JPS63188493A - Method for regenerating flux for submerged arc welding - Google Patents

Method for regenerating flux for submerged arc welding

Info

Publication number
JPS63188493A
JPS63188493A JP1925887A JP1925887A JPS63188493A JP S63188493 A JPS63188493 A JP S63188493A JP 1925887 A JP1925887 A JP 1925887A JP 1925887 A JP1925887 A JP 1925887A JP S63188493 A JPS63188493 A JP S63188493A
Authority
JP
Japan
Prior art keywords
flux
slag
melting
iron
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1925887A
Other languages
Japanese (ja)
Other versions
JPH0516958B2 (en
Inventor
Kozo Noguchi
野口 幸三
Masanori Anzai
安斉 昌則
Shigeru Shinshi
進士 繁
Hideo Shiomi
秀雄 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP1925887A priority Critical patent/JPS63188493A/en
Publication of JPS63188493A publication Critical patent/JPS63188493A/en
Publication of JPH0516958B2 publication Critical patent/JPH0516958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Abstract

PURPOSE:To manufacture the flux with the satisfactory quality which is not different form the flux using new raw material by melting a combined batch of the flux added with 10-80% slag disposed of separating into an oxidation period and a deoxidation period to reduce and eliminate harmful components such as FeO, S, P, etc. CONSTITUTION:The flux which is used for the submerged arc welding and slagged is collected and pulverized and the 10-80% slag disposed of whose iron and iron oxide are reduced by the magnetic separation, etc., is added to the raw material for melting whose components are combined in advance. This material added with the slag is molten in an oxidized atmosphere at first while being supplied to a melting furnace and sulfer of impurities is exhausted as an oxide, mainly SO2 gas. Next, a reducing agent such as carbon powder or Al, Mg, Si powder, etc., is charged and the atmosphere in the furnace is made in a deoxidized state and the impurities in which the iron, the iron oxide, etc., are increased are deoxidized and metalized and deposited and separated at the bottom of the melting furnace. In this way, the flux with the satisfactory quality which is not different from the flux using the new material can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は潜弧溶接に使用してスラグ化した溶融型フラッ
クスの再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for regenerating molten flux that is used in submerged arc welding and turned into slag.

〔従来の技術〕[Conventional technology]

従来、潜弧溶接用フラックスは、溶融型、焼成型に拘ら
ず、一度潜弧溶接に使用されるとスラグ化するため、廃
棄物として処理されるか、あるいは、スラグを回収した
のち、粉砕し磁選等により鉄分をある程度除去したのち
、整粒し脱酸剤やCaF、等を添加混合して再生する方
法等が試みられているが、このような再生方法では、繰
り返し再生回数は3〜5回ぐらいであり、また再生の繰
り返し毎に品質の低下が避けられず、そのため高級な鉄
鋼′構造物の溶接に使用することは、品質保証上問題が
あるといわれている。つまり、溶接用フラックスは、単
にアークを大気から遮断するのみでなく、溶接の作業性
、溶接金属の性質に重要な影響を及、ぼす。即ち、溶融
してスラグとなり、次いで溶融スラグと溶融金属との混
合攪拌、溶接金属を生成するためのスラグメタル反応に
より冶金的な変質を生じる。例えばスラグ中のPeOは
使用前のフラックスの含有量より増加する。この増加量
は、被溶接材の化学組成、特にSi+Mn+ (Ti)
等の含有量、或はフラックスそのものの組成によって異
なるが、FeOの増加により、溶接金属にブローホール
が発生したり、溶接金属の衝撃値が低下しΔ′すする。
Conventionally, flux for submerged arc welding, regardless of whether it is a molten type or a fired type, turns into slag once it is used for submerged arc welding, so it is either disposed of as waste, or the slag is collected and then pulverized. Attempts have been made to remove a certain amount of iron by magnetic separation, etc., then regenerate the particles by adding and mixing deoxidizers, CaF, etc.; Moreover, it is said that there is a problem in quality assurance when using it for welding high-grade steel structures because it is inevitable that the quality will deteriorate each time it is recycled. In other words, welding flux not only isolates the arc from the atmosphere, but also has an important effect on welding workability and the properties of weld metal. That is, it melts into slag, and then undergoes metallurgical deterioration due to mixing and stirring of the molten slag and molten metal, and a slag-metal reaction to produce weld metal. For example, the PeO in the slag increases compared to the content of the flux before use. This increase is due to the chemical composition of the material to be welded, especially Si+Mn+ (Ti)
The increase in FeO may cause blowholes to occur in the weld metal, or the impact value of the weld metal may decrease, depending on the content of the flux itself or the composition of the flux itself.

このため一度使用したスラグはそのまま粉砕整粒しただ
けで使用できず、これを再使用する方法として、粉砕整
粒した後、FeO,S、 Pの増加量に相応してスラグ
再生フラックス中にCa −5iを添加混合する方法(
例えば特開昭49−123947号公報参照)、溶接に
よって消耗した成分を補うに足る量の金属酸化物、Ca
F 、等と溶接によって生成した鉄酸化物を還元するに
足る量の脱酸剤の一種以上とを添加し、これらを完全に
溶融混合し冷却凝固してから粉砕整粒し、必要に応じて
脱酸反応によって生成した鉄分を磁選等により除去した
再生用添加剤と、粉砕整粒したスラグを混合して得る再
住方法(特開昭53−106647号公報)等がある。
For this reason, slag that has been used once cannot be used as it is simply by pulverizing and grading it, and as a way to reuse it, after pulverizing and grading it, Ca is added to the slag recycled flux in proportion to the increased amount of FeO, S, and P. -Method of adding and mixing 5i (
For example, see Japanese Patent Application Laid-Open No. 49-123947), a sufficient amount of metal oxide, Ca, etc. to compensate for the components consumed by welding.
F, etc. and at least one kind of deoxidizing agent in an amount sufficient to reduce the iron oxide generated by welding, and these are completely melted and mixed, cooled and solidified, and then pulverized and sized, and as necessary. There is a rehousing method (Japanese Unexamined Patent Publication No. 106647/1983) in which a recycling additive obtained by removing iron produced by a deoxidizing reaction by magnetic separation or the like is mixed with pulverized slag.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これらの再生方法には種々の問題があり
、例えば再生を繰り返すと次第に品質が低下するとか、
再生方法が煩雑である等である。
However, these reproduction methods have various problems, such as the quality gradually deteriorating with repeated reproduction.
For example, the reproduction method is complicated.

c問題点を解決するための手段〕 そこで本発明者等は、潜弧溶接に使用した溶融型”フラ
ックス(以下フラックス)のスラグ化した回収フラック
スを再生するに際し、上述したような従来法の存する欠
点を解消する方法を開発研究し、フラックスの溶解工程
において、Fed、 S 、  P等のスラグ中の有害
成分を減少除去する方法を完成した。
Measures for Solving Problems] Therefore, the inventors of the present invention have proposed the above-mentioned conventional methods for regenerating the slag-formed recovered flux of the molten type flux (hereinafter referred to as flux) used in submerged arc welding. We developed and researched a method to eliminate these drawbacks, and completed a method to reduce and remove harmful components in slag such as Fed, S, and P during the flux melting process.

即ち、本発明は潜弧溶接に使用したスラグ化したフラッ
クスを回収し、これを粗砕して磁選等により、鉄酸化物
等を機械的に除去する等事前処理の後1.該成分のフラ
ックス生産の際に行うのと同様な原料配合により傅た計
量混合した配合原料(以下配合バッチと称する)に事前
処理済みスラグ(以後処理済みスラグと称する)を10
〜80%添加混合し、この混合物を原料として以下に述
べる溶解方法によって新製品と全く同等の品質のフラッ
クスを提供する再生方法である。
That is, the present invention recovers the slag-formed flux used in submerged arc welding, crushes it, and mechanically removes iron oxides by magnetic separation, etc. After preliminary treatment, 1. 10% of the pre-treated slag (hereinafter referred to as treated slag) is added to the blended raw materials (hereinafter referred to as blending batch) that have been weighed and mixed by the same raw material blending as in the flux production of the component.
This is a regeneration method in which fluxes are added and mixed by ~80% and this mixture is used as a raw material to provide a flux of exactly the same quality as a new product by the melting method described below.

つまり、スラグ化した使用済みのフラックス中には、F
ed、 S 、  P等の不純物が増加しており、その
ため見かけ上フラックスの必要成分の比率が相対的に低
下し、該フラックスとは成分が異なっているが、これ等
の不純物を除いた後の成分比率はほぼ該フラックスに近
い成分になることを見つけたのである。フラックスの化
学組成及び組合せワイヤと被溶接鋼材の成分により多少
の差はあり、フラックス中のMnO,CaF、等が場合
によって比率が幾分低下していることもあるが、その場
合には影響の無い程度の処理済みスラグ添加比率とする
か、或は処理済みスラグの添加比率を決定した後、低下
している成分を予め配合バッチから計算により調整し、
混合した原料が目標成分になるようにすればよいのであ
る。
In other words, F
Impurities such as ED, S, and P are increasing, and as a result, the ratio of the necessary components of the flux appears to be relatively lower, and the components are different from the flux, but after removing these impurities, They found that the component ratio was almost the same as that of the flux. There are some differences depending on the chemical composition of the flux and the composition of the combination wire and the steel to be welded, and the ratio of MnO, CaF, etc. in the flux may be slightly lower depending on the case, but in that case, the influence will be less. After determining the added ratio of treated slag, or after determining the added ratio of treated slag, the decreasing components are adjusted in advance by calculation from the blending batch,
All you have to do is make sure that the mixed raw materials become the target components.

次ぎに不純物の除去であるが、鉄酸化、物については、
回収したスラグを粉砕した後、磁選機を通すことにより
ある程度除くことができることは、公知であるが、本発
明の方法の前処理として活用することにより、例えば回
収スラグ中のFe0分が10%のものを3%程度にまで
下げることができる。
Next is the removal of impurities, but regarding iron oxidation,
It is known that the collected slag can be removed to some extent by passing it through a magnetic separator after pulverization. It is possible to reduce the amount to around 3%.

しかし、これ以上の鉄分除去は機械的には殆ど不可能で
ある。つまり、フラックス中には、その成分としてMn
O+TiO□等を含有するものが一般的であり、使用済
みフラックスのスラグ化したものは、Fe0分とMnO
,TiO,等が融合している部分もあり、ある程度以上
に磁力を高めると有用なMnO,Ti1tまでも取り、
去ってしまうからである。この様な理由から、本発明者
等は溶融型フラックスの溶融工程に着目し、該工程中で
の化学反応を活用して、Feo、p、s等の不純物を除
去することを検討し、通常の溶融型フラックスとは異な
った全く逆転的な方法を開発したものである。即ち、通
常の溶解では、配合バッチの中に、0通電性を良くする
、■還元性フランクスにする、■軽石状フラックスを作
る等の目的でカーボン粉末を添加した状態で溶解する。
However, further iron removal is almost impossible mechanically. In other words, the flux contains Mn as a component.
Those containing O + TiO
, TiO, etc. are fused in some parts, and even MnO and Ti1t, which are useful if the magnetic force is increased beyond a certain level, are removed.
Because they will leave. For these reasons, the present inventors focused on the melting process of molten flux, and considered removing impurities such as Feo, p, and s by utilizing chemical reactions during the process, and This is a completely inverse method that is different from the molten flux method. That is, in normal melting, carbon powder is added to a blended batch for the purposes of improving zero conductivity, (2) making a reducing flux, and (2) making a pumice-like flux.

つまり、通常の溶解方法は、配合バッチの状態で目的と
するフラックスを設計しており、ただ定められた溶解条
件(電流、電圧、配合バッチ供給間隔、溶解時間サイク
ル等)で溶解するだけで所定の品質が得られるのである
In other words, in the usual melting method, the desired flux is designed in the form of a blended batch, and it is simply melted under predetermined melting conditions (current, voltage, blended batch supply interval, melting time cycle, etc.). quality can be obtained.

これに対して、本発明による溶解では、配合バッチの中
には積極的にはカーボン粉末を添加しないで、該フラッ
クスの配合バッチに10〜80%の該処理済みスラグを
添加或は添加混合した溶解用配合バッチ(以後溶解バッ
チと称する)を溶解炉に供給しながら、当初は酸化雰囲
気の状態で操業するのである。この酸化溶解期において
、使用したスラグ化したフラックス中に増加した不純物
の硫黄(以後Sで表示する)を酸化して硫黄酸化物、主
としてSO2にして溶解炉の排ガスと共に炉に付設した
集塵排ガス装置を介して大気系に分散除去するのである
。硫黄酸化物は途中に設置された脱硫黄装置を通過させ
、清浄にした状態で大気中に排気を放出することは勿論
のことである。次ぎにFed、 Pの増加した不純物の
除去であるが、これ等の不 鈍物は、還元してメタル化
しやすいことに着目して溶解バッチの供給を終了し、こ
れが溶は落ちた後に、カーボン粉末或はAj、 Mg、
Si粉末等の所謂還元剤を炉前投入して炉内雰囲気を還
元状態にして、これ等不純物をメタルにし、炉底に沈積
分離するのである。溶融型フラックスの炉内での溶湯状
態(以後メルトと称する)の比重は3前後に対し、メタ
ルは鉄を主成分として少量のMn、Si等を含みまた除
去しようとするPを含んでいるが、その比重は7以上で
メルトより重いので、容易に炉底に沈積させることがで
きるのである。また、フラックス溶解炉は傾注上注ぎ型
出湯方式が一般であるから、出湯時には、Fed、 P
 、  S等の不純物を含まない、いわゆる上澄みのメ
ルトのみを取り出すことは全く容易であり、このように
して本発明により、新しい原料を使ったものと変わらな
い品質の良好なフラックスを生産する方法を提供するこ
とができるのである。溶融型フラックスには、いわゆる
還元型のものや、軽石状にして製造するものがあるので
、このような特性を付与する工程が必要であるが、本発
明では、この工程をFed、 P等の不純物除去操作と
併行させることが可能であり、更にスラグは一度溶解し
たものであるために、再溶解が容易であり、電気炉溶解
等では溶解に要する電力、即ち電力原単位を下げる省エ
ネルギー効果が可能である。また、フラックスの中には
Mn成分を高酸化状態に保持した製品もあるが、該製品
を製造する場合には、還元期の後に更に酸化反応工程を
設ければよく、この方法としては、■メルト中に酸素吹
き込みランス等により、酸素を吹き込んで酸化する ■予め配合バッチ中のMnO成分を控え目にしておき、
二酸化マンガンの添加により、最終目標値に調整すると
共にメルトを予定レベルまで酸化する 等が可能なのである。酸化レベルの尺度はメルトの色調
で決めることが可能であり、例えばMn成分では、黒色
側が酸化寄りであり、酸化度が小さくなるに連れて褐色
、黄色、゛緑色というように変化するので、この色調を
コントロールすることにより酸化度を調整することが可
能なのである。
On the other hand, in the melting according to the present invention, carbon powder is not actively added to the blended batch, but 10 to 80% of the treated slag is added or mixed into the blended batch of the flux. Initially, the melting furnace is operated in an oxidizing atmosphere while supplying the blended batch for melting (hereinafter referred to as melting batch) to the melting furnace. During this oxidation melting stage, the impurity sulfur (hereinafter referred to as S) that has increased in the slag-formed flux used is oxidized and converted into sulfur oxides, mainly SO2, along with the exhaust gas from the melting furnace and the dust collection exhaust gas attached to the furnace. It is dispersed and removed into the atmosphere through a device. Needless to say, the sulfur oxides are passed through a desulfurization device installed midway through the process, and are released into the atmosphere in a purified state. The next step was to remove impurities with increased levels of Fed and P. Focusing on the fact that these impurities are easily reduced and turned into metals, the supply of melt batches was completed, and after the melt had fallen off, carbon was removed. Powder or Aj, Mg,
A so-called reducing agent such as Si powder is put in the front of the furnace to bring the atmosphere inside the furnace into a reducing state, and these impurities are turned into metal and separated by sedimentation at the bottom of the furnace. The specific gravity of molten flux in the furnace (hereinafter referred to as melt) is around 3, whereas metal is mainly composed of iron and contains small amounts of Mn, Si, etc., as well as P, which is to be removed. Since its specific gravity is 7 or more, which is heavier than melt, it can be easily deposited at the bottom of the furnace. In addition, flux melting furnaces generally use a tilting top pouring type tapping method, so when tapping, Fed, P
It is quite easy to extract only the so-called supernatant melt, which does not contain impurities such as , S, etc., and in this way, the present invention has developed a method for producing flux with the same good quality as that using new raw materials. It can be provided. Melting type fluxes include so-called reduced type fluxes and those manufactured in the form of pumice, so a process to impart such characteristics is necessary.In the present invention, this process is carried out using It can be performed in parallel with the impurity removal operation, and since the slag has been melted once, it is easy to remelt it, and in electric furnace melting, etc., it has an energy-saving effect of reducing the power required for melting, that is, the power unit consumption. It is possible. In addition, some fluxes have Mn components maintained in a highly oxidized state, but when manufacturing such products, it is sufficient to further perform an oxidation reaction step after the reduction period. Oxygen is oxidized by blowing oxygen into the melt using an oxygen blowing lance etc. ■MnO component in the blending batch is kept low in advance,
By adding manganese dioxide, it is possible to adjust the final target value and oxidize the melt to the expected level. The scale of the oxidation level can be determined by the color tone of the melt. For example, in the case of Mn components, the black side is more oxidized, and as the degree of oxidation decreases, the color changes to brown, yellow, and green. By controlling the color tone, it is possible to adjust the degree of oxidation.

本発明の実施例を以下に説明する。Examples of the present invention will be described below.

適用例のフラックスの目標成分を表1に示す。Table 1 shows the target components of the flux in the application example.

当然のことながら、FeOは目標成分としては加えてい
ない。
Naturally, FeO was not added as a target component.

表  1 これらに対応する回収スラグの未処理状態の化学成分を
表2に示す。
Table 1 Table 2 shows the chemical components of the untreated recovered slag corresponding to these.

上段がそのままの値であり、下段は不純物を除去したと
仮定した場合の成分比率である。このように、回収スラ
グの見かけ成分値から不純分を除いた場合の成分比率は
、該製品の目標成分に近似しており、成る添加率迄であ
れば修正なしで添加溶解することが可能であることを示
している。
The upper row shows the values as they are, and the lower row shows the component ratios assuming that impurities are removed. In this way, the component ratio when impurities are removed from the apparent component value of recovered slag is close to the target component of the product, and it is possible to add and dissolve the slag up to the addition rate without correction. It shows that there is.

次に、実際に粗砕した後磁選した適用例の処理済みスラ
グの化学成分の一例を表3に示す。
Next, Table 3 shows an example of the chemical composition of the treated slag in an application example in which the slag was actually coarsely crushed and then magnetically separated.

表3の処理済みスラグを10〜85%添加した配合パン
チの合成成分値を表4a、4bに示す。このように、目
標成分値だけで見れば、得ようとする該フラックスの再
生が可能であるが、本発明の方法である酸化、還元反応
を適宜に組み合わせて、不純物を分離除去するために、
は、スラグ単独ではその化学反応を活発に行わせること
が難しく、長時間を要するので、実用上から、新規の配
合バッチへ9処理済みスラグの添加混合率は〜80%が
適当なのである。また、溶接時に損耗し易いMnO,C
aF3等の補充調整操作等の安易さからも、スラグ添加
混合率を最大80%とした。また、本発明は使用済みス
ラグの再生を工業的に行うことが目的であるから、経済
的な効果等から添加率の下限を10%としたが、それ以
下の添加では品質的に問題の無いことは当然である。
Tables 4a and 4b show the composite component values of compounded punches containing 10 to 85% of the treated slag in Table 3. In this way, if we look only at the target component values, it is possible to regenerate the flux to be obtained, but in order to separate and remove impurities by appropriately combining the oxidation and reduction reactions that are the method of the present invention,
Since it is difficult to actively carry out the chemical reaction using slag alone and it takes a long time, from a practical standpoint, the appropriate mixing ratio of 9-treated slag to a new blending batch is ~80%. In addition, MnO and C, which are easily worn out during welding,
The slag addition/mixing ratio was set to a maximum of 80% in order to facilitate the replenishment and adjustment of aF3, etc. Furthermore, since the purpose of the present invention is to industrially regenerate used slag, the lower limit of the addition rate was set at 10% for economical reasons, but there is no problem in terms of quality with addition of less than 10%. Of course.

これらスラグ添加配合バッチの電気炉での溶解条件は、
通常の溶融型フラックスの生産とほぼ同じであるが、本
発明の基本である原料溶解時に於ける酸化雰囲気を助長
させるため、電気炉の溶解電圧はやや低めにし、溶解電
流をやや高めにして、投入電力はほぼ同じにする。−例
として、通常条件の電圧300V、電流6000Aに対
して、本発明では260〜280V、6400A 〜6
600A テ溶解し、原料投入を終わり、Fe0分等を
還元し、メタル化すると共に、メタル中にP等の不純物
を閉じ込め、炉底に共沈分離させる段階では、逆に溶解
電圧をやや高めにし、溶解電流はやや低めにして還元雰
囲気を助長する。−例では、電圧300〜320V、電
流6000Aとし、炉前で、カーボン粉末を0.5〜1
.0χ添加して強制的に還元雰囲気として通電し、5〜
10分の保持時間で、Fe0分が鉄を主成分とするメタ
ルに還元され、メルトの比重約3に対して、生成された
メタルの比重は7以上となるので、このメタルはlO分
程度で炉底に向かって沈降する。溶解炉は傾注方式が一
般に使われているので、いわゆる、上澄みの目標成分と
なったメルトのみを出湯し、後工程の通常の処理方法で
新品と同等の該フラックスを得ることが出来るのである
The conditions for melting these slag-added batches in an electric furnace are as follows:
It is almost the same as the production of normal melting type flux, but in order to promote the oxidizing atmosphere during raw material melting, which is the basis of the present invention, the melting voltage of the electric furnace is set slightly lower and the melting current is set slightly higher. The input power should be approximately the same. - As an example, compared to the normal conditions of voltage 300V and current 6000A, the present invention uses 260 to 280V and 6400A to 6
On the contrary, the melting voltage is set a little higher at the stage of melting at 600A, finishing feeding the raw materials, reducing Fe0, etc., metalizing, trapping impurities such as P in the metal, and co-precipitating it at the bottom of the furnace. , the dissolution current is set slightly low to promote a reducing atmosphere. - In the example, the voltage is 300 to 320 V and the current is 6000 A, and 0.5 to 1
.. 0χ was added and electricity was forcibly applied to create a reducing atmosphere, and 5~
With a holding time of 10 minutes, Fe0min is reduced to a metal whose main component is iron, and the specific gravity of the generated metal is 7 or more compared to the specific gravity of the melt of about 3, so this metal can be reduced to about 10min. It sinks towards the bottom of the hearth. Since the tilting method of melting furnaces is generally used, it is possible to tap only the melt that has become the target component of the so-called supernatant, and use the normal processing method in the subsequent process to obtain the same flux as new.

表5〜表6に、適用例のフラックスについて、新規製品
と本発明によって再生した製品の品質比較例を示す。表
5は再生品の化学成分例である。
Tables 5 and 6 show quality comparison examples between a new product and a product recycled according to the present invention regarding the applied flux. Table 5 shows examples of chemical components of recycled products.

表から判るようにFe0分等が減少し、これによって他
成分が相対的に調整されてスラグ添加率に係わり無くほ
ぼ同等になっている。
As can be seen from the table, Fe0 content, etc. decreased, and as a result, other components were relatively adjusted and became almost the same regardless of the slag addition rate.

但し、スラグ添加が85%ではT、Fe0分の除去効果
が低下し、再生品中のT、FeOが急激に上昇し、全溶
着金属の衝撃値のレベルが下がり、効果的な再生効果が
出ていない。このような理由から本発明のスラグ添加率
の上限を80%とした。
However, when the slag addition is 85%, the removal effect of T and Fe0 decreases, the T and FeO in the recycled product rises rapidly, the impact value level of all weld metal decreases, and an effective regeneration effect is not achieved. Not yet. For these reasons, the upper limit of the slag addition rate in the present invention was set to 80%.

表6はこれ等再生品と表7の潜弧溶接用ワイヤとの組合
せで溶接した全溶着金属の機械試験結果の例である。表
から判るようにこれ等の値も、新規製品との差はほとん
ど無く本発明による溶融型フラックスの再生方法の優秀
性を実証している。
Table 6 shows an example of mechanical test results for all deposited metals welded using a combination of these recycled products and the submerged arc welding wires shown in Table 7. As can be seen from the table, these values show almost no difference from new products and demonstrate the superiority of the molten flux regeneration method according to the present invention.

更にここには示さなかったが、溶解電力の原単位が、ス
ラグ添加により低下し、添加量の増加につれて低下率は
下がるが、添加率10%当り100〜30kWh/ t
on程度の省エネルギー効果が可能という副次的な効果
も得られた。
Furthermore, although not shown here, the basic unit of melting power decreases with the addition of slag, and the rate of decrease decreases as the amount added increases, but it is 100 to 30 kWh/t per 10% addition rate.
A secondary effect was also obtained in that it was possible to save energy to the extent that it was possible to turn it on.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表6a及び6bの結果を得た溶着金属用の開先
形状を示す図である。 第1図
FIG. 1 is a diagram showing the groove shape for weld metal from which the results of Tables 6a and 6b were obtained. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  潜弧溶接に使用した溶融型潜弧フラックスのスラグを
回収し、これを粉砕し、磁選等により、鉄および鉄酸化
物を減少させたのち、予め成分配合した溶解用原料に1
0〜80%添加し、溶解方法を酸化期と還元期に分けて
溶解し、酸化期に高級酸化物による酸素で硫黄等の不純
物を酸化し、ガスとして排気中に、還元期に鉄および鉄
酸化物を還元剤によりメタル化し、また燐等をメタル中
に閉じ込めて溶解炉の底に沈積分離して除去し、溶融型
潜弧フラックスとして再生することを特徴とする潜弧溶
接用フラックスの再生方法。
The slag of the molten submerged arc flux used in submerged arc welding is collected, pulverized, and subjected to magnetic separation to reduce iron and iron oxides.
Adding 0 to 80%, the melting method is divided into an oxidation period and a reduction period. During the oxidation period, impurities such as sulfur are oxidized with oxygen from higher oxides, and iron and iron are dissolved in the exhaust gas during the reduction period. Regeneration of flux for submerged arc welding, characterized by metalizing oxides with a reducing agent, trapping phosphorus etc. in the metal, separating and removing it at the bottom of a melting furnace, and regenerating it as a melting type submerged arc flux. Method.
JP1925887A 1987-01-29 1987-01-29 Method for regenerating flux for submerged arc welding Granted JPS63188493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1925887A JPS63188493A (en) 1987-01-29 1987-01-29 Method for regenerating flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1925887A JPS63188493A (en) 1987-01-29 1987-01-29 Method for regenerating flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS63188493A true JPS63188493A (en) 1988-08-04
JPH0516958B2 JPH0516958B2 (en) 1993-03-05

Family

ID=11994406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1925887A Granted JPS63188493A (en) 1987-01-29 1987-01-29 Method for regenerating flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS63188493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116147C (en) * 1997-10-20 2003-07-30 川崎制铁株式会社 Sinter molding flux for submerged-arc welding and its manufacture
JP2008093696A (en) * 2006-10-12 2008-04-24 Nippon Steel & Sumikin Welding Co Ltd Fused flux for submerged arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116147C (en) * 1997-10-20 2003-07-30 川崎制铁株式会社 Sinter molding flux for submerged-arc welding and its manufacture
JP2008093696A (en) * 2006-10-12 2008-04-24 Nippon Steel & Sumikin Welding Co Ltd Fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPH0516958B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
US8317895B2 (en) Method for recovering valuable metals from wastes
JP3338701B2 (en) Method for producing chromium-containing metal
CA2525559A1 (en) Method for recovering metallic elements, especially metallic chromium, from slag containing metal oxides in an electric-arc furnace
CN110117692B (en) Method for producing high-quality steel by using intermediate frequency furnace
JPS63188493A (en) Method for regenerating flux for submerged arc welding
JP2020180322A (en) Production method of molten steel using converter
US2557458A (en) Method of fusing alloy additions to a steel bath
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
RU2608936C2 (en) Mixture and method for aluminothermic production of ferrotitanium using same
RU2455379C1 (en) Method to melt low-carbon manganiferous alloys
RU2148102C1 (en) Method of preparing ferromanganese
JP3462660B2 (en) Method of preventing electric arc furnace slag from powdering
KR20100098952A (en) Low carbon-metal manganese and low carbon-ferromanganese manufacturing method by using continuous thermit reaction
SU1276470A1 (en) Charge for producing molden welding flux
JP4189110B2 (en) Method for reforming stainless steel smelting slag
JP2000038612A (en) Production of molten steel
RU2398889C1 (en) Procedure for melting rail steel
US2049091A (en) Manufacture of metallic alloys
US1710446A (en) Process of preparing low-carbon alloys
RU2002811C1 (en) Process for manufacturing modifier
JPH09118911A (en) Granular state complex refining material
US3244510A (en) Method of making electrical steel having superior magnetic properties
US1954381A (en) Manufacture of rustless iron
JPS6250543B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees