JPH07114364B2 - Atomic oscillator - Google Patents

Atomic oscillator

Info

Publication number
JPH07114364B2
JPH07114364B2 JP62020094A JP2009487A JPH07114364B2 JP H07114364 B2 JPH07114364 B2 JP H07114364B2 JP 62020094 A JP62020094 A JP 62020094A JP 2009487 A JP2009487 A JP 2009487A JP H07114364 B2 JPH07114364 B2 JP H07114364B2
Authority
JP
Japan
Prior art keywords
frequency
atomic
oscillator
resonance
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62020094A
Other languages
Japanese (ja)
Other versions
JPS63187918A (en
Inventor
一治 千葉
義文 中島
秀夫 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62020094A priority Critical patent/JPH07114364B2/en
Publication of JPS63187918A publication Critical patent/JPS63187918A/en
Publication of JPH07114364B2 publication Critical patent/JPH07114364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【発明の詳細な説明】 [概要] 本願は、主に電源がオンになった時に原子共鳴信号の2
倍波成分信号レベルに応じて積分器の積分動作を開始さ
せることにより、電圧制御水晶発振器の低グレード化に
伴う電源投入時のロック不完全を阻止することを図った
原子発振器を開示するものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present application is mainly concerned with 2 of atomic resonance signals when power is turned on.
Disclosed is an atomic oscillator designed to prevent incomplete lock at power-on accompanying the downgrade of a voltage-controlled crystal oscillator by starting the integration operation of an integrator according to the harmonic component signal level. is there.

[産業上の利用分野] 本発明は原子発振器に関し、特にそのロックアクイジッ
ション方式に関するものである。
[Field of Industrial Application] The present invention relates to an atomic oscillator, and more particularly to a lock acquisition system thereof.

原子や分子の共鳴周波数を基準として、電圧制御水晶発
振器の発振周波数を制御する原子発振器は、長期安定度
が非常に優れているため、高精度基準信号発生源とし
て、通信、放送、電波航法、計測等の分野で広く利用さ
れている。
Atomic oscillators that control the oscillation frequency of voltage-controlled crystal oscillators based on the resonance frequencies of atoms and molecules have excellent long-term stability, so they can be used as high-precision reference signal sources for communication, broadcasting, radio navigation, Widely used in fields such as measurement.

このような原子発振器では、その小形化、低価格化が望
まれている。
In such an atomic oscillator, downsizing and cost reduction are desired.

[従来の技術] 第4図は従来の一般的な原子発振器の構成を示したもの
である。
[Prior Art] FIG. 4 shows a configuration of a conventional general atomic oscillator.

図において、1は原子共鳴器、2は電圧制御水晶発振器
(以下、VCXOという)、3は位相変調器7、逓倍器8、
合成器9、混合器10及び低周波(100〜200Hzの矩形波)
発振器11からなる周波数合成器、4は前置増幅器12、選
択増幅器13及び同期検波器14から成る周波数サーボ回
路、5は積分器、6は選択増幅器15と共鳴検出器16から
なるロック検出器である。
In the figure, 1 is an atomic resonator, 2 is a voltage controlled crystal oscillator (hereinafter referred to as VCXO), 3 is a phase modulator 7, a multiplier 8,
Combiner 9, mixer 10 and low frequency (100-200Hz square wave)
A frequency synthesizer composed of an oscillator 11, 4 is a frequency servo circuit composed of a preamplifier 12, a selection amplifier 13 and a synchronous detector 14, 5 is an integrator, and 6 is a lock detector composed of a selection amplifier 15 and a resonance detector 16. is there.

この原子発振器の動作について以下に述べる。VCXO2の
出力を低周波発振器11からの低周波信号(周波数fL)に
より位相変調器7で位相変調し、さらに、逓倍器8、合
成器9、及び混合器12により原子共鳴器1の原子共振周
波数に合致するようなμ(マイクロ)波周波数を逓倍合
成し、原子共鳴器1に入力する。
The operation of this atomic oscillator will be described below. The output of the VCXO2 is phase-modulated by the phase modulator 7 by the low-frequency signal (frequency f L ) from the low-frequency oscillator 11, and further, the atomic resonance of the atomic resonator 1 is performed by the multiplier 8, the synthesizer 9, and the mixer 12. A μ (micro) wave frequency that matches the frequency is multiplied and synthesized, and input to the atomic resonator 1.

