JPS63189745A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS63189745A
JPS63189745A JP2072387A JP2072387A JPS63189745A JP S63189745 A JPS63189745 A JP S63189745A JP 2072387 A JP2072387 A JP 2072387A JP 2072387 A JP2072387 A JP 2072387A JP S63189745 A JPS63189745 A JP S63189745A
Authority
JP
Japan
Prior art keywords
compressor
time
pressure
capacity
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2072387A
Other languages
Japanese (ja)
Other versions
JPH0621717B2 (en
Inventor
和弘 上田
敏明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2072387A priority Critical patent/JPH0621717B2/en
Publication of JPS63189745A publication Critical patent/JPS63189745A/en
Publication of JPH0621717B2 publication Critical patent/JPH0621717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷凍装置に関するものであり、特に被冷却
物の鮮度維持を確保し、かつ冷媒中に混じった油を効果
的に圧縮機に戻すようにした冷凍装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration system, and particularly to a refrigeration system that ensures the freshness of objects to be cooled and that effectively removes oil mixed in a refrigerant into a compressor. The present invention relates to a refrigeration device that is designed to revert back to its original state.

〔従来の技術〕[Conventional technology]

従来、この種の装置として第2図(こ示すものがあった
。第2図において、(1)は並列圧縮式冷凍装置、(2
)は複数台のショーケース(2a)、(2b)、(2C
)の組合せで構成された冷却装置である。並列圧縮式冷
凍装置(1)は水冷式の凝縮器(1a)あるいは空冷式
凝縮器(図示せず)の下流側に接続される受液器の上に
圧縮機の定格容量比がほぼ2対1に選定されている大容
量の圧縮機(1b)と小容量の圧縮機(1c)の2台が
並列に搭載されており、かつ各圧縮機(1b)と(IC
)の冷媒吐出管(1d)および吸入管(1e)が互いに
並列接続されている。なお、(1f)は各圧縮機(1b
)と(IC)のクランク室を相互に連通させる均圧均油
管である。
Conventionally, there was a device of this type as shown in Fig. 2. In Fig. 2, (1) is a parallel compression type refrigeration device, (2)
) has multiple showcases (2a), (2b), (2C
) This is a cooling device composed of a combination of The parallel compression refrigeration system (1) has a compressor with a rated capacity ratio of approximately 2 to 1 on a liquid receiver connected downstream of a water-cooled condenser (1a) or an air-cooled condenser (not shown). Two large-capacity compressors (1b) and small-capacity compressors (1c) selected as 1 are installed in parallel, and each compressor (1b) and (IC
) A refrigerant discharge pipe (1d) and a suction pipe (1e) are connected in parallel to each other. In addition, (1f) is for each compressor (1b
This is a pressure equalizing oil pipe that connects the crank chambers of ) and (IC) with each other.

また、(5)は、低圧側の冷媒圧力を検出する圧力検出
部(3)の出力信号と収束させようとする低圧側の冷媒
圧力を設定する圧力設定部(4)で設定された冷媒圧力
との圧力差に応じて上記圧縮機(1b)と(1c)を個
別に運転・停止の制御を行う制御部である。
In addition, (5) is the refrigerant pressure set by the pressure setting unit (4) that sets the refrigerant pressure on the low pressure side to be converged with the output signal of the pressure detection unit (3) that detects the refrigerant pressure on the low pressure side. This is a control unit that individually controls operation and shutdown of the compressors (1b) and (1c) according to the pressure difference between the compressors (1b) and (1c).

(7)は、上記圧縮機(1b)、(IC)のうち、1台
のみ運転している時間を積算する圧縮機単独運転時間積
算部である。また、(6)は上記圧縮機単独運転時間積
算部(7)が所定時間1こ達すると、上記圧縮機(1b
)、(1c)を2台とも一定時間停止させると共に上記
圧縮単独運転積算部(7)の積算時間を0とし、かつ定
格容量が異る上記2台の圧縮機(1b)、(1c)の2
台運転より運転を開始する圧縮機容量設定部である。
(7) is a compressor independent operation time integration unit that integrates the time during which only one of the compressors (1b) and (IC) is operating. In addition, (6) means that when the compressor independent operation time integration unit (7) reaches a predetermined time of 1, the compressor (1b)
), (1c) are both stopped for a certain period of time, and the cumulative time of the compression independent operation integration section (7) is set to 0, and the two compressors (1b), (1c) with different rated capacities are 2
This is the compressor capacity setting unit that starts operation from the unit operation.

(9)は、一定時間毎に一定時間にわたって上記2台の
圧縮機(1b)、(1c)を停止させる信号を発生する
強制間欠運転制御部である。
(9) is a forced intermittent operation control unit that generates a signal to stop the two compressors (1b) and (1c) for a certain period of time at certain intervals.

