JPS63187918A - Atomic oscillator - Google Patents

Atomic oscillator

Info

Publication number
JPS63187918A
JPS63187918A JP2009487A JP2009487A JPS63187918A JP S63187918 A JPS63187918 A JP S63187918A JP 2009487 A JP2009487 A JP 2009487A JP 2009487 A JP2009487 A JP 2009487A JP S63187918 A JPS63187918 A JP S63187918A
Authority
JP
Japan
Prior art keywords
atomic
frequency
integrator
output
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009487A
Other languages
Japanese (ja)
Other versions
JPH07114364B2 (en
Inventor
Kazuharu Chiba
千葉 一治
Yoshibumi Nakajima
義文 中島
Hideo Sumiyoshi
秀夫 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62020094A priority Critical patent/JPH07114364B2/en
Publication of JPS63187918A publication Critical patent/JPS63187918A/en
Publication of JPH07114364B2 publication Critical patent/JPH07114364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To obstruct an imperfect lock at the time of turning on a power source which follows up low grading of a voltage control crystal oscillator, by starting an integral operation of an integrator in accordance with a double wave component signal of an atomic resonance signal when the power source is turned on. CONSTITUTION:After a power source is turned on or after the power source is released, until each part reaches an operation stable area, there is no output in a lock detector 6, and an integrator 5 stops an integration operation, and outputs a set reference voltage. In accordance with its set voltage, a voltage control crystal oscillator (VCXO) 2 generates a frequency output which becomes an atomic resonance frequency. In this state, when each part reaches the operation stable area, and a double wave component output (2fL) of an atomic resonator 1 is detected by the lock detector 6, the integrator 5 starts its integral operation, therefore, even if the VCXO 2 of a low grade, whose frequency variable width is wide is used, the automatic lock can be surely executed, and it has an effect for a miniaturization and a low cost of an atomic oscillator.

Description

【発明の詳細な説明】 [概  要] 本願は、主に電源がオンになった、時に原子共鳴信号の
2倍波成分信号レベルに応じて積分器の積分動作を開始
させることにより、電圧制御水晶発振器の低グレード化
に伴う電源投入時のロック不完全を阻止することを図っ
た原子発振器を開示するものである。
[Detailed Description of the Invention] [Summary] The present invention mainly provides voltage control by starting the integrating operation of an integrator in response to the second harmonic component signal level of an atomic resonance signal when the power is turned on. This invention discloses an atomic oscillator that is designed to prevent incomplete locking when power is turned on, which is caused by lower grade crystal oscillators.

[産業上の利用分野] 本発明は原子発振器に関し、特にそのロックアクイジッ
ション方式に関するものである。
[Industrial Field of Application] The present invention relates to an atomic oscillator, and particularly to its lock acquisition method.

原子や分子の共鳴周波数を基準として、電圧制御水晶発
振器の発振周波数を制御する原子発振器は、長期安定度
が非常に優れているため、高精度基準信号発生源として
、通信、放送、電波航法、計測等の分野で広く利用され
ている。
The atomic oscillator, which controls the oscillation frequency of a voltage-controlled crystal oscillator based on the resonance frequency of atoms and molecules, has excellent long-term stability and is used as a high-precision reference signal source in communications, broadcasting, radio navigation, etc. It is widely used in fields such as measurement.

このような原子発振器では、その小形化、低価枯化が望
まれている。
It is desired that such an atomic oscillator be made smaller and lower in cost.

[従来の技術] 第4図は従来の一般的な原子発振器の構成を示したもの
である。
[Prior Art] FIG. 4 shows the configuration of a conventional general atomic oscillator.

図において、1は原子共鳴器、2は電圧制御水晶発振器
(以下、vcxoという)、3は位相変調器7、逓倍器
8、合成器9、混合器10及び低周波(100〜200
1(zの矩形波)発振器11からなる周波数合成器、4
は前置増幅器12、選択増幅器13及び同期検波器14
から成る周波数サーボ回路、5は積分器、6は選択増幅
器15と共鳴検出器16からなるロック検出器である。
In the figure, 1 is an atomic resonator, 2 is a voltage controlled crystal oscillator (hereinafter referred to as VCXO), 3 is a phase modulator 7, a multiplier 8, a combiner 9, a mixer 10, and a low frequency (100 to 200
1 (square wave of z) oscillator 11;
is a preamplifier 12, a selection amplifier 13, and a synchronous detector 14.
5 is an integrator, and 6 is a lock detector consisting of a selection amplifier 15 and a resonance detector 16.