一方、原子共鳴器1の直流出力は第5図に示す如く、入
力μ波周波数が原子共鳴周波数f0と一致した時最小値と
なる特性曲線17を有する。この入力マイクロ波周波数は
周波数fLで位相変調されているため、その入力周波数が
波形Aで示されるように共鳴周波数f0よりわずかに低い
場合(100〜200Hz)には、波形Bで示される周波数fL
共鳴信号が出力され、μ波が波形Cで示されるように共
鳴周波数f0よりわずかに高い場合には、周波数fLで、か
つ波形Bとは位相が反転した共鳴信号Dが出力される。
また、入力μ波が波形Eのように共鳴周波数f0と一致し
た時には、波形Fの如く、変調周波数fLの2倍の2fL
共鳴信号が出力される。
On the other hand, the DC output of the atomic resonator 1 has a characteristic curve 17 which becomes a minimum value when the input μ-wave frequency matches the atomic resonance frequency f 0 , as shown in FIG. Since the input microwave frequency is phase-modulated at the frequency f L , when the input frequency is slightly lower than the resonance frequency f 0 (100 to 200 Hz) as shown by the waveform A, the waveform is shown by the waveform B. When the resonance signal of the frequency f L is output and the μ wave is slightly higher than the resonance frequency f 0 as shown by the waveform C, the resonance signal D of the frequency f L and the phase of the waveform B is inverted. Is output.
When the input μ wave matches the resonance frequency f 0 as shown by the waveform E, a resonance signal of 2f L , which is twice the modulation frequency f L , is outputted as shown by the waveform F.

これらのB、D、あるいはFは第4図の前置増幅器12で
共に増幅される。これらのうち周波数fL信号B及びDは
選択増幅器13で選択的に増幅される。次いで同期検波器
14では信号BあるいはDを、低周波発振器からの低周波
fLで同期検波し第6図に示すようなVCXO制御電圧を積分
器5に送る。積分器5はループゲインを大きくするため
と、同期検波器出力を平滑化する等のために設けられた
もので、その平滑化された出力電圧に応じてVCXO2の周
波数を原子共鳴周波数に一致するように、即ち、同期検
波器14の出力がゼロになるような制御電圧を出力する。
These B, D, or F are amplified together by the preamplifier 12 shown in FIG. Of these signals, the frequency f L signals B and D are selectively amplified by the selection amplifier 13. Then the synchronous detector
In 14, the signal B or D is fed to the low frequency from the low frequency oscillator.
Synchronous detection is performed at f L and a VCXO control voltage as shown in FIG. 6 is sent to the integrator 5. The integrator 5 is provided for increasing the loop gain and for smoothing the output of the synchronous detector. The frequency of VCXO2 matches the atomic resonance frequency according to the smoothed output voltage. In other words, the control voltage is output so that the output of the synchronous detector 14 becomes zero.

一方、周波数2fLの信号Fは選択増幅器15で選択増幅さ
れ、共鳴検出器16で原子共鳴器1の共鳴状態を監視し
て、2倍波成分信号を検出して原子共鳴が起こっている
こと、即ち、発振器が正常に動作していることを表示す
る。
On the other hand, the signal F having a frequency of 2f L is selectively amplified by the selective amplifier 15, and the resonance detector 16 monitors the resonance state of the atomic resonator 1 to detect the second harmonic component signal and atomic resonance occurs. That is, it indicates that the oscillator is operating normally.

[発明が解決しようとする問題点] このような従来の原子発振器では、VCXO2として高安定
水晶発振器が用いられており、その制御電圧による周波
数可変幅も、常に原子共鳴特性(第5図)の範囲内に収
まるように設計されていた。
[Problems to be Solved by the Invention] In such a conventional atomic oscillator, a highly stable crystal oscillator is used as the VCXO2, and the frequency variable width due to the control voltage is always the atomic resonance characteristic (Fig. 5). It was designed to fit within the range.

従って、電源投入後の各部の安定時間経過後には、その
VCXO2の周波数から合成したμ波周波数は必ず共鳴特性
の範囲内にあるため、原子共鳴信号が検出され、積分器
5が有効に動作し、自動的にVCXO2の周波数が共鳴周波
数f0にロックされる。
Therefore, after the stabilization time of each part after the power is turned on,
Since the μ wave frequency synthesized from the VCXO2 frequency is always within the resonance characteristic range, the atomic resonance signal is detected, the integrator 5 operates effectively, and the VCXO2 frequency is automatically locked to the resonance frequency f 0. It

しかしながら、原子発振器の小形化、低価格化を図る場
合に、このVCXO2もその対象とせざるを得なくなるが、
一般に小形、低価格を図ると、その周波数安定度が低下
するという欠点がある。
However, in order to make the atomic oscillator smaller and cheaper, this VCXO2 must be targeted.
Generally, when the size and cost are reduced, there is a drawback that the frequency stability is lowered.

このような低グレードのVCXOを原子発振器用として用
い、かつ長期間、正常に動作させるためには、VCXOの経
年変化を含む全変動量より大きい制御電圧による周波数
可変幅を持たせる必要がある。
In order to use such a low-grade VCXO for an atomic oscillator and to operate it normally for a long period of time, it is necessary to provide a frequency variable width by a control voltage that is larger than the total variation including the aging of the VCXO.

一方、積分器5では、電源投入後から直ちに積分動作を
開始するため、その出力電圧は比較的短い時間で電源電
圧あるいはアース電位になり、一定となってしまう。こ
の積分器の出力電圧がVCXOに印加されると、VCXOの周波
数可変幅が広いため、VCXOから合成したμ波周波数が原
子共鳴信号の検出範囲から大きく逸脱してしまい、いつ
までも原子発振器がアンロック状態のままになるという
問題が生じる。
On the other hand, in the integrator 5, since the integration operation is started immediately after the power is turned on, its output voltage becomes the power supply voltage or the ground potential in a relatively short time and becomes constant. When the output voltage of this integrator is applied to the VCXO, the frequency variable range of the VCXO is wide, so the μ-wave frequency synthesized from the VCXO largely deviates from the atomic resonance signal detection range, and the atomic oscillator is unlocked forever. There is a problem that the state remains.

従って、本発明の目的は、原子発振器において、VCXOの
低グレード化に伴う前述の欠点を改善するためのロック
アクイジッション方式を実現することである。
Therefore, it is an object of the present invention to realize a lock acquisition method in an atomic oscillator for improving the above-mentioned drawbacks associated with the lower grade of VCXO.

[問題点を解決するための手段] 第1図は、上記の目的を達成するための本発明に係る原
子発振器を概念的に示した図で、1は原子共鳴器、2は
電圧制御水晶発振器(VCXO)、3はVCXO2の出力周波数
を原子共鳴周波数の領域まで変換する周波数合成器、4
は原子共鳴器1の出力信号に対応してVCXO2を制御する
周波数サーボ回路、5はサーボ回路4の出力を平滑化
し、VCXO2の制御電圧を出力する積分器、6は原子共鳴
信号の2倍波成分信号を検出するロック検出器であり、
特に本発明では、前記積分器5の積分コンデンサと並列
に、前記2倍波成分信号が検出されない非同期時のみ閉
じて設定基準電圧を前記発振器2に与えるスイッチを接
続している。
[Means for Solving Problems] FIG. 1 is a view conceptually showing an atomic oscillator according to the present invention for achieving the above-mentioned object, in which 1 is an atomic resonator and 2 is a voltage controlled crystal oscillator. (VCXO), 3 is a frequency synthesizer that converts the output frequency of VCXO2 to the atomic resonance frequency range, 4
Is a frequency servo circuit that controls the VCXO2 corresponding to the output signal of the atomic resonator 1, 5 is an integrator that smoothes the output of the servo circuit 4 and outputs the control voltage of the VCXO2, and 6 is a double wave of the atomic resonance signal It is a lock detector that detects the component signal,
In particular, in the present invention, a switch for closing the second harmonic component signal and providing the set reference voltage to the oscillator 2 is connected in parallel with the integrating capacitor of the integrator 5 only when the second harmonic component signal is not detected.

[作用] 第1図の原子発振器において、電源を投入した後又は電
源が復旧した後、各部が動作安定領域に達するまでは、
ロック検出器6に出力はなく、この時、積分器5の積分
動作を停止させ、積分器5が設定基準電圧を出力するこ
とにより自動ロックさせる。その設定基準電圧に応じて
VCXO2は原子共鳴周波数になる周波数出力を発生する。
そして各部が動作安定領域に達し、ロック検出器6で原
子共鳴器1の2倍波成分出力が検出されてはじめて、積
分器5の積分動作を開始させる。
[Operation] In the atomic oscillator of FIG. 1, after the power is turned on or after the power is restored, until each part reaches the operation stable region,
There is no output to the lock detector 6, and at this time, the integration operation of the integrator 5 is stopped and the integrator 5 outputs the set reference voltage to automatically lock. Depending on the set reference voltage
VCXO2 produces a frequency output that is the atomic resonance frequency.
Then, the respective parts reach the operation stable region, and the integral operation of the integrator 5 is started only after the lock detector 6 detects the second harmonic component output of the atomic resonator 1.

[実 施 例] 以下、本発明の原子発振器の実施例を第2図に示す。な
お、第2図に示した符号で第4図と同一のものは同一部
分を示している。
[Examples] Examples of the atomic oscillator of the present invention are shown in FIG. The reference numerals shown in FIG. 2 that are the same as those in FIG. 4 indicate the same parts.

本実施例で第4図に示した従来例と大きく異なる点は、
原子共鳴器1から得られた2倍波成分(周波数2fL)に
より、積分器5の積分動作を制御するようにしたことで
あり、第2図に示した原子発振器では、その周波数2fL
の信号として共鳴検出器16の出力を利用している。
The major difference between this embodiment and the conventional example shown in FIG.
The second harmonic component obtained from the atomic resonator 1 (Frequency 2f L), is to have so as to control the integration operation of the integrator 5, the atomic oscillator shown in FIG. 2, the frequency 2f L
The output of the resonance detector 16 is used as the signal of.

第2図の積分器5としては、第3図に示したように、演
算増幅器17の入出力端子間にコンデンサ18を接続し、更
に共鳴検出器16の出力でオン・オフするスイッチSWをコ
ンデンサ18に並列に接続し、コンデンサの両端を開放又
は短絡する。尚、演算増幅器17の基準電圧VrefはVCXO2
の制御電圧の中心値に設定されている。尚、スイッチSW
は電源オフ時は閉じる構造になつている。
As the integrator 5 of FIG. 2, as shown in FIG. 3, a capacitor 18 is connected between the input and output terminals of the operational amplifier 17, and a switch SW for turning on / off at the output of the resonance detector 16 is connected to the capacitor. Connect in parallel to 18 and open or short both ends of the capacitor. The reference voltage Vref of the operational amplifier 17 is VCXO2.
Is set to the center value of the control voltage. In addition, switch SW
Has a structure that closes when the power is turned off.

このように構成された原子発振器において、電源をオン
にすると、原子共鳴器1及びVCXO2は所定の安定時間を
要するため、その間は原子共鳴信号検出のための条件は
整わず、周波数2fLの信号は得られない。この時は、ス
イッチSWを閉じた状態のままであり、コンデンサ18を短
絡する。このようにすると、積分器5は積分動作を行え
ず、VCXO2には基準電圧Vrefの制御中心電圧が印加され
るだけとなる。
In the atomic oscillator configured as described above, when the power is turned on, the atomic resonator 1 and the VCXO2 require a predetermined stabilization time. Therefore, the conditions for detecting the atomic resonance signal are not satisfied during that time, and the signal of the frequency 2f L is not established. Can't get At this time, the switch SW remains closed and the capacitor 18 is short-circuited. In this case, the integrator 5 cannot perform the integration operation, and only the control center voltage of the reference voltage Vref is applied to VCXO2.

従って、この電圧Vrefで、共鳴周波数f0近辺のμ波周波
数が得られるように、予めVCXO2の出力周波数を調整し
ておけば、所定の安定時間経過後に原子共鳴器1は必ず
原子共鳴を起こし、共鳴信号2fLが得られることにな
る。この共鳴信号2fLが(一定レベル以上に)発生され
ると、スイッチSWが開放され、この時、積分器5は積分
動作を開始し、VCXO2の周波数の原子共鳴周波数へのロ
ックが可能となる。
Therefore, if the output frequency of VCXO2 is adjusted in advance so that the μ-wave frequency near the resonance frequency f 0 can be obtained with this voltage Vref, the atomic resonator 1 will always cause atomic resonance after the elapse of a predetermined stabilization time. , The resonance signal 2f L will be obtained. When this resonance signal 2f L is generated (above a certain level), the switch SW is opened, and at this time, the integrator 5 starts the integration operation, and the VCXO2 frequency can be locked to the atomic resonance frequency. .

尚、ここでは、積分コンデンサの両端を制御する場合に
ついて示したが、積分機能を停止させるものであれば他
の如何なる制御手段を用いても本発明の目的を実現でき
ることは言うまでもない。
Although the case where both ends of the integrating capacitor are controlled is shown here, it goes without saying that the object of the present invention can be realized by using any other control means as long as it stops the integrating function.

[発明の効果] このように、本発明の原子発振器によれば、原子共鳴信
号の2倍波成分信号が検出されるまでは積分器の積分動
作を停止するように構成したので、原子発振器の始動時
にVCXOから合成した入力μ波周波数が原子共鳴信号の検
出される範囲から逸脱することがなく、周波数可変幅の
広い低グレードのVCXOを用いても、確実に自動ロックが
可能となり、原子発振器の小形化、低価格化に大きな効
果がある。
EFFECTS OF THE INVENTION As described above, according to the atomic oscillator of the present invention, the integration operation of the integrator is stopped until the second harmonic component signal of the atomic resonance signal is detected. The input μ-wave frequency synthesized from the VCXO at startup does not deviate from the range in which the atomic resonance signal is detected, and even if a low-grade VCXO with a wide variable frequency range is used, reliable automatic locking is possible, and the atomic oscillator It has a great effect on downsizing and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る原子発振器を示す原理構成図、 第2図は本発明の原子発振器の実施例を示すブロック
図、 第3図は本発明の原子発振器に用いる積分器の具体的な
回路図、 第4図は従来の原子発振器を示すブロック図、 第5図は原子共鳴器の出力と入力μ波周波数との関係を
表すグラフ図、 第6図は同期検波出力と入力μ波周波数との関係を表す
グラフ図である。 第1図において、 1は原子共鳴器、 2は電圧制御水晶発振器(VCXO)、 3は周波数合成器、 4はサーボ回路、 5は積分器、 6はロック検出器、 18はコンデンサ、 SWはスイッチ、を示す。 尚、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a principle configuration diagram showing an atomic oscillator according to the present invention, FIG. 2 is a block diagram showing an embodiment of the atomic oscillator of the present invention, and FIG. 3 is a specific integrator used in the atomic oscillator of the present invention. Circuit diagram, FIG. 4 is a block diagram showing a conventional atomic oscillator, FIG. 5 is a graph showing the relationship between the output of the atomic resonator and the input μ-wave frequency, and FIG. 6 is the synchronous detection output and the input μ-wave frequency. It is a graph showing the relationship with. In FIG. 1, 1 is an atomic resonator, 2 is a voltage controlled crystal oscillator (VCXO), 3 is a frequency synthesizer, 4 is a servo circuit, 5 is an integrator, 6 is a lock detector, 18 is a capacitor, and SW is a switch. , Is shown. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−140703(JP,A) 実開 昭61−151440(JP,U) 特公 昭56−30733(JP,B2) 特公 昭56−26186(JP,B2) 特公 昭59−46138(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-140703 (JP, A) Actual development S61-151440 (JP, U) JP-B 56-30733 (JP, B2) JP-B 56- 26186 (JP, B2) JP-B-59-46138 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電圧制御水晶発振器(2)の出力を周波数
合成器(3)で原子共鳴周波数に変換し、原子共鳴信号
を周波数サーボ回路(4)を介して積分器(5)に供給
するとともに前記原子共鳴信号の2倍波成分信号をロッ
ク検出器(6)で検出し、該積分器(5)の出力で前記
電圧制御水晶発振器(2)を制御する原子発振器におい
て、 前記積分器(5)の積分コンデンサと並列に、前記2倍
波成分信号が検出されない非同期時のみ閉じて設定基準
電圧を前記発振器(2)に与えるスイッチを接続したこ
とを特徴とする原子発振器。
1. An output of a voltage controlled crystal oscillator (2) is converted into an atomic resonance frequency by a frequency synthesizer (3), and an atomic resonance signal is supplied to an integrator (5) via a frequency servo circuit (4). In addition, in the atomic oscillator that detects the second harmonic component signal of the atomic resonance signal with a lock detector (6) and controls the voltage controlled crystal oscillator (2) with the output of the integrator (5), An atomic oscillator characterized in that a switch, which is closed only when the second-harmonic component signal is not detected and which is not synchronized, is connected to the integrating capacitor of 5) to give a set reference voltage to the oscillator (2).
JP62020094A 1987-01-30 1987-01-30 Atomic oscillator Expired - Fee Related JPH07114364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020094A JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020094A JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Publications (2)

Publication Number Publication Date
JPS63187918A JPS63187918A (en) 1988-08-03
JPH07114364B2 true JPH07114364B2 (en) 1995-12-06

Family

ID=12017526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020094A Expired - Fee Related JPH07114364B2 (en) 1987-01-30 1987-01-30 Atomic oscillator

Country Status (1)

Country Link
JP (1) JPH07114364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983350B2 (en) * 2007-04-04 2012-07-25 セイコーエプソン株式会社 Rubidium atomic oscillator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936816A1 (en) * 1979-08-17 1981-03-26 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau High current silicon semiconductor cooling system - has wires soldered to metallised islands on surface of silicon disc, extending outwards
JPH0328606Y2 (en) * 1985-03-08 1991-06-19

Also Published As

Publication number Publication date
JPS63187918A (en) 1988-08-03

Similar Documents

Publication Publication Date Title
CA1289633C (en) Pll frequency synthesizer
JPH07114364B2 (en) Atomic oscillator
US5239271A (en) Microwave synthesizer
Buckmaster et al. The application of phase-lock microwave frequency stabilizers to electron paramagnetic resonance spectrometers
US5621349A (en) Device for controlling an output level of an FM detecting circuit using phase locked loop
US4634999A (en) RF oscillator frequency stabilizing circuit using self-mixing with reference frequency
JP3712141B2 (en) Phase-locked loop device
JPH02305024A (en) Phase locked loop circuit
JPH0287822A (en) Automatic phase control circuit
JPH0328606Y2 (en)
JPH0440104A (en) Phase locked loop circuit of ultra high frequency diode oscillator
Osa et al. Phase-locked loop design for on-chip tuning applications
JPS6316050B2 (en)
JPH04344713A (en) Phase synchronizing circuit
JP3008938B1 (en) PLL circuit
JPH02502960A (en) frequency synthesizer
JPH10276085A (en) Pll circuit
JPH10224211A (en) Synthesizer-type oscillation circuit
JPH05114858A (en) Pll circuit
KR960039654A (en) Phase Locked Loop of Microwave Oscillators
JPS62285521A (en) Frequency synthesizer
JPS6298806A (en) Fm modulator
JPS5811140B2 (en) atomic oscillator
JPH0272718A (en) Frequency multiplier circuit
JPH05227019A (en) Pll circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees