interface between the upper and lower two layers above the spouting section are connected. When pulling out the resin using the auxiliary drawing port, the resin above it is pulled out from the sub-drawing port, and then the resin above it is pulled out from the normal drawing port. The extraction is performed in two stages, and there is almost no residual strongly basic anion exchange resin on the upper surface of the cation exchange resin at the bottom, and the resin extraction level is constant and does not fluctuate, making it possible to perform stable and efficient processing using the conventional method. There are benefits that can compensate for the shortcomings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフローシート、第2図は本発明
方法の実施例のフローシート、第3図は他の実施
例のフローシートである。 1……イオン交換樹脂塔、2……頂部集配水
管、3……底部集配水管、4……移送水吹出用配
水管、5……副引抜き口、6……正引抜き口、7
……底部引抜き口、8……給排気口、9……強塩
基性アニオン交換樹脂層、10……強酸性カチオ
ン交換樹脂層、11……カラム、12……底部集
配水管、13……配水管、14……副引抜き口、
15……正引抜き口、16……底部引抜き口、1
7……強酸性カチオン交換樹脂層、18……強塩
基性アニオン交換樹脂層。
FIG. 1 is a conventional flow sheet, FIG. 2 is a flow sheet of an embodiment of the method of the present invention, and FIG. 3 is a flow sheet of another embodiment. DESCRIPTION OF SYMBOLS 1...Ion exchange resin tower, 2...Top water collection and distribution pipe, 3...Bottom water collection and distribution pipe, 4...Water pipe for discharging transferred water, 5...Sub-drawing port, 6...Forward drawing port, 7
... Bottom extraction port, 8 ... Supply and exhaust port, 9 ... Strong basic anion exchange resin layer, 10 ... Strong acid cation exchange resin layer, 11 ... Column, 12 ... Bottom water collection and distribution pipe, 13 ... Distribution Water pipe, 14...auxiliary extraction port,
15...Front pull-out port, 16...Bottom pull-out port, 1
7... Strongly acidic cation exchange resin layer, 18... Strongly basic anion exchange resin layer.

Claims (1)

【特許請求の範囲】 1 逆洗により上下二層に分離されうるイオン交
換樹脂を備えた混床式イオン交換塔において、逆
洗により分離された下層のイオン交換樹脂層中の
上方部に設定した移送水噴出部より移送水を噴出
し、該噴出部付近に設けた樹脂の正引抜き口と、
また前記噴出部より上方のイオン交換樹脂層又は
上下二層の界面付近に設けた樹脂の副引抜き口と
を用いて樹脂を引抜く際に、前記副引抜き口から
その上方の樹脂を引抜いたのち、正引抜き口より
その上方の樹脂を正引抜き口から引抜くことを特
徴とするイオン交換樹脂の移送方法。 2 前記樹脂引抜き工程が、排水を止めて給排気
口より圧力空気を導入して処理されるものである
特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. In a mixed-bed ion exchange tower equipped with an ion exchange resin that can be separated into upper and lower layers by backwashing, the ion exchange tower is set in the upper part of the lower ion exchange resin layer separated by backwashing. The transfer water is spouted from the transfer water spouting part, and a normal resin withdrawal port is provided near the spouting part;
In addition, when pulling out the resin using the ion exchange resin layer above the spouting part or the sub-drawing port for the resin provided near the interface between the upper and lower layers, after pulling out the resin above from the sub-drawing port. , a method for transferring ion exchange resin, characterized in that the resin above the normal drawing port is pulled out from the normal drawing port. 2. The method according to claim 1, wherein the resin drawing step is performed by stopping drainage and introducing pressurized air from an air supply/exhaust port.
JP57021959A 1982-02-16 1982-02-16 Regeneration method of ion exchange resin Granted JPS58139747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021959A JPS58139747A (en) 1982-02-16 1982-02-16 Regeneration method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021959A JPS58139747A (en) 1982-02-16 1982-02-16 Regeneration method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPS58139747A JPS58139747A (en) 1983-08-19
JPS631898B2 true JPS631898B2 (en) 1988-01-14

Family

ID=12069602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021959A Granted JPS58139747A (en) 1982-02-16 1982-02-16 Regeneration method of ion exchange resin

Country Status (1)

Country Link
JP (1) JPS58139747A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139747A (en) * 1982-02-16 1983-08-19 Ebara Infilco Co Ltd Regeneration method of ion exchange resin
JP6315611B2 (en) * 2015-11-30 2018-04-25 壽化工機株式会社 Separation method of mixed resin of mixed bed type resin packed tower, mixed bed type resin packed tower, and water treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525102B2 (en) * 1972-06-27 1980-07-03
JPS5638136A (en) * 1979-09-05 1981-04-13 Mitsubishi Chem Ind Ltd Separation method for mixed ion exchange resin
JPS58139747A (en) * 1982-02-16 1983-08-19 Ebara Infilco Co Ltd Regeneration method of ion exchange resin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525102U (en) * 1978-08-01 1980-02-18

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525102B2 (en) * 1972-06-27 1980-07-03
JPS5638136A (en) * 1979-09-05 1981-04-13 Mitsubishi Chem Ind Ltd Separation method for mixed ion exchange resin
JPS58139747A (en) * 1982-02-16 1983-08-19 Ebara Infilco Co Ltd Regeneration method of ion exchange resin

Also Published As

Publication number Publication date
JPS58139747A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
US3582504A (en) Method for separating and isolating ion exchange resins
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
US4528101A (en) Method of separating acid from salt by adsorption with recycling
JPS631898B2 (en)
JPS6231613B2 (en)
JP5075159B2 (en) Separation tower for mixed ion exchange resin
JP2020075226A (en) Regeneration device for ion exchange resin
JPS595015B2 (en) How to clean ion exchange resin
GB2063094A (en) Water purification by ion exchange
JP4346214B2 (en) Separation method of mixed ion exchange resin
JP2891820B2 (en) Regeneration method of ion exchange resin
JP2654053B2 (en) Condensate desalination equipment
JP2011189317A (en) Ion exchange device
WO2024075500A1 (en) Method for separating and regenerating anion exchange resin and cation exchange resin in ion exchange resin mixture
US4126548A (en) Ion exchange process
JP7405285B1 (en) Method for separating and regenerating anion exchange resin and cation exchange resin in mixed ion exchange resin
US3585127A (en) Method for treating water by ion exchange
JPS6344104Y2 (en)
JPH0353758Y2 (en)
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JPH0138553B2 (en)
KR820000714B1 (en) Method for regeneration of anion-exchange resin
JPH0768254A (en) Pure water producing apparatus and its regeneration
JP3852487B2 (en) Regeneration method of ion exchange resin
JPH05184948A (en) Method for regenerating ion exchange resin and ion exchange resin tower fitted with regeneration device