この原子発振器の動作について以下に述べる。The operation of this atomic oscillator will be described below.

vCXO2の出力を低周波発振器11からの低周波信号
(周波数fL)により位相変調器7で位相変調し、さら
に逓倍器8、合成器9、及び混合器12により原子共鳴
器1の原子共振周波数に合致するようなμ(マイクロ)
波周波数を逓倍合成し、原子共鳴器1に入力する。
The output of vCXO2 is phase-modulated by a phase modulator 7 using a low-frequency signal (frequency fL) from a low-frequency oscillator 11, and further modulated to the atomic resonance frequency of the atomic resonator 1 by a multiplier 8, a synthesizer 9, and a mixer 12. μ (micro) that matches
The wave frequencies are multiplied and synthesized and input to the atomic resonator 1.

一方、原子共鳴器1の直流出力は第5図に示す如く、入
力μ波周波数が原子共鳴周波数f。と一致した時最小値
となる特性曲線17を有する。この入力マイクロ波周波
数は周波数rLで位相変調されているため、その入力周
波数が波形Aで示されるように共鳴周波数foよりわず
かに低い場合(100〜200tlz)には、波形Bで
示される周波数rLの共鳴信号が出力され、μ波が波形
Cで示されるように共鳴周波数foよりわずかに高い場
合には、周波数fしで、かつ波形Bとは位相が反転した
共鳴信号りが出力される。また、入力μ波が波形Eのよ
うに共鳴周波数roと一致した時には、波形Fの如く、
変調周波数fLの2倍の2fLの共鳴信号が出力される
On the other hand, as shown in FIG. 5, the input μ-wave frequency of the DC output of the atomic resonator 1 is the atomic resonance frequency f. It has a characteristic curve 17 that has a minimum value when it matches. This input microwave frequency is phase modulated at frequency rL, so if the input frequency is slightly lower than the resonant frequency fo (100 to 200 tlz) as shown in waveform A, the frequency rL shown in waveform B If the μ wave is slightly higher than the resonant frequency fo as shown by waveform C, a resonant signal having a frequency f and an inverted phase with respect to waveform B is output. Also, when the input μ wave matches the resonant frequency ro as shown in waveform E, as shown in waveform F,
A resonance signal of 2fL, which is twice the modulation frequency fL, is output.

これらのB、D、あるいはFは第4図の前置増幅器12
で共に増幅される。これらのうち周波数f、の信号B及
びDは選択増幅器13で通訳的に増幅される。次いで同
期検波器14では信号BあるいはDを、低周波発振器か
らの低周波rLで同期検波し第6図に示すようなりcx
o制御電圧を積分器5に送る。積分器5はループゲイン
を大きくするためと、同期検波器出力を平滑化する等の
ために設けられたもので、その平滑化された出力電圧に
応じてvCXO2の周波数を原子共振周波数に一致する
ように、即ち、同期検波器14の出力がゼロになるよう
な制tita圧を出力する。
These B, D, or F are preamplifiers 12 in FIG.
are amplified together. Of these, signals B and D at frequency f are interpretively amplified by a selective amplifier 13. Next, the synchronous detector 14 synchronously detects the signal B or D using the low frequency rL from the low frequency oscillator and generates cx as shown in FIG.
o Send the control voltage to the integrator 5. The integrator 5 is provided to increase the loop gain and smooth the output of the synchronous detector, and matches the frequency of vCXO2 to the atomic resonance frequency according to the smoothed output voltage. In other words, a suppressing tita pressure is output such that the output of the synchronous detector 14 becomes zero.

一方、周波数2にの信号Fは選択増幅器15で選択増幅
され、共鳴検出器16で原子共鳴器1の共鳴状態を監視
して、2倍波成分信号を検出して原子共鳴が起こってい
ること、即ち、発振器が正常に動作していることを表示
する。
On the other hand, the signal F at frequency 2 is selectively amplified by the selection amplifier 15, and the resonant state of the atomic resonator 1 is monitored by the resonance detector 16 to detect the second harmonic component signal, indicating that atomic resonance is occurring. , that is, it indicates that the oscillator is operating normally.

