JPH01167556A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH01167556A
JPH01167556A JP62324273A JP32427387A JPH01167556A JP H01167556 A JPH01167556 A JP H01167556A JP 62324273 A JP62324273 A JP 62324273A JP 32427387 A JP32427387 A JP 32427387A JP H01167556 A JPH01167556 A JP H01167556A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerant
upper limit
discharge superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324273A
Other languages
Japanese (ja)
Inventor
Akio Fukushima
章雄 福嶋
Yasuo Nakajima
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62324273A priority Critical patent/JPH01167556A/en
Publication of JPH01167556A publication Critical patent/JPH01167556A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent damage of a compressor at the time of starting by provid ing a temperature detecting means for discharging temperature and a pressure detecting means between a compressor and a four-way valve, set upper limit operating frequencies of the compressor by discharge superheat obtained by both the means and operating the refrigerator at less than said frequency. CONSTITUTION:In a controller 12 the discharge superheat of a compressor 1 is detected by a temperature sensor 9 and a pressure sensor 10, upper limit value of frequencies of the compressor 1 is set and the compressor 1 is operated and controlled at operating frequencies less than the upper limit value. Thus, temperature difference between room temperature and room set temperature is large, and in the case where the discharge superheat is small even if a need for operating the compressor 1 at high operating frequencies is called for, the operating frequencies can be controlled up to the upper limit value and the failure of the compressor 1 based on lubrication failure can be prevented. Further, when discharge superheat gains gradually, the upper limit value of the operating frequencies also increases gradually, a time for operating the compressor 1 at low speed is short and startup is fast.

Description

【発明の詳細な説明】 〔産業上の利用分野J この発明は周波数変換装置により、運転周波数を可変す
る圧縮機を備えた冷媒装置に関し特に圧縮機の保護に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a refrigerant device equipped with a compressor whose operating frequency is varied by a frequency conversion device, and particularly relates to protection of the compressor.

〔従来の技術〕[Conventional technology]

空気調和機を長時間停止状態に放置すると2周囲温度の
差により、温度の低い室外機側に多くの冷媒が溜シ込み
、特に圧縮機は周囲温度が上昇しても、熱容量が大きい
ために温度がなかなか上昇せず結果的に最も温度が低く
なシ、冷媒が溜シ込みやすい。この状態で圧縮機を起動
すると、圧縮機内の冷媒がフォーミングを起し、この時
圧縮機内の冷凍機油が7オーミンクした冷媒と同時に冷
媒回路に持ち出され圧縮機内の油面が低下し、潤滑不良
を起すなどの問題点を有していた。この防止策としてク
ランクケースヒータにより圧縮機を保温し冷媒が溜υ込
みにくくする方法があるが。
If an air conditioner is left in a stopped state for a long time, a large amount of refrigerant will accumulate in the cooler outdoor unit due to the difference in ambient temperature, and even if the ambient temperature rises, the compressor in particular will have a large heat capacity. The temperature does not rise easily and as a result, the temperature is the lowest, making it easy for refrigerant to accumulate. When the compressor is started in this state, the refrigerant in the compressor will form, and at this time, the refrigerating machine oil in the compressor will be taken out into the refrigerant circuit at the same time as the 7-ohm minced refrigerant, lowering the oil level in the compressor and causing poor lubrication. There were problems such as wake-up. One way to prevent this is to use a crankcase heater to keep the compressor warm and prevent refrigerant from accumulating.

使用者が空気調和機の元電源を切ってしまった場合は、
クランクケースヒータの効果を期待することはできない
If the user turns off the main power to the air conditioner,
You cannot expect the effectiveness of the crankcase heater.

また起動時に各部に溜った冷媒が、多量に圧縮機に戻シ
、液圧縮して圧縮機を損傷することを防ぐため、圧縮機
の低圧側にはアキュームレータヲ取り付けるのが一般的
であるが、起動時にはアキニームレータ内も急激に圧力
変化が発生するため。
Also, in order to prevent a large amount of refrigerant that has accumulated in various parts during startup from being returned to the compressor and compressing the liquid and damaging the compressor, it is common to install an accumulator on the low pressure side of the compressor. This is because there is a sudden pressure change inside the Akinimulator when it starts up.