また、第8図に示すように、連常圧力領域は、上記圧力
設定部(4)によって設定される容量アップ圧力値、容
量ダウン圧力値、低圧カット値の3つによって、並列圧
縮式冷凍装置(1)に容量アップ信号を出す容量アップ
圧力値以上の領域(ニ)と、並列圧縮式冷凍装置(1)
に容量ダウン信号も容量アップ信号も出さない容量ダウ
ン圧力値以上で、かつ容量アップ圧力値未満の領域(ハ
)と、並列圧縮式冷凍装置(1)に容量ダウン信号を出
す容量ダウン圧力値未満の領域(ロ)と、並列圧縮式冷
凍装置(1)に停止信号を出す低圧カット値以下の領域
(イ)の4つに分けられる。
In addition, as shown in FIG. 8, the continuous pressure region is determined by the three pressure values set by the pressure setting section (4): the capacity up pressure value, the capacity down pressure value, and the low pressure cut value. Area (d) above the capacity up pressure value that sends out a capacity up signal in (1), and parallel compression refrigeration system (1)
Region (c) above the capacity down pressure value where neither a capacity down signal nor a capacity up signal is issued and less than the capacity up pressure value (c), and a region below the capacity down pressure value where a capacity down signal is issued to the parallel compression refrigeration system (1). It can be divided into four regions: (b) a region where the pressure is below the low pressure cut value that sends a stop signal to the parallel compression refrigeration system (1) (b).

次に動作について説明する。たとえば、冷却装置(2)
の冷凍負荷に対する所要の冷凍能力を得るための所要動
力が15)Pである場合に、一方の圧縮機(1b)の定
格容量はtoH:’、他方の圧縮機(1c)の定格容量
は5Wに選定されている。
Next, the operation will be explained. For example, cooling device (2)
When the required power to obtain the required refrigerating capacity for the refrigerating load is 15)P, the rated capacity of one compressor (1b) is toH:', and the rated capacity of the other compressor (1c) is 5W. has been selected.

一方、複数台のショーケース(2a)、 (2b)、 
(2c)からなる冷却装置(2)では、各ショーケース
の使用状況によって冷却負荷はOから100%まで大幅
に変動する。
On the other hand, multiple showcases (2a), (2b),
In the cooling device (2) consisting of (2c), the cooling load varies greatly from 0 to 100% depending on the usage status of each showcase.

ここで、冷凍負荷が少なくなると、冷凍サイクルの低圧
側の冷媒圧力が下がり、これに伴って圧力検出部(3)
から制御部(5)に出力される圧力検出信号のレベルも
低下する。
Here, when the refrigeration load decreases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases, and the pressure detection section (3)
The level of the pressure detection signal outputted to the control unit (5) also decreases.

制御部(5)では、上記圧力検出信号を基準値(容量ア
ップ圧力値あるいは容量ダウン圧力値)と比較する比較
回路を有しているため、圧力検出信号が容量ダウン圧力
値よりも低い場合、すなわち、領域(ロ)の場合には、
制御部(5)は並列圧縮式冷凍装置(1)の容量が低下
するように制御し、冷却能力を下げる。このよう(こし
て冷却能力が下げられると、冷凍サイクルの低圧側の冷
媒圧力がと昇し、領域(ハ)に収束し、運転は安定する
The control unit (5) has a comparison circuit that compares the pressure detection signal with a reference value (capacity up pressure value or capacity down pressure value), so if the pressure detection signal is lower than the capacity down pressure value, In other words, in the case of area (b),
The control unit (5) controls the capacity of the parallel compression type refrigeration device (1) to decrease, thereby lowering the cooling capacity. When the cooling capacity is lowered in this way, the refrigerant pressure on the low-pressure side of the refrigeration cycle increases rapidly, converges in region (c), and the operation becomes stable.

また、冷却負荷が高い場合には、冷凍サイクルの低圧側
の冷媒圧力が上昇し、これに伴って圧力検出部(3)か
ら制御部(5)に出力される圧力検出信号のレベルが上
昇する。この結果、圧力検出信号が容量アップ圧力値よ
りも高い場合、すなわち、領域(ニ)の場合には、制御
部(5)は並列圧縮式冷凍装置(1)の容量がアップす
るように制御し、冷却能力を増加させる。このようにし
て冷却能力が増加すると、冷凍サイクルの低圧側の冷媒
圧力は低下し、領域(ハ)に収束し、運転は安定する。
Additionally, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle increases, and the level of the pressure detection signal output from the pressure detection section (3) to the control section (5) increases accordingly. . As a result, when the pressure detection signal is higher than the capacity increase pressure value, that is, in the case of region (d), the control unit (5) controls the parallel compression refrigeration system (1) to increase its capacity. , increasing cooling capacity. When the cooling capacity increases in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases and converges to region (c), and the operation becomes stable.