[発明が解決しようとした問題点コ このような従来の原子発振器では、vCXO2として高
安定水晶発振器が用いられており、その制御電圧による
周波数可変幅も、常に原子共鳴特性(第5図)の範囲内
に収まるように設計されていた。
[Problems that the invention sought to solve] In such conventional atomic oscillators, a highly stable crystal oscillator is used as the vCXO2, and the frequency variable width by the control voltage is always within the range of the atomic resonance characteristics (Figure 5). It was designed to fit within the range.

従って、電源投入後の各部の安定時間経過後には、その
vCXO2の周波数から合成したμ波周波数は必ず共鳴
特性の範囲内にあるため、原子共鳴信号が検出され、積
分器5が有効に動作し、自動的にvCXO2の周波数が
共鳴周波数10にロックされる。
Therefore, after the stabilization time of each part after the power is turned on, the μ-wave frequency synthesized from the frequency of the vCXO2 is always within the resonance characteristic range, so the atomic resonance signal is detected and the integrator 5 operates effectively. , the frequency of vCXO2 is automatically locked to the resonance frequency 10.

しかしながら、原子発振器の小形1ヒ、低価格化を図る
場合に、このvCXO2もその対象とせざるを得なくな
るが、一般に小形、低価格を図ると、その周波数安定度
が低下するという欠点がある。
However, when trying to make an atomic oscillator smaller and lower in price, this vCXO2 must also be considered, but generally speaking, when trying to make the atomic oscillator smaller and cheaper, it has the disadvantage that its frequency stability decreases.

このような低グレードのvCXOを原子発振器用として
用い、かつ長期間、正常に動作させるなめには、vcx
oの経年変化を含む全変動量より大きい制御電圧による
周波数可変幅を持たせる必要がある。
In order to use such a low-grade vCXO for atomic oscillators and to operate normally for a long period of time, vcx
It is necessary to have a frequency variable width due to the control voltage that is larger than the total amount of variation including the aging of o.

一方、積分器5では、電源投入後から直ちに積分動作を
開始するため、その出力電圧は比較的短い時間で電源電
圧あるいはアース電位になり、一定となってしまう、こ
の積分器の出力電圧がvCXOに印加されると、vcx
oの周波数可変幅が広いため、vcxoから合成したμ
波周波数が原子共鳴信号の検出範囲から大きく逸脱して
しまい、いつまでも原子発振器がアンロック状態のまま
になるという問題が生じる。
On the other hand, since the integrator 5 starts integrating immediately after the power is turned on, its output voltage becomes the power supply voltage or ground potential in a relatively short time and remains constant. When applied to vcx
Since the frequency variable range of o is wide, μ synthesized from vcxo
A problem arises in that the wave frequency greatly deviates from the detection range of the atomic resonance signal, and the atomic oscillator remains unlocked indefinitely.

従って、本発明の目的は、原子発振器において、vcx
oの低グレード化に伴う前述の欠点を改善するためのロ
ックアクイジッション方式を実現することである。
Therefore, an object of the present invention is to provide an atomic oscillator with vcx
The object of the present invention is to realize a lock acquisition method to improve the above-mentioned drawbacks associated with the lower grade of o.

[問題点を解決するための手段] 第1図は、上記の目的を達成するための本発明に係る原
子発振器を概念的に示した図で、1は原子共鳴器、2は
電圧制御水晶発振器(VCX○)、3はVCXO2の出
力周波数を原子共鳴周波数の領域まで変換する周波数合
成器、4は原子共鳴器1の出力信号に対応してVCXO
2を制御する周波数サーボ回路、5はサーボ回路4の出
力を平滑化し、VCXO2のuI御電電圧出力する積分
器、6は原子共鳴信号の2倍波成分信号を検出するロッ
ク検出器であり、特に本発明では、ロック検出器6から
出力される共鳴信号の2倍波成分信号レベルに応答して
積分器5の積分動作を制御している。
[Means for Solving the Problems] FIG. 1 is a diagram conceptually showing an atomic oscillator according to the present invention for achieving the above object, where 1 is an atomic resonator, and 2 is a voltage-controlled crystal oscillator. (VCX○), 3 is a frequency synthesizer that converts the output frequency of VCXO2 to the atomic resonance frequency region, 4 is a VCXO corresponding to the output signal of atomic resonator 1
2 is a frequency servo circuit that controls the servo circuit 4; 5 is an integrator that smooths the output of the servo circuit 4 and outputs the uI control voltage of the VCXO 2; 6 is a lock detector that detects the second harmonic component signal of the atomic resonance signal; In particular, in the present invention, the integration operation of the integrator 5 is controlled in response to the second harmonic component signal level of the resonance signal output from the lock detector 6.