?H%がフォーミングを起しやすく、アキュームレータ
の気液分離性能が9通常運転時よりも低下し多少液冷媒
が圧縮機に戻る液バツク状態となる。
? H% tends to cause foaming, and the gas-liquid separation performance of the accumulator is lower than that during normal operation, resulting in a liquid back state in which some liquid refrigerant returns to the compressor.

圧縮機が十分温まっている場合は、多少の液バツクは問
題とならないが、起動時等、圧縮機自体が冷えきってい
る場合に液バツクが発生すると、吐出冷媒がガス冷媒と
ならず、二相状態で圧縮を完了するため、圧縮機の軸受
の負荷が急増し、また液冷媒が圧縮機のシェル内に溜シ
、冷凍機油をうすめ、潤滑能力を低下させ、軸受の焼付
等を発生させる不具合がある。
If the compressor is sufficiently warm, a slight liquid back-up is not a problem, but if a liquid back-up occurs when the compressor itself is completely cold, such as during startup, the discharged refrigerant will not become gas refrigerant, and the second Since compression is completed in the phase state, the load on the compressor bearings increases rapidly, and the liquid refrigerant accumulates inside the compressor shell, diluting the refrigerating machine oil, reducing the lubrication ability and causing bearing seizure. There is a problem.

また一方0周波数変換装置により圧縮機の運転周波数を
変化させ能力を可変できる空気調和機においては、起動
時は最も空調負荷が太きいため。
On the other hand, in air conditioners whose capacity can be varied by changing the operating frequency of the compressor using a zero frequency conversion device, the air conditioning load is the heaviest at startup.

高速運転して能力を出し立上1早めようとするが、高速
運転をするとフォーミング金助長し、冷凍機油が多量に
持ち出され、液バツクも激しくなシ、また高速運転によ
るクランク軸の負荷増大等の相互作用により、圧縮機を
損傷しやすい結果となる。この対策として例えば実開昭
53−18849に示すように、起動時は一定時間圧縮
機を低能力運転する方法が示されているが、この方法で
は。
Attempts are made to operate at high speeds to increase capacity and speed up start-up, but high-speed operations encourage forming, take out a large amount of refrigerating machine oil, and cause severe liquid back-up, and the load on the crankshaft increases due to high-speed operations. This interaction can result in damage to the compressor. As a countermeasure to this problem, for example, as shown in Japanese Utility Model Application Laid-open No. 53-18849, a method has been proposed in which the compressor is operated at a low capacity for a certain period of time at startup, but this method does not.

圧縮機への冷媒の溜シ込み量や、液バック量、空気条件
等が異なっても常に一定時間低能力運転とするため、圧
縮機の保護から見れば最もきびしい条件で時間を設定す
る必要があシ、当然時間は長くなり、起動時の立上b’
を早くする要求に反する。
Even if the amount of refrigerant stored in the compressor, amount of liquid back up, air conditions, etc. vary, the compressor will always operate at low capacity for a certain period of time, so it is necessary to set the time under the most severe conditions from the perspective of protecting the compressor. Of course, the time will be longer, and the start-up time at startup b'
This goes against the request to speed up the process.

また再起動特等、圧縮機が十分温まっている場合にも能
力を低くして運転をしてする不具合をもっている。
Additionally, there is a problem with the restart feature, which causes the compressor to operate at a lower capacity even when it is sufficiently warm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

圧縮機の能力を可変できる空気調和機において従来装置
では起動時のフォーミンクや液バツクによる潤滑不良に
起因する圧縮機の損傷2防ぐ方法として、一定時間圧綜
機金低能力運転としているため、圧縮機の保護性能全確
保するためには、十分長い時間低能力運転をする必要が
あり、また圧縮機が十分温まっていて低能力運転する必
要がない場合にも、一定時間低能力運転とな、シ、立上
シが遅くなる問題点があった。
Conventional air conditioners with variable compressor capacity operate the compressor at low capacity for a certain period of time as a way to prevent damage to the compressor due to insufficient lubrication due to foaming or liquid backing during startup. In order to ensure the full protection performance of the compressor, it is necessary to operate at low capacity for a sufficiently long period of time, and even if the compressor is sufficiently warm and there is no need to operate at low capacity, it is necessary to operate at low capacity for a certain period of time. There was a problem that startup was slow.