なお、圧力検出部(3)が領域(ニ)あるいは領域(ロ
)の圧力を検出した後、制御部(5)より出力される容
量アップ信号、あるいは容量ダウン信号が発生するまで
の時間は同じである。
Note that the time from when the pressure detection unit (3) detects the pressure in area (d) or area (b) until the capacity up signal or capacity down signal is generated from the control unit (5) is the same. It is.

なお、冷凍サイクルの低圧側の冷媒圧力が低圧カット値
以下すなわち領域(イ)になった場合、圧縮機(lb)
 、  (lc)は直ちに停止するようになっている。
In addition, if the refrigerant pressure on the low pressure side of the refrigeration cycle is below the low pressure cut value, that is, in the region (a), the compressor (lb)
, (lc) is designed to stop immediately.

したがって、上記の冷凍負荷変動に対し、冷凍負荷が3
3%以下の部分負荷時には定格容量5)Pの圧縮機(1
c)のみが単独運転される。また、冷凍負荷が33〜6
6%の範囲では定格容量101Pの圧縮機(1b)のみ
が単独運転される。
Therefore, for the above refrigeration load fluctuation, the refrigeration load is 3
At partial loads of 3% or less, a compressor with a rated capacity of 5) P (1
c) is operated independently. In addition, the refrigeration load is 33 to 6
In the range of 6%, only the compressor (1b) with a rated capacity of 101P is operated independently.

さらに、冷凍負荷が66〜100%になれば圧縮機(1
b)と(1c)が同時に並列運転される。この容量制御
運転の推移を示せば、第4図のようになる。
Furthermore, when the refrigeration load reaches 66 to 100%, the compressor (1
b) and (1c) are operated in parallel at the same time. The transition of this capacity control operation is shown in FIG. 4.

すなわち、第4図に示されているように圧縮機の定格容
量比がほぼ2対1に選定されている大小の圧縮機を選択
的に運転・停止制御することによって0.88.100
%の4段階の容量制御運転を行うことができる。
That is, as shown in FIG. 4, by selectively controlling the operation and stopping of large and small compressors whose rated capacity ratio is approximately 2:1,
% capacity control operation can be performed.

また、圧縮機(lb) 、 (lc)は上記強制間欠運
転制御部(9)の機能により、上述の容量制御運転にか
かわらず、一定時間毎に一定時間(こわたって停止する
Moreover, the compressors (lb) and (lc) are stopped for a fixed period of time (for a fixed period of time) at fixed intervals, regardless of the capacity control operation described above, due to the function of the forced intermittent operation control section (9).

また、−役に冷媒を高温高圧に圧縮する圧縮機において
は、圧縮機の潤滑油が冷媒中に重量比で0.5〜1%混
入する。この混入された潤滑油は冷媒が液体状であれば
冷媒によく混ざるが、冷媒が気化されると冷媒に混ざら
ず分離する。従って、従来の冷凍装置においては、次に
説明するように冷媒に混入した潤滑油が圧縮機に戻らず
、圧縮機内の潤滑油が減少することがあった。
Furthermore, in a compressor that compresses a refrigerant to high temperature and high pressure, lubricating oil of the compressor is mixed in the refrigerant at a weight ratio of 0.5 to 1%. This mixed lubricating oil mixes well with the refrigerant when the refrigerant is in a liquid state, but when the refrigerant is vaporized, it does not mix with the refrigerant and separates. Therefore, in conventional refrigeration systems, the lubricating oil mixed in the refrigerant does not return to the compressor, as will be explained next, and the lubricating oil in the compressor sometimes decreases.

従来の冷凍装置において、例えば複数個の被冷却部たと
えばショーケースの夫々に冷却器(2a) 。
In a conventional refrigeration system, for example, a cooler (2a) is installed in each of a plurality of parts to be cooled, such as a showcase.

(2b) 、 (2c)を備えた冷凍装置においては、
ショーケース個々の温度管理のために、個々のショーケ
ースに温度調節器及び冷媒の流れを制御する液ライン電
磁弁を設けて、個々のショーケースの温度制御を行って
いた。この場合、例えばショーケースが8台あり、3台
のショーケースを個別に制御する冷凍装置において、夜
間の負荷軽減によって1台の冷却器(2a)だけ長時間
運転する場合がある。
In a refrigeration system equipped with (2b) and (2c),
In order to control the temperature of each showcase, each showcase was equipped with a temperature regulator and a liquid line solenoid valve that controlled the flow of refrigerant. In this case, for example, in a refrigeration system that has eight showcases and controls three showcases individually, only one cooler (2a) may be operated for a long time due to load reduction at night.