〔作  用〕[For production]

第1図の原子発振器において、電源を投入した後又は電
源が復旧した後、各部が動作安定領域に達するまでは、
ロック検出器6に出力はなく、この時、積分器5の積分
動作を停止させ、積分器5は設定基準電圧を出力する。
In the atomic oscillator shown in Figure 1, after the power is turned on or after the power is restored, until each part reaches its stable operating region,
There is no output from the lock detector 6, and at this time, the integration operation of the integrator 5 is stopped, and the integrator 5 outputs the set reference voltage.

その設定電圧に応じてVCXO2は原子共鳴周波数にな
る周波数出力を発生する。そして各部が動作安定領域に
達し、ロック検出器6で原子共鳴器1の2倍波成分出力
が検出されてはじめて、積分器5の積分動作と開な台さ
せる。
Depending on the set voltage, the VCXO2 generates a frequency output that corresponds to the atomic resonance frequency. It is not until each part reaches a stable operation region and the second harmonic component output of the atomic resonator 1 is detected by the lock detector 6 that the integral operation of the integrator 5 is started.

[実施例] 以下、本発明の原子発振器の実施例3第2図に示す。な
お、第2図に示した符号で第4図と同一のものは同一部
分3示している。
[Embodiment] A third embodiment of the atomic oscillator of the present invention is shown in FIG. 2 below. Note that the same reference numerals shown in FIG. 2 as in FIG. 4 indicate the same parts 3.

本実施例で第4図に示した従来例と大きく異なる点は、
原子共鳴器1から得られた2倍波成分(周波数2fL)
により、積分器5の漬分動(’Pを制御するようにした
ことであり、第2図に示した原子発振器では、その周波
数2rLの信号として共鳴検出器16の出力を利用して
いる。
The major differences between this embodiment and the conventional example shown in FIG. 4 are as follows:
Second harmonic component obtained from atomic resonator 1 (frequency 2fL)
The oscillator ('P) of the integrator 5 is thereby controlled, and the atomic oscillator shown in FIG. 2 utilizes the output of the resonance detector 16 as a signal with a frequency of 2rL.

第2図の積分器5としては、第3図に示したように、演
算増幅器17の入出力端子間にコンデンサ18を接続し
、更に共鳴検出器16の出力でオン・オフするスイッチ
SWをコンデンサ18に並列に接続し、コンデンサ18
の両端を開放又は短絡する。尚、演算増幅器17の基準
電圧Vrefはvcxo2の制御電圧の中心値に設定さ
れている。
As shown in FIG. 3, the integrator 5 shown in FIG. 18 in parallel with the capacitor 18
Open or short-circuit both ends. Note that the reference voltage Vref of the operational amplifier 17 is set to the center value of the control voltage of vcxo2.

尚、スイッチSWは電源オフ時は閉じる構造になってい
る。
Note that the switch SW is structured to be closed when the power is turned off.

このように構成された原子発振器において、電源をオン
にすると、原子共鳴器1及びVCXO2は所定の安定時
間を要するため、その間は原子共鳴信号検出のための条
件は整わず、周波数2fjの信号は得られない。この時
は、スイッチSWを閉じた状態のままであり、コンデン
サ18を短絡する。このようにすると、積分器5は積分
動作を行えず、VCXO2には基準電圧Vre「の制御
中心電圧が印加されるだけとなる。
In the atomic oscillator configured in this way, when the power is turned on, the atomic resonator 1 and VCXO 2 require a predetermined stabilization time, so during that time the conditions for detecting the atomic resonance signal are not established, and the signal at frequency 2fj is I can't get it. At this time, the switch SW remains closed and the capacitor 18 is short-circuited. In this case, the integrator 5 cannot perform an integration operation, and only the control center voltage of the reference voltage Vre' is applied to the VCXO2.