この発明は上記のような問題点を博消するためになされ
たもので、起動時の圧縮機損傷を防止するとともに立上
シの早い冷媒装置を得ることを目的とする。
This invention was made to overcome the above-mentioned problems, and aims to provide a refrigerant device that can prevent damage to the compressor during startup and that can be started up quickly.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷媒装置は、吐出温度を検出する温度検
出手段と圧力検出手段を圧縮機と四方弁の間に設け、前
記温度検出手段及び、圧力検出手段により得られる吐出
スーパーヒートによυ圧縮機の上限運転周波数全設定し
、上限周波数以下で圧縮機全運転するようにしたもので
ある。
The refrigerant device according to the present invention is provided with temperature detection means for detecting discharge temperature and pressure detection means between the compressor and the four-way valve, and υ compression by discharge superheat obtained by the temperature detection means and pressure detection means. The upper limit operating frequency of the compressor is set at all times, and the compressor is fully operated below the upper limit frequency.

〔作用〕[Effect]

この発明においては、圧縮機の吐出スーパーヒートヲ温
度検出手段及び圧力検出手段で検出し。
In this invention, the discharge superheat of the compressor is detected by the temperature detection means and the pressure detection means.

圧縮機の吐出スーパーヒートが設定値を越えないように
制御装置で制御する。
The controller controls the discharge superheat of the compressor so that it does not exceed a set value.

(発明の実施例〕 以下この発明の一実施例を図について説明する。(Embodiments of the invention) An embodiment of the present invention will be described below with reference to the drawings.

第1図において(1)は周波数変換装置(8)の出力信
号により駆動する圧縮機、(2)は切換弁である四方弁
In FIG. 1, (1) is a compressor driven by the output signal of a frequency converter (8), and (2) is a four-way valve that is a switching valve.

(3)は冷房時は凝縮器、暖房時は蒸発器である室外熱
交換器、(4)は減圧装f直である絞シ装置、(5)は
冷房時は蒸発器、暖房時は凝縮器である室内熱交換器、
(6)はアキュームレータであり、冷媒配管(7)によ
り順次連結して、冷媒装置である空気調和機の冷凍サイ
クルを構成している。(9)は圧縮機(1)の吐出冷媒
温度を検出する温度検出手段である温度センサー、α1
は圧縮機(1)の吐出圧力を検出する圧力検出手段であ
る圧力センサー、aυは室内温度を検出する@度検知器
である温、度センサーであり、(I2は前記温度、圧力
信号′fc増、、b込んで9周波数変換装置(8)によ
り圧縮機+11の運転周波数全制御する制御装置である
(3) is an outdoor heat exchanger that is a condenser for cooling and an evaporator for heating, (4) is a throttling device that is a pressure reduction device, and (5) is an evaporator for cooling and a condenser for heating. indoor heat exchanger,
(6) is an accumulator, which is successively connected by refrigerant piping (7) to constitute a refrigeration cycle of an air conditioner, which is a refrigerant device. (9) is a temperature sensor α1 which is a temperature detection means for detecting the temperature of the refrigerant discharged from the compressor (1).
is a pressure sensor which is a pressure detection means for detecting the discharge pressure of the compressor (1), aυ is a temperature sensor which is a degree detector which detects the room temperature, (I2 is the temperature and pressure signal 'fc This is a control device that controls all the operating frequencies of the compressor +11 using the 9 frequency converter (8).

第2図は、前記制御装置α2のブロック図で、アナログ
デジタル変換器(A/D変換器)Gυ、入力回路6邊、
中央演算処理装置(CPU)(至)、 メモリ(ロ)、
出力回路(至)、出力バツファ国より構成される。
FIG. 2 is a block diagram of the control device α2, in which an analog-to-digital converter (A/D converter) Gυ, an input circuit 6,
Central processing unit (CPU) (to), memory (b),
Consists of output circuit (to) and output buffer country.

出力バッファ(至)からは圧縮機の運転周波数信号が出
力され1周波数変換装置(8)に入力される。なお入力
部は一例のみ表示している。
The operating frequency signal of the compressor is outputted from the output buffer (to) and inputted to the first frequency conversion device (8). Note that only one example of the input section is displayed.

次に作用について説明する。冷房運転時は四方弁(2)
が実線状態に設定され、圧縮機(1)がら吐出された冷
媒ガスは四方弁(2)、室外熱交換器(3)、絞シ装置
(4)、室内熱交換器(5)、四方弁(2)、アキュー
ムレータ(6)を預次流れて圧縮機11+に戻シ、室外
熱交換器(3)が凝縮器として、かつ室内熱交換器(5
)が蒸発器として作用することにより室内は冷房される
Next, the effect will be explained. Four-way valve (2) during cooling operation
is set to the solid line state, and the refrigerant gas discharged from the compressor (1) is sent to the four-way valve (2), the outdoor heat exchanger (3), the throttling device (4), the indoor heat exchanger (5), and the four-way valve. (2), the accumulator (6) is deposited and returned to the compressor 11+, the outdoor heat exchanger (3) serves as a condenser, and the indoor heat exchanger (5)
) acts as an evaporator to cool the room.

冷房運転中は、室内温度を検出する温度センサーαυか
らの信号が制御装置(17Jに入力されており、この制
御装置a3は室内温度と室内設定温度との温度差が大き
い時は高い運転周波数で、逆に温度差が小さい時は低い
運転周波数で圧縮機(り全運転するように9周波数変換
装置(8)に運転周波数信号が出力される。圧縮機の運
転周波数は例えば30〜90Hz の範囲で制御される
。1だ暖房運転時は四方弁(2)が破線状態に切換えら
れ、圧縮機+1+から吐出された冷媒ガスは四方弁(2
)、室内熱交換器(5)。
During cooling operation, a signal from the temperature sensor αυ that detects the indoor temperature is input to the control device (17J), and this control device a3 operates at a high operating frequency when the temperature difference between the indoor temperature and the indoor set temperature is large. On the other hand, when the temperature difference is small, an operating frequency signal is output to the frequency converter (8) so that the compressor is fully operated at a low operating frequency.The operating frequency of the compressor is, for example, in the range of 30 to 90 Hz. During heating operation, the four-way valve (2) is switched to the broken line state, and the refrigerant gas discharged from the compressor +1+ is controlled by the four-way valve (2).
), indoor heat exchanger (5).

絞り装置(4)、室外熱交換器(3)、四方弁(2)、
アキュームレータ(6)金順次流れて圧縮機(1)に戻
シ、室内熱交換器(5)が凝縮器として、且つ室外熱交
換器(3)が蒸発器として作用することにより室内は暖
房される。かかる暖房運転中も冷房運転時と同様に室内
温度と室内設定温度との温度差で決まる運転周波数で、
30〜90Hz  の範囲で圧縮機+11は運転される
Throttle device (4), outdoor heat exchanger (3), four-way valve (2),
The gold flows sequentially through the accumulator (6) and returns to the compressor (1), and the room is heated by the indoor heat exchanger (5) acting as a condenser and the outdoor heat exchanger (3) acting as an evaporator. . During such heating operation, the operating frequency is determined by the temperature difference between the indoor temperature and the indoor set temperature, just like during cooling operation.
Compressor +11 is operated in the range 30-90 Hz.

定常運転においては上記説明のように室内の空調負荷に
合せて圧縮機(1)の運転周波数を制御するが、起動時
等の過渡状態においては圧縮機Il+を保護する目的で
運転周波数の上限値を抑えて運転される。
In steady operation, the operating frequency of the compressor (1) is controlled according to the indoor air conditioning load as explained above, but in transient conditions such as during startup, the upper limit of the operating frequency is controlled in order to protect the compressor Il+. It is driven with less

第3図は、圧縮機+11を長時間安定して運転するため
の許容運転範囲を示す特性図であり、横軸に圧縮機(1
)の運転周波数をとり、縦軸に圧縮機tl+の吐出スー
パーヒート、すなわち吐出圧力に対する飽和温度と吐出
ガス冷媒の温度差をとったものである。図に示すように
吐出スーパーヒートを一定値以上確保して運転すること
が必要であり、また運転周波数が高い程、吐出スーパー
ヒートを高目にして運転することが必要となる。すなわ
ち吐出スーパーヒートが小さいと、圧縮機(りの吐出冷
媒温度が低くなシ、圧縮機+11内の冷凍機油の温度も
低下し冷凍機油中に多量の冷媒が溶は込んで潤滑性能が
低下することとなシ、また急激な圧力変化があると圧縮
機(1)内部でフォーミンクを起しやすく冷凍機油が冷
媒回路内へ持ち出され冷凍機油の油面が低下し、潤滑不
良を起すことがあるためである。また一方運転周波数が
高くなると圧縮機(1)の軸受負荷が増大するため、低
周波数運転よりも潤滑性能を確保することが必要となシ
、結果的に吐出スーパーヒートヲ高めにしておくことが
必要となる。特に起動特等圧縮機が冷えた状態で起動す
ると、圧縮機+11に熱を奪われ、吐出冷媒温度が上昇
しすらいためこの状態で高周波数運転を行うと圧縮機+
11の軸受の焼付等を起す結果となる。
Figure 3 is a characteristic diagram showing the permissible operating range for stable operation of compressor +11 for a long time.
), and the vertical axis is the discharge superheat of the compressor tl+, that is, the difference in temperature between the saturation temperature and the discharged gas refrigerant with respect to the discharge pressure. As shown in the figure, it is necessary to operate with a discharge superheat of a certain value or more, and the higher the operating frequency, the higher the discharge superheat needs to be operated. In other words, if the discharge superheat is small, the temperature of the refrigerant discharged from the compressor is low, and the temperature of the refrigerating machine oil in the compressor +11 also decreases, and a large amount of refrigerant dissolves in the refrigerating machine oil, reducing the lubrication performance. In addition, if there is a sudden pressure change, foaming can easily occur inside the compressor (1), causing refrigerating machine oil to be carried out into the refrigerant circuit, lowering the oil level of the refrigerating machine oil, and causing poor lubrication. On the other hand, as the operating frequency increases, the bearing load on the compressor (1) increases, so it is necessary to ensure better lubrication performance than in low frequency operation, resulting in higher discharge superheat. In particular, if the start-up special compressor is started when it is cold, heat will be taken away by the compressor +11 and the discharge refrigerant temperature will rise, so if high frequency operation is performed in this state, the compressor +
This results in seizure of the bearing of No. 11.

本発明における制御装置α2では圧縮機(11の吐出ス
ーパーヒートを温度センサー(9)と圧力センサーaα
により検出して吐出スーパーヒートにより圧縮機(11
の運転周波数の上限値を設定して、上限値以下の運転周
波数で、圧、JA?J機+11 ’に運転制御する。
In the control device α2 of the present invention, the discharge superheat of the compressor (11) is detected by a temperature sensor (9) and a pressure sensor aα.
The compressor (11
Set the upper limit value of the operating frequency, and at the operating frequency below the upper limit value, the pressure, JA? Control operation to J machine +11'.

第4図は、制御装置α2により圧縮機(1)の運転周波
数を制御する一例を説明するためのフローチャートであ
る。
FIG. 4 is a flowchart for explaining an example of controlling the operating frequency of the compressor (1) by the control device α2.

フローがスタートすると、圧縮機運転周波数決定ルーチ
ンら0において前記説明のごとく、室内温度と室内設定
温度との温度差により運転周波数(FM)が決められる
。そしてステップ(42で圧力センサーQ(lによって
検出された高圧圧力が、飽和温度に変換され、この飽和
温度(電1)が入力され。
When the flow starts, in the compressor operating frequency determination routine 0, the operating frequency (FM) is determined based on the temperature difference between the indoor temperature and the indoor set temperature, as described above. Then, in step (42), the high pressure detected by the pressure sensor Q(l) is converted into a saturation temperature, and this saturation temperature (voltage 1) is input.

ステップ@jで、温度センサー(9)により吐出冷媒温
度(t2)が検出され入力される。ステップC4ではこ
れらの温度差としての吐出スーパーヒート(SH)が計
算される。ステップθつからステップ@ηでは吐出スー
パーヒートがどのik1囲にあるかが判断され。
In step @j, the temperature sensor (9) detects and inputs the discharge refrigerant temperature (t2). In step C4, discharge superheat (SH) as the difference between these temperatures is calculated. From step θ to step @η, it is determined in which ik1 range the discharge superheat is located.

10 deg未溝の場合はステップ(4Iへ、10de
g以上15 deg未満の場合はステップ(41へ、1
5deg以上25 deg未満の場合はステップ(至)
へ、25deg以上の場合はステップ(51)へそれぞ
れ進み。
If there is no 10 deg groove, step (to 4I, 10 deg
If the value is greater than or equal to g and less than 15 deg, proceed to step (41, 1
If it is 5deg or more and less than 25deg, step (To)
If it is 25 degrees or more, proceed to step (51).

ステップ0樽〜ステツプ(51)では圧縮機の運転周波
数の上限値(maxHz)  が設定される。そして。
From step 0 keg to step (51), the upper limit value (maxHz) of the operating frequency of the compressor is set. and.

ステップ(52)ではステップht+にて決定された運
転周波数(FW)が、ステップ(4樽〜ステツプ(51
)で設定された上限周波数(maxHz)より大きいか
どうかが判定され、大きい場合には、ステップ(53)
にて運転周波数(FW)が上限周波数に修正され、ステ
ップ(54)にて運転周波数が出力される。
In step (52), the operating frequency (FW) determined in step ht+ is changed from step (4 barrels) to step (51).
), it is determined whether the frequency is higher than the upper limit frequency (maxHz) set in step (53).
At step (54), the operating frequency (FW) is corrected to the upper limit frequency, and at step (54), the operating frequency is output.

このフローチャートによれば、吐出スーパーヒートによ
り圧縮機(1)の運転周波数の上限値が設定されるため
、室内温度と室内設定温度との温度差が大きく、圧縮機
filを高い運転周波数で運転する要求が出ても、吐出
スーパーヒートが小さい場合は運転周波数を上限値に抑
制でき、潤滑不良に基づく圧縮機(1)の故障を防止で
きる。また吐出スーパーヒートが徐々に付いてくれば運
転周波数の上限値も徐々に上昇するため、圧縮機(11
への冷媒の溜り込み号や、液バック量、圧縮機(1)の
冷え込み状態等も考慮され必要時には圧縮機(1+が温
まるまで低速運転全行い、再起動時等で圧縮機(11が
十分基まっている時や、冷媒の溜り込みが少なく運転を
開始した後、吐出温度の上昇が早ければ、高速運転にな
る時間も早くなるため立上りも早くすることができるも
のである。
According to this flowchart, the upper limit of the operating frequency of the compressor (1) is set by the discharge superheat, so the temperature difference between the indoor temperature and the indoor set temperature is large, and the compressor fil is operated at a high operating frequency. Even if a request is made, if the discharge superheat is small, the operating frequency can be suppressed to the upper limit value, and failure of the compressor (1) due to poor lubrication can be prevented. In addition, as the discharge superheat gradually increases, the upper limit of the operating frequency also gradually increases, so the compressor (11
Considering the number of refrigerant accumulated in the tank, the amount of liquid back up, and the cold state of the compressor (1), if necessary, run the compressor (1+) at low speed until it warms up, and when restarting, etc. If the discharge temperature rises quickly when the engine is at rest or after starting operation when there is little accumulation of refrigerant, the time to high-speed operation will be quicker and the start-up can be made faster.

第5図は、この発明の他の実施例を示す冷媒回路図で、
圧力センサαGのかわシに飽和温度の検出回路α3を使
用したもので、圧力のかわシに直接飽和温度を検出する
飽和温度検出手段である温度センサIにより検出してい
る。この検出回路0は熱交換5 ilGと毛細管f15
1により構成され、圧縮機出口の冷媒は熱交換器tte
により冷却されて二相冷媒となり毛細管αSで圧縮機+
11の吸入圧力まで減圧され。
FIG. 5 is a refrigerant circuit diagram showing another embodiment of the present invention,
A saturation temperature detection circuit α3 is used for the pressure sensor αG, and the temperature sensor I, which is a saturation temperature detection means, directly detects the saturation temperature at the pressure sensor. This detection circuit 0 is heat exchanger 5 ilG and capillary f15
1, and the refrigerant at the outlet of the compressor is passed through a heat exchanger tte.
It becomes a two-phase refrigerant and is transferred to the compressor + in the capillary αS.
The pressure was reduced to 11 suction pressure.

低温の二相冷媒となり熱交換器C18で、熱交換するこ
とにより、圧縮機(1)出口の冷媒のエンタルピとほぼ
同じ二ンタルどの低圧冷媒となシサイクルを完了する。
The refrigerant becomes a low-temperature two-phase refrigerant, and by exchanging heat with the heat exchanger C18, a cycle is completed with a low-pressure refrigerant such as 2-phase refrigerant, which has approximately the same enthalpy as the refrigerant at the outlet of the compressor (1).

第6図は、この冷媒の挙動をモリニル綜図上で表わした
もので、実線がこの検出回路(+31内の冷媒の状態、
破線ABCDが通常の冷凍サイクル上の冷媒の状態を表
わしている7図中、Eは。
Figure 6 shows the behavior of this refrigerant on a Molinyl hetogram, where the solid line is the detection circuit (the state of the refrigerant in +31,
In Figure 7, where the broken line ABCD represents the state of the refrigerant in a normal refrigeration cycle, E is.

毛細管Q5人口状態を示し、この場所に温度センサC1
41i取シ付けることにより圧カセンサを使わずに高圧
圧力飽和温度を検出することが可能となる。
Indicates the capillary Q5 population status, and temperature sensor C1 is installed at this location.
By installing 41i, it becomes possible to detect the high pressure saturation temperature without using a pressure sensor.

〔発明の効果」 以上のように、この発明によれば、温度検出手段と圧力
検出手段により得られる圧縮機の吐出スーパーヒートに
より、圧縮機の運転周波数の上限値を設定し、上限周波
数より低い周波数にて運転するようにしたので、起動特
等、吐出スーパーヒートが小さい場合は運転周波数を抑
制でき、潤滑不良に起因する圧縮機の故障を防止でき、
吐出スーパーヒートが付けば周波数の上限値を上昇する
ので、圧縮機を低速で運転する時間が短かくでき立上り
の早い冷媒装置が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the upper limit of the operating frequency of the compressor is set by the discharge superheat of the compressor obtained by the temperature detecting means and the pressure detecting means, and the upper limit value of the operating frequency of the compressor is set lower than the upper limit frequency. Since the compressor is operated at a high frequency, the operating frequency can be suppressed when the discharge superheat is small, such as during start-up, and compressor failures due to poor lubrication can be prevented.
When the discharge superheat is applied, the upper limit of the frequency is increased, so the time during which the compressor is operated at low speed can be shortened, and a refrigerant device with a quick start-up can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による空気調和機の冷媒
回路図、第2図は同制御装置uのブロック図、第3図は
圧縮機の許容運転範囲を示す特性図。 第4図は制御装置の動作を説明するフローチャート図、
第5図は他の実施例を示す冷媒回路図、第6図は同飽和
温度検知回路内の冷媒の状態を表わすモリエル線図であ
る。 +11は圧縮機、(3)は室外熱交換器、(4)は絞シ
装置。 (5)は室内熱交換器、(6)はアキュームレータ、 
(91u温度センサー、αlは圧力センサー、 (I2
は制御装置。 0は飽和温度検出回路である。 なお図中同一符号は同一部分または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a block diagram of the control device u, and FIG. 3 is a characteristic diagram showing the allowable operating range of the compressor. FIG. 4 is a flow chart diagram explaining the operation of the control device;
FIG. 5 is a refrigerant circuit diagram showing another embodiment, and FIG. 6 is a Mollier diagram showing the state of the refrigerant in the saturation temperature detection circuit. +11 is a compressor, (3) is an outdoor heat exchanger, and (4) is a throttling device. (5) is an indoor heat exchanger, (6) is an accumulator,
(91u temperature sensor, αl is pressure sensor, (I2
is a control device. 0 is a saturation temperature detection circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、減圧装置、蒸発器を設けた冷媒
回路と、上記圧縮機の吐出冷媒温度を検出する温度検出
手段と、吐出圧力を検出する圧力検出手段と、上記温度
検出手段及び圧力検出手段によつて得られる吐出スーパ
ーヒートにより上記圧縮機の運転周波数の上限を設定し
、この周波数より低い周波数にて上記圧縮機を運転する
制御装置とを備えたことを特徴とする冷媒装置。
(1) A refrigerant circuit including a compressor, a condenser, a pressure reducing device, and an evaporator, a temperature detection means for detecting the temperature of the refrigerant discharged from the compressor, a pressure detection means for detecting the discharge pressure, and the temperature detection means. and a control device that sets an upper limit of the operating frequency of the compressor based on the discharge superheat obtained by the pressure detection means, and operates the compressor at a frequency lower than this frequency. Device.
(2)吐出スーパーヒートは温度検出手段及び高圧圧力
の飽和温度検出手段によることを特徴とする特許請求の
範囲第1項記載の冷媒装置。
(2) The refrigerant device according to claim 1, wherein the discharge superheat is performed by temperature detection means and high-pressure saturation temperature detection means.
JP62324273A 1987-12-22 1987-12-22 Refrigerator Pending JPH01167556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324273A JPH01167556A (en) 1987-12-22 1987-12-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324273A JPH01167556A (en) 1987-12-22 1987-12-22 Refrigerator

Publications (1)

Publication Number Publication Date
JPH01167556A true JPH01167556A (en) 1989-07-03

Family

ID=18163967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324273A Pending JPH01167556A (en) 1987-12-22 1987-12-22 Refrigerator

Country Status (1)

Country Link
JP (1) JPH01167556A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048566A3 (en) * 2007-10-08 2009-05-28 Emerson Climate Technologies System and method for monitoring overheat of a compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
KR101492590B1 (en) * 2007-10-08 2015-02-11 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 System and method for monitoring overheat of compressor
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
CN104964496A (en) * 2007-10-08 2015-10-07 艾默生环境优化技术有限公司 System and method for monitoring overheat of a compressor
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
WO2009048566A3 (en) * 2007-10-08 2009-05-28 Emerson Climate Technologies System and method for monitoring overheat of a compressor
CN101821507A (en) * 2007-10-08 2010-09-01 艾默生环境优化技术有限公司 System and method for monitoring overheat of compressor
CN104964496B (en) * 2007-10-08 2017-09-12 艾默生环境优化技术有限公司 System and method for monitoring overheat of compressor
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US20190017508A1 (en) * 2007-10-08 2019-01-17 Emerson Climate Technologies, Inc. Variable Speed Compressor Protection System And Method
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element

Similar Documents

Publication Publication Date Title
JP5639984B2 (en) Air conditioner
CN112212467B (en) Air conditioner control method and device and air conditioning unit
JP2004156858A (en) Refrigerating cycle device and control method thereof
JP6033416B2 (en) Air conditioner
JP5239897B2 (en) refrigerator
CN112815512B (en) Noise reduction method and device for multi-connected air conditioner indoor unit and multi-connected air conditioning system
JP2002013781A (en) Air-conditioning system
JPH01167556A (en) Refrigerator
JPH0534582B2 (en)
JPH10227533A (en) Air-conditioner
JPH1073328A (en) Cooler
JP2551238B2 (en) Operation control device for air conditioner
JP2012107790A (en) Air conditioning device
JPH10318615A (en) Operation control device of air-conditioning equipment
JPH04273949A (en) Refrigerating cycle device
JPH02290471A (en) Air-conditioner
JPS62233652A (en) Heat pump type air conditioner
JPH04103968A (en) Freezing cycle control system for multi-air conditioner
JP2006170575A (en) Compressor control system
JPS60253770A (en) Air conditioner
JP2004144351A (en) Control method of multi-room type air conditioner
KR100389640B1 (en) System for controlling air conditioner and method thereof
JP3801320B2 (en) Current safe control method and apparatus for multi-room air conditioner
JP3360311B2 (en) Air conditioner
JPH11101516A (en) Air conditioner having inverter