この時には負荷が軽減されているため、冷凍装置は冷却
器(2a)の蒸発温度が下った状態で運転することにな
り、圧縮機(lb) 、 (lc)の吸入管中の冷媒ガ
ス流速が減少する。冷媒ガス流速が減少すると冷媒ガス
と分離した潤滑油は、圧縮機(lb) 、 (lc)へ
の戻りが悪くなり、圧縮機(市)、(lc)内の潤滑油
が減少して圧縮機軸受等の摺動部が焼損する恐れがあっ
た。また、上記冷却器(2a)の1台を運転する負荷軽
減を予想して圧縮機(lb) 、 (lc)の吸入管径
を小さくして、冷媒ガス流速を確保するようにすると、
冷却器(2a) 、 (2b) 、 (2c) 8台を
運転する大負荷時には、冷媒ガス流速が非常に速くなり
、圧縮機(lb) 、 (IC)の吸入管での圧力損失
が極めて大きくなる。このため、圧縮機(lb) 、 
(lc)の圧縮能力が減少し、冷凍装置の冷凍能力が減
少する欠点があった。
At this time, the load has been reduced, so the refrigeration system operates with the evaporation temperature of the cooler (2a) lowered, and the refrigerant gas flow rate in the suction pipes of the compressors (lb) and (lc) increases. Decrease. When the refrigerant gas flow rate decreases, the lubricating oil separated from the refrigerant gas has a poor return to the compressor (lb), (lc), and the lubricating oil in the compressor (lb), (lc) decreases, causing the compressor to There was a risk that sliding parts such as bearings would burn out. Furthermore, in anticipation of a reduction in the load of operating one of the coolers (2a), the suction pipe diameters of the compressors (lb) and (lc) are made smaller to ensure the refrigerant gas flow rate.
When eight coolers (2a), (2b), and (2c) are operated under heavy load, the refrigerant gas flow rate becomes extremely high, and the pressure loss in the suction pipes of the compressors (lb) and (IC) becomes extremely large. Become. For this reason, the compressor (lb),
There was a drawback that the compression capacity of (lc) was reduced, and the refrigeration capacity of the refrigeration system was reduced.

このような欠点を除去するために、と述のように冷凍サ
イクルの低圧側の冷媒圧力に応じて、冷凍装置の容量を
変化させ、吸入側の蒸発温度を一定に保つ、いわゆる容
量制御運転を行ない、負荷の低減に伴なう吸入側圧力の
低下で圧縮機(lb) 。
In order to eliminate these drawbacks, we have adopted so-called capacity control operation, which changes the capacity of the refrigeration system according to the refrigerant pressure on the low-pressure side of the refrigeration cycle and keeps the evaporation temperature on the suction side constant, as described above. compressor (lb) due to a decrease in suction side pressure as the load is reduced.

(lc)のうち、1台のみが運転する時間を圧縮機単独
運転時間積算部(7)で積算し、その値が所定時間に達
すると、圧縮機容量設定部(6)により、上記圧縮機(
lb) 、 (lc)を2台とも一定時間停止させた後
、定格容量が異なる上記2台の圧縮機(lb) 、 (
lc)の運転を開始するようになっている。すなわち、
圧縮機(lb) 、 (lc)の一定時間の停止により
、高圧側の液冷媒が低圧側に契り、低圧側の冷媒圧力を
上昇させ、圧縮機(lb)、 (Ic)の運転再開1こ
より吸入管中の冷媒ガスの流速が増加して、低負荷運転
時に吸入管中に溜った潤滑油を圧縮機(lb) 、 (
lc)に−気に戻すことによって、上記圧縮機(lb)
 、 (lc)内温滑油の減少が防がれる。
(lc), the time during which only one compressor operates is accumulated by the compressor independent operation time accumulating section (7), and when the value reaches a predetermined time, the compressor capacity setting section (6) (
After stopping both the compressors (lb) and (lc) for a certain period of time, the two compressors (lb) and (lc) with different rated capacities are
lc) is set to start operating. That is,
By stopping the compressors (lb) and (lc) for a certain period of time, the liquid refrigerant on the high-pressure side switches to the low-pressure side, increasing the refrigerant pressure on the low-pressure side and restarting the compressors (lb) and (lc). The flow rate of refrigerant gas in the suction pipe increases, and the lubricating oil accumulated in the suction pipe during low-load operation is transferred to the compressor (lb), (
lc) - by returning the air to the compressor (lb)
, (lc) Decrease in internal temperature lubricant is prevented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍装置は以上のように構成されているので、2
台の圧縮機のうち1台のみが運転している時間が所定時
間に達すると、2台の圧縮機が停比し、被冷却物の鮮度
が保持されないという欠点があった。
Since the conventional refrigeration equipment is configured as described above, 2
When only one of the compressors is in operation for a predetermined period of time, the two compressors stop working and the freshness of the cooled material cannot be maintained.

この発明は、上記のような従来の問題点を解消するため
になされたもので、圧縮機を停止させる時間をできるだ
け短くして、被冷却物の鮮度を保持するとともに、吸入
管中に溜った潤滑油を効果的に圧縮機に戻すようにした
冷凍装置を提供することを目的とする。
This invention was made to solve the above-mentioned conventional problems, and it reduces the time during which the compressor is stopped as much as possible to maintain the freshness of the cooled material, and also to reduce the amount of water that accumulates in the suction pipe. It is an object of the present invention to provide a refrigeration system that effectively returns lubricating oil to a compressor.

〔問題を解決するための手段〕[Means to solve the problem]

この発明においては、冷凍サイクルの低圧側(こおける
冷媒圧力を圧力検出部で検出して圧力検出信号を発生さ
せ、収束させようとする冷媒圧力を圧力設定部で設定す
るとともに、上記圧力検出信号が収束させようとする冷
媒圧力以上か、以下かを判定し、冷凍機の容量制御を行
うための容量制御用出力信号を発生する制御部と、一定
時間毎に一定時間にわたって上記圧縮機を停止させる信
号を発生する強制間欠運転制御部と、上記圧縮機が1台
のみ運転している時間を積算する圧縮機単独運転時間積
算部、上記圧縮機単独運転時間積算部の積算時間が所定
時間に達すると、上記圧縮機を2台とも一定時間停止さ
せると共に上記圧縮機単独運転時間積算部の積算時間を
0とし、かつ上記2台の圧縮機の運転を開始する圧縮容
量設定部と、と記強制間欠運転制御部により上記圧縮機
を停止させる時間が上記圧縮機容量設定部により上記圧
縮機を停止させる時間以上になった場合、上記圧縮機容
量設定部による圧縮機停止機能を解除する圧縮機単独運
転時間補正部を設けることにより冷凍装置を構成して上
記目的を達成するものである。
In this invention, the refrigerant pressure on the low pressure side of the refrigeration cycle is detected by the pressure detection section to generate a pressure detection signal, the refrigerant pressure to be converged is set by the pressure setting section, and the pressure detection signal is a control unit that determines whether the refrigerant pressure is above or below the desired refrigerant pressure and generates a capacity control output signal to control the capacity of the refrigerator; and a control unit that stops the compressor for a certain period of time at certain intervals. a forced intermittent operation control section that generates a signal to cause the compressor to run; a compressor independent operation time accumulation section that accumulates the time during which only one compressor is in operation; a compression capacity setting section that stops both of the compressors for a certain period of time, sets the cumulative time of the compressor independent operation time cumulative section to 0, and starts the operation of the two compressors; A compressor that releases a compressor stop function by the compressor capacity setting unit when the time for stopping the compressor by the forced intermittent operation control unit exceeds the time for stopping the compressor by the compressor capacity setting unit. The above object is achieved by configuring a refrigeration system by providing an independent operation time correction section.

〔作用〕[Effect]

この発明における冷凍装置は、上記強制間欠運転制御部
により上記圧縮機を停止させる時間が上記圧縮機容量設
定部i?−より上記圧縮機を停止させる時間以上になっ
た場合、圧縮機単独運転時間補正部の機能により、上記
圧縮機容量設定部による圧縮機停止機能を解除するので
、圧縮機を停止させる時間をできるrごけ短くすること
ができ、被冷却物の鮮度が保持されるとともに、吸入管
中に溜った潤滑油を効果的に圧縮機に戻すことができる
In the refrigeration system of the present invention, the compressor capacity setting section i? - If the above-mentioned compressor stop time is exceeded, the function of the compressor independent operation time correction section cancels the compressor stop function of the above-mentioned compressor capacity setting section, so there is more time to stop the compressor. Therefore, the freshness of the object to be cooled can be maintained, and the lubricating oil accumulated in the suction pipe can be effectively returned to the compressor.

〔実施佼1〕 第1図は、この発明における冷凍装置の一実施例を示す
構成図であって、第2図と同一部分は同一符号を用いて
示しである。図において、(8)は圧縮機単独運転時間
補正部であり、上記強制間欠運転制御部(9)により上
記圧縮機(1b)、 (lc)を停止させる時間力、;
上記圧縮機容量設定部(6)により上記圧縮機(tb)
 、 (tc)を停止させる時間以上になった場合、上
記圧縮機容量設定部(6)による圧縮機停止機能を解除
する機能を有している。
[Embodiment 1] FIG. 1 is a block diagram showing an embodiment of a refrigeration system according to the present invention, and the same parts as in FIG. 2 are designated by the same reference numerals. In the figure, (8) is a compressor independent operation time correction unit, and the time force for stopping the compressors (1b) and (lc) by the forced intermittent operation control unit (9);
The compressor (tb) is set by the compressor capacity setting section (6).
, (tc) has a function of canceling the compressor stop function by the compressor capacity setting section (6).

次に動作について説明する。上記圧縮機単独運転時間積
算部(7)で上記圧縮機(lb) 、 (lc)のうち
、1台のみが運転している時間を蒲算し、例えば、48
分になると圧縮機容量設定部(6)により、上記圧縮機
(lb) 、 (lc)を2台とも一定時間、例えば、
8分間停止させると共に上記圧縮機単独運転時間積算部
(7)の積算時間(48分)を0とし、かつ定格容量が
異る2台の圧縮機(lb) 、 (lc)の2台運転よ
り運転を開始するようになっている。ところで、上記怖
制間欠運転制創部(9)で上記圧縮機(lb) 、 (
lc)を停止させる時間は、可変抵抗器等により、任意
に変更することができる。上記強制間欠運転制御部(9
)により、上記圧縮機(lb) 、 (lc)を停止さ
せる時間が8分となり、上記圧縮機容量設定部(6)に
より、上記圧縮機(lb) 、 (lc)を停止させる
時間以上となった場合、上記圧縮機単独運転時間補正部
(8)の機能により上記圧縮機容量設定部(6)による
圧縮機停止機能を解除するため、圧縮機容量設定部(6
)により、圧縮機(lb) 、 (lc)が停止するこ
とはない。
Next, the operation will be explained. The compressor independent operation time accumulating unit (7) calculates the operating time of only one of the compressors (lb) and (lc), and calculates, for example, 48
When the minute reaches, the compressor capacity setting unit (6) sets both the compressors (lb) and (lc) for a certain period of time, e.g.
By stopping the compressor for 8 minutes and setting the accumulated time (48 minutes) of the compressor independent operation time accumulating section (7) to 0, and operating two compressors (lb) and (lc) with different rated capacities. It is now ready to start driving. By the way, in the intermittent operation control section (9), the compressor (lb), (
The time for stopping lc) can be arbitrarily changed using a variable resistor or the like. The above forced intermittent operation control section (9
), the time for stopping the compressors (lb), (lc) becomes 8 minutes, and the compressor capacity setting section (6) sets the time for stopping the compressors (lb), (lc) to be longer than 8 minutes. In this case, the compressor capacity setting unit (6) cancels the compressor stop function by the compressor capacity setting unit (6) by the function of the compressor independent operation time correction unit (8).
), the compressors (lb) and (lc) will not stop.

したがって、圧縮機を停止させる時間をできるだけ短く
して、被冷却物の鮮度を保持するとともに、と記強制間
欠運転制御部(9)による圧縮機(lb)。
Therefore, the time during which the compressor is stopped is kept as short as possible to maintain the freshness of the object to be cooled.

(1c)の一定時間の停止により、高圧側の液冷媒が低
圧側に戻り、低圧側の冷媒圧力を上昇させ、圧縮機(1
b) 、 (1c)の運転再開により吸入管中の冷媒ガ
スの流速が増加して、低負荷運転時に吸入管中に溜った
潤滑油を圧縮機(lb) 、 (lc)に−気に戻す 
By stopping (1c) for a certain period of time, the liquid refrigerant on the high pressure side returns to the low pressure side, increasing the refrigerant pressure on the low pressure side, and compressor (1
b) By restarting operation in (1c), the flow rate of refrigerant gas in the suction pipe increases, and the lubricating oil accumulated in the suction pipe during low-load operation is returned to the compressors (lb) and (lc).
.

ことによって、上記圧縮機(lb) 、 (lc)内の
潤滑油の減少が防止できる。
By doing so, it is possible to prevent the lubricating oil in the compressors (lb) and (lc) from decreasing.

また、を記実施例では2台の圧縮機により、容量制御を
行っているが、インバータの出力周波数を変え上記圧縮
機の容量を制御する場合においても、冷媒中(こ混じっ
た油を効果的に圧縮機に戻すために、上記圧縮機の出力
周波数が所定値、例えば40Hz 以下で運転される時
間を積算して、その値が所定値、例えば48分に達する
と、上記圧縮機を一定時間、例えば、3分間停止させて
いる場合、上記強制間欠運転制御部により上記圧縮機を
停止させる時間が例えば、3分の場合、上記圧縮機容量
設定部で上記圧縮機を停止させる時間以上となり、上記
圧縮機の低周波vi、運転時間補正部が圧縮機容量設定
部の圧縮機停止機能を解除することにより、同様の効果
が得られる。
In addition, although capacity control is performed using two compressors in the example described, even when controlling the capacity of the compressor by changing the output frequency of the inverter, it is possible to effectively remove the mixed oil in the refrigerant. In order to return the output frequency to the compressor, the time during which the output frequency of the compressor is operated at a predetermined value, e.g., 40 Hz or less, is accumulated, and when that value reaches a predetermined value, e.g., 48 minutes, the compressor is operated for a predetermined period of time. For example, when the compressor is stopped for 3 minutes, the time for the forced intermittent operation control section to stop the compressor is, for example, 3 minutes, the time for the compressor capacity setting section to stop the compressor or more, A similar effect can be obtained by the compressor low frequency vi and operation time correction section canceling the compressor stop function of the compressor capacity setting section.

〔発明の効果〕〔Effect of the invention〕

以上説明したまうに、この発明における冷凍装置は、冷
凍サイクルの低圧側における冷媒圧力を圧力検出部で検
出して圧力検出信号を発生させ、収束させようとする冷
媒圧力を圧力設定部で設定するとともに、上記圧力検出
信号が収束させようとする冷媒圧力以上か、以下かを判
定し、冷凍機の容量制御を貸うための容量制御用出力信
号を発生する制御部と、一定時間毎に一定時間にわたっ
て上記圧縮機を停止させる信号を発生する強制間欠運転
制御部と1.上記圧縮機が1台のみ運転している時間を
積算する圧縮機単独運転時間積算部と、上記圧縮機単独
運転時間積算部が所定時間に達すると、上記圧縮機を2
台とも一定時間停止させると共に上記圧縮機単独運転時
間積算部の積算時間を0とし、かつ上記2台の圧縮機の
運転を開始する圧縮機容量設定部と、上記強制間欠運転
制御部により上記圧縮機を停止させる時間が上記圧縮機
容量設定部により上記圧縮機を停止させる時間以上にな
った場合、上記圧縮機容量設定部による圧縮機停止機能
を解除する圧縮機単独運転時間補正部とを備えているの
で、圧縮機を停止させる時間をできるだけ短くすること
ができ、被冷却物の鮮度を保持することができると共に
、吸入管中に溜った潤滑油を効果的に圧縮機に戻すこと
ができろっ
As explained above, in the refrigeration system of the present invention, the pressure detection section detects the refrigerant pressure on the low pressure side of the refrigeration cycle, generates a pressure detection signal, and sets the refrigerant pressure to be converged using the pressure setting section. In addition, a control unit that determines whether the pressure detection signal is above or below the refrigerant pressure to be converged and generates a capacity control output signal for controlling the capacity of the refrigerator; a forced intermittent operation control section that generates a signal to stop the compressor over time; 1. When the compressor independent operation time accumulating unit accumulates the time during which only one compressor is operating, and the compressor independent operating time accumulating unit reaches a predetermined time, the compressor is
The compressor capacity setting unit stops both compressors for a certain period of time, sets the cumulative time of the compressor independent operation time cumulative unit to 0, and starts operating the two compressors, and the forced intermittent operation control unit controls the compressor a compressor independent operation time correction unit that cancels a compressor stop function by the compressor capacity setting unit when the time for stopping the compressor exceeds the time for stopping the compressor by the compressor capacity setting unit; As a result, the time during which the compressor is stopped can be kept as short as possible, the freshness of the cooled material can be maintained, and the lubricating oil accumulated in the suction pipe can be effectively returned to the compressor. Lol

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による冷凍装置の一実施例を示す構成
図、第2図は従来の冷凍装置を示す構成図、第3図は低
圧側の冷媒圧力の領域を示す図、第4図は第2図の冷凍
装置の容量制御運転の説明図である。 図において、(1a)は凝縮器、Ob)、 (ic)は
圧縮機、(2a)〜(2c)は冷却器、(3)は圧力検
出部、(4)は圧力設定部、(5)は制御部、(6)は
圧縮機容量設定部、(7)は圧縮機単独運転時間積算部
、(8)は圧縮機単独運転時間補正部、(9)は強制間
欠運転制御部である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of a refrigeration system according to the present invention, FIG. 2 is a block diagram showing a conventional refrigeration system, FIG. 3 is a diagram showing a region of refrigerant pressure on the low pressure side, and FIG. FIG. 3 is an explanatory diagram of capacity control operation of the refrigeration system in FIG. 2; In the figure, (1a) is a condenser, (ic) is a compressor, (2a) to (2c) are coolers, (3) is a pressure detection section, (4) is a pressure setting section, (5) is a control section, (6) is a compressor capacity setting section, (7) is a compressor independent operation time integration section, (8) is a compressor independent operation time correction section, and (9) is a forced intermittent operation control section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] それぞれ並列に接続された吸入管及び吐出管を有する2
台の圧縮機、これらの圧縮機から吐出される冷媒を凝縮
液化する凝縮器、及びこの凝縮器から送出される冷媒を
蒸発気化する冷却器が閉回路を形成するように順次配管
接続された冷凍回路、この冷凍回路の低圧側の冷媒圧力
を検出し、この冷媒圧力に応じた圧力検出信号を発生す
る圧力検出部、収束させようとする上記低圧側の冷媒圧
力の収束圧力値を設定する圧力設定部、上記圧力検出信
号が上記収束圧力値以上か以下かを判定し、その判定結
果に基づき、上記冷凍機の容量制御を行うための容量制
御用出力信号を発生する制御部と、一定時間毎に一定時
間にわたって上記圧縮機を停止させる信号を発生する強
制間欠運転制御部、上記圧縮機が1台のみ運転している
時間を積算する圧縮機単独運転時間積算部、上記圧縮機
単独運転時間積算部の積算時間が所定時間に達すると、
上記圧縮機を2台とも一定時間停止させると共に上記圧
縮機単独運転積算部の積算時間を0とし、かつ上記2台
の圧縮機の運転を開始する圧縮機容量設定部、上記強制
間欠運転制御部により上記圧縮機を停止させる時間が上
記圧縮機容量設定部により上記圧縮機を停止させる時間
以上になった場合、上記圧縮機容量設定部による圧縮機
停止機能を解除する圧縮機単独運転時間補正部とを備え
たことを特徴とする冷凍装置。
2, each having a suction pipe and a discharge pipe connected in parallel;
A refrigeration system in which a single compressor, a condenser that condenses and liquefies the refrigerant discharged from these compressors, and a cooler that evaporates and vaporizes the refrigerant sent out from this condenser are connected by piping in order to form a closed circuit. circuit, a pressure detection unit that detects the refrigerant pressure on the low pressure side of this refrigeration circuit and generates a pressure detection signal according to this refrigerant pressure, and a pressure that sets the convergence pressure value of the refrigerant pressure on the low pressure side that is to be converged. a setting unit, a control unit that determines whether the pressure detection signal is greater than or equal to the convergence pressure value and generates a capacity control output signal for controlling the capacity of the refrigerator based on the determination result; a forced intermittent operation control section that generates a signal to stop the compressor for a certain period of time; a compressor independent operation time accumulation section that accumulates the time during which only one compressor is in operation; and a compressor independent operation time When the integration time of the integration section reaches a predetermined time,
A compressor capacity setting section that stops both of the compressors for a certain period of time, sets the accumulated time of the compressor independent operation accumulation section to 0, and starts operation of the two compressors; and the forced intermittent operation control section. a compressor independent operation time correction unit that cancels a compressor stop function by the compressor capacity setting unit when the time for stopping the compressor exceeds the time for stopping the compressor by the compressor capacity setting unit; A refrigeration device characterized by comprising:
JP2072387A 1987-01-30 1987-01-30 Refrigeration equipment Expired - Lifetime JPH0621717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072387A JPH0621717B2 (en) 1987-01-30 1987-01-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072387A JPH0621717B2 (en) 1987-01-30 1987-01-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS63189745A true JPS63189745A (en) 1988-08-05
JPH0621717B2 JPH0621717B2 (en) 1994-03-23

Family

ID=12035092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072387A Expired - Lifetime JPH0621717B2 (en) 1987-01-30 1987-01-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0621717B2 (en)

Also Published As

Publication number Publication date
JPH0621717B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3192130B2 (en) Operating method of refrigeration container and refrigeration system
JP2834139B2 (en) Refrigeration equipment
US5531076A (en) Multi-split fan control
US6041608A (en) Low temperature refrigerating device having small refrigerating capacity change
JPS63189745A (en) Refrigerator
JPS629153A (en) Refrigerator
JPH0573982B2 (en)
JPH01184368A (en) Freezing device
JPH01262387A (en) Parallel compression type refrigerator
JPH09196477A (en) Compression type refrigerator and method for controlling the operation thereof
JPH01167556A (en) Refrigerator
JPS63108161A (en) Refrigerator
JPH0227176A (en) Parallel compression freezer
JPH01262386A (en) Parallel compression type refrigerator
JPH0216073Y2 (en)
JPH0573983B2 (en)
JPH0289962A (en) Control of number of revolution of blower in refrigerating machine of air-cooling type
US11204187B2 (en) Mixed model compressor
JPS62178853A (en) Refrigerator
JPH0563701B2 (en)
JPS6284261A (en) Refrigerator
JPH03129254A (en) Freezer
JPS63131958A (en) Refrigerator
JPH0760023B2 (en) Refrigeration equipment
JPH0490455A (en) Freezer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term