従って、この電圧Vrefで、共鳴周波数fo近辺のμ
波周波数が得られるように、予めVCXO2の出力周波
数を調整しておけば、所定の安定時間経過後に原子共鳴
器1は必ず原子共鳴を起こし、ハロ5信号2「Lが得ら
れることになる。この共鳴信号2fLが(一定レベル以
上に)発生されると、スイッチSWが開放され、この時
、積分器5は積分器1ヤを開始し、VCXO2の周波数
の原子共鳴周波数へのロックが可能となる。
Therefore, at this voltage Vref, μ near the resonant frequency fo
If the output frequency of the VCXO 2 is adjusted in advance so as to obtain the wave frequency, the atomic resonator 1 will definitely cause atomic resonance after a predetermined stable time has elapsed, and the halo 5 signal 2 "L" will be obtained. When this resonance signal 2fL is generated (above a certain level), the switch SW is opened, and at this time, the integrator 5 starts the integrator 1, and the frequency of the VCXO2 can be locked to the atomic resonance frequency. Become.

尚、ここでは、積分コンデンサの両端を制御する場合に
ついて示したが、積分機能を停止させるものであれば池
の如何なる副脚手段を用いても本発明の目的を実現でき
ることは言うまでもない。
Although the case where both ends of the integrating capacitor are controlled is shown here, it goes without saying that the object of the present invention can be achieved using any sub-leg means as long as it stops the integrating function.

[発明の効果] 二のように、本発明の原子発振器によれば、原子共鳴信
号の2倍波成分信号レベルに応答して、積分器の積分動
作を制御するように構成したので、原子発振器の始動時
にvcxoから3成した入力μ波周波数が原子共鳴信号
の検出される範囲から逸脱することがなく、周波数可変
幅の広い低グレードの■CX○を用いても、確実に自動
ロックが可能となり、原子発振器の小形化、低価格化に
大きな効果がある。
[Effects of the Invention] As described in item 2, according to the atomic oscillator of the present invention, the integration operation of the integrator is controlled in response to the second harmonic component signal level of the atomic resonance signal, so the atomic oscillator At the time of startup, the input μ-wave frequency generated from the VCXO does not deviate from the range in which the atomic resonance signal is detected, and automatic locking is possible even when using a low-grade ■CX○ with a wide frequency variable range. This has a great effect on reducing the size and cost of atomic oscillators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子発振器を示す原理構成図、 第2図は本発明の原子発振器の実施例を示すブロック図
、 第3図は本発明の原子発振器に用いる積分器の具体的な
回路図、 第4図は従来の原子発振器な示すブロック図、第5図は
原子共鳴器の出力と入力μ波周波数との関係を表すグラ
フ図、 第6図は同期検波・出力と入力μ波周波数との関係を表
すグラフ図である。 第1図において、 1は原子共鳴器、 2は電圧制御水晶発振器(VCX○)、3は周波数合成
器、 4はサーボ回路、 5は積分器、 6はロック検出器、 18はコンデンサ、 SWはスイッチ、を示す。 尚、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a principle configuration diagram showing an atomic oscillator according to the present invention, FIG. 2 is a block diagram showing an embodiment of the atomic oscillator according to the present invention, and FIG. 3 is a concrete diagram of an integrator used in the atomic oscillator according to the present invention. Circuit diagram, Figure 4 is a block diagram of a conventional atomic oscillator, Figure 5 is a graph showing the relationship between the output of the atomic resonator and the input μ-wave frequency, and Figure 6 is the synchronous detection output and input μ-wave It is a graph diagram showing the relationship with frequency. In Figure 1, 1 is an atomic resonator, 2 is a voltage controlled crystal oscillator (VCX○), 3 is a frequency synthesizer, 4 is a servo circuit, 5 is an integrator, 6 is a lock detector, 18 is a capacitor, and SW is switch, shown. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電圧制御水晶発振器(2)の出力を周波数合成器
(3)で原子共鳴周波数に変換し、原子共鳴信号を周波
数サーボ回路(4)を介して積分器(5)に供給すると
ともに前記原子共鳴信号の2倍波成分信号をロック検出
器(6)で検出し、該積分器(5)の出力で前記電圧制
御水晶発振器(2)を制御する原子発振器において、 前記ロック検出器(6)から出力される2倍波成分信号
レベルに応答して前記積分器(5)の積分動作を制御す
ることを特徴とした原子発振器。
(1) The output of the voltage controlled crystal oscillator (2) is converted into an atomic resonance frequency by the frequency synthesizer (3), and the atomic resonance signal is supplied to the integrator (5) via the frequency servo circuit (4). In an atomic oscillator that detects a second harmonic component signal of an atomic resonance signal with a lock detector (6) and controls the voltage controlled crystal oscillator (2) with the output of the integrator (5), the lock detector (6) 2.) An atomic oscillator characterized in that the integrating operation of the integrator (5) is controlled in response to the second harmonic component signal level output from the integrator (5).
(2)前記積分器(5)の積分コンデンサと並列に、前
記2倍波成分信号が検出されないときに閉じるスイッチ
を接続し、前記2倍波成分信号に応じて前記スイッチを
開放することにより積分動作を開始させることを特徴と
した特許請求の範囲第1項記載の原子発振器。
(2) Integration is performed by connecting a switch that closes when the second harmonic component signal is not detected in parallel with the integrating capacitor of the integrator (5), and opening the switch in accordance with the second harmonic component signal. The atomic oscillator according to claim 1, wherein the atomic oscillator starts operation.
JP62020094A 1987-01-30 1987-01-30 Atomic oscillator Expired - Fee Related JPH07114364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020094A JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020094A JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Publications (2)

Publication Number Publication Date
JPS63187918A true JPS63187918A (en) 1988-08-03
JPH07114364B2 JPH07114364B2 (en) 1995-12-06

Family

ID=12017526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020094A Expired - Fee Related JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Country Status (1)

Country Link
JP (1) JPH07114364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258862A (en) * 2007-04-04 2008-10-23 Epson Toyocom Corp Rubidium atomic oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630733A (en) * 1979-08-17 1981-03-27 Bbc Brown Boveri & Cie Brushhlike contact for electric power semiconductor device
JPS61151440U (en) * 1985-03-08 1986-09-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630733A (en) * 1979-08-17 1981-03-27 Bbc Brown Boveri & Cie Brushhlike contact for electric power semiconductor device
JPS61151440U (en) * 1985-03-08 1986-09-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258862A (en) * 2007-04-04 2008-10-23 Epson Toyocom Corp Rubidium atomic oscillator

Also Published As

Publication number Publication date
JPH07114364B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JP3382356B2 (en) Low phase noise reference oscillator
CA1289633C (en) Pll frequency synthesizer
EP0557867A2 (en) Double phase locked loop circuit
JPS63187918A (en) Atomic oscillator
US4449105A (en) Passive maser using timesharing for control of the cavity and control of the oscillator on the line of stimulated emission
Buckmaster et al. The application of phase-lock microwave frequency stabilizers to electron paramagnetic resonance spectrometers
US5239271A (en) Microwave synthesizer
JP2800047B2 (en) Low noise oscillation circuit
ATE261212T1 (en) PHASE LOCKING CIRCUIT
US4634999A (en) RF oscillator frequency stabilizing circuit using self-mixing with reference frequency
JPH0287822A (en) Automatic phase control circuit
JPH0440104A (en) Phase locked loop circuit of ultra high frequency diode oscillator
JPH09135167A (en) Phase locked loop circuit device
JPH0328606Y2 (en)
Osa et al. Phase-locked loop design for on-chip tuning applications
US5459431A (en) Frequency/phase analog detector and its use in a phase-locked loop
JPS6316050B2 (en)
JPH0756544Y2 (en) Video synchronous detection circuit
JPH09200046A (en) Phase difference control pll circuit
JPH05227019A (en) Pll circuit
KR960039654A (en) Phase Locked Loop of Microwave Oscillators
JPS62285521A (en) Frequency synthesizer
JPS63198416A (en) Atomic oscillator
JPH04344713A (en) Phase synchronizing circuit
JPH10224211A (en) Synthesizer-type oscillation circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees