JPS63187011A - Low nox combustion apparatus - Google Patents

Low nox combustion apparatus

Info

Publication number
JPS63187011A
JPS63187011A JP62018562A JP1856287A JPS63187011A JP S63187011 A JPS63187011 A JP S63187011A JP 62018562 A JP62018562 A JP 62018562A JP 1856287 A JP1856287 A JP 1856287A JP S63187011 A JPS63187011 A JP S63187011A
Authority
JP
Japan
Prior art keywords
air
tertiary
flames
spacer ring
tertiary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62018562A
Other languages
Japanese (ja)
Inventor
Tadahisa Masai
政井 忠久
Shigeki Morita
茂樹 森田
Shigeto Nakashita
中下 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62018562A priority Critical patent/JPS63187011A/en
Publication of JPS63187011A publication Critical patent/JPS63187011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To achieve both low NOx generating and complete combustion simultaneously by a method wherein the combustion of unburnt part is carried out after the completion of denitration reaction by securing sufficient time until flames come in contact with the tertiary air. CONSTITUTION:The secondary and tertiary air are transferred respectively to an air preheater by a forced air blower and the part of the air flows into a secondary air passage through an inlet hole 11 for the secondary air of which opening is controlled by a slidable damper 9 and after revolving force is provided by a secondary vane 12, the air is spouted into the furnace inside from a secondary jet hole 13. The remaining air is provided with revolving force by a tertiary air resister 15 and spouted into the furnace inside from a tertiary jet hole 16. In this case, a spacer ring 17 with sufficient thickness (d) is installed and its end part is so constituted as to be expanded outside the axial center of the spacer ring. The tertiary air is spouted around the circumference of flames with a fixed space to the flames. The sufficient time to denitrate in the flames is secured and the flames finishing denitration comes in contact with the tertiary air at the downstream part of the flames to carry out complete combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼装置に係り、特に燃焼排ガス中の窒素酸化
物の量を低減する燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion device, and particularly to a combustion device that reduces the amount of nitrogen oxides in combustion exhaust gas.

〔従来の技術〕[Conventional technology]

燃焼装置排ガスに混入する窒素酸化物(以下rNOxJ
と称する)は大気汚染物質として、その排出量をできる
だけ低減するよう、各種の技術が開発されている。その
低NOx化の方法の一つとして、燃焼段階でNOxを還
元する方法が実施されている。この方法は空気の供給を
何段かに分けて行い、最初は低酸素状態で燃焼を行うこ
とによりNOxの発生を押さえると共に、発生したNO
xはこの低酸素燃焼により生じた還元性物質により気相
還元を行い、更にこの気相還元域の下流に於いて充分な
酸素を供給することにより、未燃分の完全燃焼を行うよ
うになっている。
Nitrogen oxides (hereinafter referred to as rNOxJ) mixed in combustion equipment exhaust gas
) are air pollutants, and various technologies have been developed to reduce their emissions as much as possible. As one method for reducing NOx, a method has been implemented in which NOx is reduced during the combustion stage. This method divides the supply of air into several stages, and initially performs combustion in a low oxygen state to suppress the generation of NOx and to reduce the amount of NOx generated.
x performs gas-phase reduction using reducing substances generated by this low-oxygen combustion, and furthermore, by supplying sufficient oxygen downstream of this gas-phase reduction zone, complete combustion of unburned matter is achieved. ing.

即ち、火炎中での脱硝反応(還元反応)は空気(酸素)
の量が極端に少ない状態で進行するものであり、若し脱
硝反応域に対して充分な空気が供給されると酸化反応が
進行し、却ってNOxが増大する結果となる。このよう
な点を考慮して空気の供給量を考えると、通常の低NO
xバーナにおいては一次空気と燃料(微粉炭)の重量比
は2:1〜1:1程度であり、極端に空気の量が不足し
た状態で燃焼を行わせる。次に二次空気は、三次空気供
給量の1/3〜115程度とし、この二次空気により微
粉炭の一部を燃焼させて高温状態を維持する。この低酸
素+高温状態により前記脱硝反応が進行する訳である。
In other words, the denitrification reaction (reduction reaction) in a flame is performed using air (oxygen).
The oxidation reaction proceeds with an extremely small amount of NOx, and if sufficient air is supplied to the denitrification reaction zone, the oxidation reaction will proceed, resulting in an increase in NOx. Taking these points into account when considering the amount of air supplied, the normal low NO
In the x-burner, the weight ratio of primary air and fuel (pulverized coal) is about 2:1 to 1:1, and combustion is performed in an extremely insufficient amount of air. Next, the secondary air is set to about 1/3 to 115 of the tertiary air supply amount, and a part of the pulverized coal is combusted by this secondary air to maintain a high temperature state. This low oxygen + high temperature condition causes the denitrification reaction to proceed.

このため、脱硝反応が完結する迄は三次空気の混合を防
止することが高効率の低NOx燃焼を行わせる前提とな
る。
Therefore, preventing mixing of tertiary air until the denitrification reaction is completed is a prerequisite for highly efficient low NOx combustion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来は気流輸送した微粉炭をバーナノズルから噴射する
ことにより、この微粉炭搬送用の空気を一次空気として
利用し、微粉炭の噴射する一次噴口周囲に保炎リング等
の保炎部材を設けることにより火炎を安定させ、この火
炎の周囲に二次空気及び三次空気を噴射供給している。
Conventionally, pulverized coal transported by airflow is injected from a burner nozzle, the air for transporting the pulverized coal is used as primary air, and a flame-holding member such as a flame-holding ring is provided around the primary nozzle where the pulverized coal is injected. The flame is stabilized and secondary air and tertiary air are injected and supplied around the flame.

この場合、二次空気、三次空気に対しては強い旋回力を
与えることにより、空気の流動方向を限定制御し、以て
火炎との混合を遅らせるようにしている。この為、強い
旋回力を得る為に強力な送風機が必要となり所内動力が
増加することになる。また小規模のバーナでは空気流に
強力な旋回力を与えること自体が困難となり、更には充
分な火炉空間を確保することが困難であるため、例え充
分な旋回力が確保できても充分な低NOx化を達成する
ことは困難であり、従来構成をその侭実施すると、特に
小規模バーナに於けるNOx低減が不十分となる傾向が
あった。
In this case, by applying a strong swirling force to the secondary air and tertiary air, the flow direction of the air is limitedly controlled, thereby delaying the mixing with the flame. Therefore, in order to obtain a strong turning force, a powerful blower is required, resulting in an increase in internal power. In addition, with small-scale burners, it is difficult to apply a strong swirling force to the airflow, and it is also difficult to secure sufficient furnace space, so even if sufficient swirling force can be secured, it is difficult to apply a strong swirling force to the air flow. Achieving NOx reduction is difficult, and if conventional configurations were continued, NOx reduction, especially in small-scale burners, tended to be insufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決すべく構成したものであり
、低NOx化を阻む最大の理由は、完全燃焼用の三次空
気の分離が不十分なため、脱硝反応が完−了しないうち
に三次空気が混合して、低NOxか不十分となったり、
場合によってはかえってNOxが増加すること鑑み構成
したもである。
The present invention has been constructed to solve the above-mentioned problems, and the biggest reason for the reduction in NOx is that the tertiary air for complete combustion is not sufficiently separated, and the denitrification reaction is not completed before the denitrification reaction is completed. Tertiary air mixes, resulting in low or insufficient NOx,
This structure is designed in consideration of the fact that NOx may increase in some cases.

即ち、燃料を噴射供給するスリーブに対し、その中心軸
線を共有するように所定の肉厚を有するスペーサリング
を同心円状に配置し、二次空気噴口と三次空気噴口とを
別個に形成する。
That is, a spacer ring having a predetermined wall thickness is arranged concentrically with respect to a sleeve that injects and supplies fuel so as to share the center axis thereof, and a secondary air nozzle and a tertiary air nozzle are formed separately.

〔作用〕[Effect]

燃料を噴射供給するスリーブに対してその中心軸線を共
有するように同心円状にスペーサリングを配置し、二次
空気噴口と三次空気噴口とを別個に形成し、一次空気で
ある搬送空気と共に炉内に噴射された微粉炭による火炎
の周囲に二次空気を供給し、更にこの火炎周囲に層状に
三次空気を供給することにより火炎下流部までは三次空
気が火炎と混合するのを防止し、これにより脱硝に必要
な時間を確保し、更に火炎下流において火炎と三次空気
とが接触することにより火炎中の未燃分を燃焼させて完
全燃焼を達成する。
A spacer ring is arranged concentrically with the sleeve that injects and supplies fuel so as to share its center axis, and a secondary air nozzle and a tertiary air nozzle are formed separately, and the spacer ring is arranged concentrically with the sleeve that injects and supplies fuel. By supplying secondary air around the flame caused by the pulverized coal injected at This secures the time necessary for denitrification, and furthermore, the contact between the flame and tertiary air downstream of the flame burns the unburned content in the flame and achieves complete combustion.

以下本発明の実施例を図面を参考に詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図及び第2図は本発明の第1の実施例を示す。1 and 2 show a first embodiment of the invention.

図中符号14は微粉炭を火炉に噴射供給する一部スリー
ブであり、その−次スリーブ14内には中心軸線を共有
するように油供給管2が配置してあり、この油供給管2
に対しては一次空気により搬送されて着た微粉炭流に対
して旋回力を与えるためのスワラ6が設置しである。5
は一部スリーブ14の内周壁の円周方向に形成したベン
チュリ部である。また20は一部スリーブ14の火炉側
端部に取りつけた保炎板、7はこの保炎板20により形
成された微粉炭噴射用の一次噴口である。
Reference numeral 14 in the figure is a partial sleeve for injecting and supplying pulverized coal to the furnace, and an oil supply pipe 2 is disposed within the sleeve 14 so as to share the central axis.
A swirler 6 is installed for applying swirling force to the pulverized coal flow carried by the primary air. 5
is a venturi portion formed in the circumferential direction of the inner circumferential wall of the sleeve 14. Further, 20 is a flame holding plate partially attached to the furnace side end of the sleeve 14, and 7 is a primary nozzle for pulverized coal injection formed by this flame holding plate 20.

10は一部スリーブ14と、火炉壁19の開口部との間
に形成された環状空間の間に配置した二次スリーブであ
る。次に符号17はこの二次空気スリーブ10の外周部
に嵌挿するよう配置したスペーサリングである。このス
ペーサリング17は二次スリーブ10に比較して所定の
厚さdを有しており、後述するように火炎と三次空気と
の分離を良好に行えるようにしている。即ちスペーサリ
ング17を配置することにより、スペーサリング17の
内周部と一部スリーブ14の外周部とにより形成された
断面環状の空間を二次空気通路、スペーサリング17の
外周部と炉壁開口との間の空間を三次空気通路とし、各
々の通路の火炉側端部をそれぞれ二次噴口13、三次噴
口16とする。なお、スペーサリング17の火炉側端部
はその中心軸線に対して所定の角度で外側に拡散するよ
う略円錐台形に形成し、噴射される空気、特に三次空気
と火炎との接触を遅らせるようにしている。
Reference numeral 10 denotes a secondary sleeve partially disposed between the annular space formed between the sleeve 14 and the opening of the furnace wall 19. Next, reference numeral 17 denotes a spacer ring arranged to be fitted onto the outer circumference of the secondary air sleeve 10. This spacer ring 17 has a predetermined thickness d compared to the secondary sleeve 10, so that the flame and the tertiary air can be separated well as will be described later. That is, by arranging the spacer ring 17, a space having an annular cross section formed by the inner circumference of the spacer ring 17 and a part of the outer circumference of the sleeve 14 can be used as a secondary air passage, and the outer circumference of the spacer ring 17 and the furnace wall opening. The space between them is defined as a tertiary air passage, and the furnace-side ends of each passage are defined as a secondary nozzle 13 and a tertiary nozzle 16, respectively. The furnace side end of the spacer ring 17 is formed into a substantially truncated conical shape so as to diffuse outward at a predetermined angle with respect to its central axis, thereby delaying the contact between the injected air, especially the tertiary air, and the flame. ing.

以上の構成において、先ず起動に際しては油燃料1を油
供給管2のノズルチップ3から噴霧して燃焼を開始し、
火炉内の温度が微粉炭燃焼に適する程度に上昇したなら
ば微粉炭燃焼に切り換え、油燃料の供給は停止する。微
粉炭は粉砕装置から直接若しくは一旦微粉炭ビンに蓄え
られた後、搬送用空気(一次空気)との混合物4として
供給され、−次スリーブ14のベンチュリ5部において
その流れが整えられ、更にスワラ6により旋回力が与え
られて炉内に噴射され、燃焼する。この場合、搬送され
るべき微粉炭重量の約1〜3倍の空気が搬送用空気とし
て使用され、かつ燃焼用一次空気として利用される。こ
こで、石炭の発熱量が6500〜7000kcal/k
gとすると、理論空気量は8〜8.5kg/石炭1kg
程度となる。従って、一次空気の供給量は石炭燃焼に対
しては極端に不足し、火炉に於いては先ず、極端に空気
不足の状態で燃焼が行われる。
In the above configuration, first, upon startup, the oil fuel 1 is sprayed from the nozzle tip 3 of the oil supply pipe 2 to start combustion,
When the temperature inside the furnace rises to a level suitable for pulverized coal combustion, the combustion is switched to pulverized coal and the supply of oil fuel is stopped. Pulverized coal is supplied either directly from the crushing device or once stored in a pulverized coal bin, as a mixture 4 with conveying air (primary air), its flow is adjusted in the venturi 5 part of the secondary sleeve 14, and then the swirler 6 gives a swirling force, and is injected into the furnace, where it is combusted. In this case, approximately 1 to 3 times the weight of the pulverized coal to be conveyed is used as conveying air and as primary air for combustion. Here, the calorific value of coal is 6500 to 7000 kcal/k
g, the theoretical air amount is 8 to 8.5 kg/1 kg of coal.
It will be about. Therefore, the amount of primary air supplied is extremely insufficient for coal combustion, and in the furnace, combustion is first performed in an extremely air-deficient state.

一方、二次、三次の各空気は強制送風機により空気予熱
器(何れも図示せず)に送られ、約300℃に加熱され
た後火炉壁19と風箱壁8とにより構成された風箱18
内に供給される。このうち一部はスライドダンパ9によ
り開口面積を調節した二次空気採り入れ目11を経て二
次空気通路内に流入し、二次ベーン12により旋回力を
与えられた後、二次噴口13から火炉内に噴射する。残
りの空気は三次エアレジスタ15により旋回力を与えら
れ、三次噴口16から炉内に噴射される。
On the other hand, each of the secondary and tertiary air is sent to an air preheater (none of which is shown) by a forced blower, and after being heated to about 300°C, a wind box consisting of a furnace wall 19 and a wind box wall 8 18
supplied within. A part of this flows into the secondary air passage through the secondary air intake 11 whose opening area is adjusted by the slide damper 9, and after being given a swirling force by the secondary vane 12, from the secondary nozzle 13 to the furnace. Inject inside. The remaining air is given a swirling force by the tertiary air register 15 and is injected into the furnace from the tertiary nozzle 16.

この場合、充分な厚さdを有するスペーサリング17を
設置してあり、そのスペーサリングの端部はスペーサリ
ング軸心から外側に拡散するよう構成しであるので、三
次空気は火炎と一定の間隔をもって火炎周囲に噴射する
。このため火炎内で充分に脱硝を行う時間を確保するこ
とができ、火炎下流部では脱硝を完了した火炎と三次空
気とが接触し、完全燃焼をおこなう。尚以上の構成にお
いて、スペーサリング17により三次空気は火炎から良
好に分離されるため強い旋回力を与える必要はなく、従
って強力な送風機も不要である。
In this case, a spacer ring 17 having a sufficient thickness d is installed, and the ends of the spacer ring are configured to diffuse outward from the axis of the spacer ring, so that the tertiary air is kept at a certain distance from the flame. spray around the flame. Therefore, sufficient time can be secured for denitration within the flame, and in the downstream part of the flame, the flame that has completed denitration comes into contact with tertiary air, resulting in complete combustion. In the above configuration, since the tertiary air is well separated from the flame by the spacer ring 17, it is not necessary to apply a strong swirling force, and therefore a powerful blower is not required.

第3図は第2の実施例を示す。FIG. 3 shows a second embodiment.

この実施例ではスペーサリング17の端部の円錐台状に
形成した部分(以下「テーパー部」と称する)の外部テ
ーパー角βを内部テーパー角αよりも太き(形成し、二
次空気と三次空気との分離をより良好にするようにして
いる。
In this embodiment, the external taper angle β of the truncated conical portion (hereinafter referred to as “tapered portion”) at the end of the spacer ring 17 is thicker than the internal taper angle α. This allows for better separation from the air.

第4図は上記実施例の変形例を示す。FIG. 4 shows a modification of the above embodiment.

この変形例では、スペーサリング17本体からテーパー
部に移行す部分を滑らかに形成したアール部23.24
とし、二次、三次の空気がより円滑に流れるようにしで
ある。
In this modification, a rounded portion 23.24 is formed in which the transition from the spacer ring 17 main body to the tapered portion is smoothly formed.
This allows the secondary and tertiary air to flow more smoothly.

〔効果〕〔effect〕

本発明は実施例によりその内容を具体的に示したように
、燃料を噴射供給するスリーブに対し、所定の肉厚を有
するスペーサリングをその中心軸線を共有するように同
心円状に配置したので、火炎と三次空気とが接触するま
でに充分な時間を確保することができ、脱硝反応完了後
に未燃分燃焼を行うことになり、低Nox化と完全燃焼
の両者を同時に達成することができる。
As specifically shown in the embodiments, the present invention has a spacer ring having a predetermined wall thickness arranged concentrically with respect to a sleeve for injecting and supplying fuel so as to share its central axis. Sufficient time can be secured for the flame and tertiary air to come into contact, and unburned matter is combusted after the denitrification reaction is completed, making it possible to achieve both low NOx and complete combustion at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す微粉炭燃焼装置の
縦断面図、第2図は第1図に示す燃焼装置の正面図、第
3図は第2の実施例を示すスペーサリングの縦断面部分
図、第4図は第2の実施例の変形例を示すスペーサリン
グの縦断面部分図である。
FIG. 1 is a longitudinal sectional view of a pulverized coal combustion device showing a first embodiment of the present invention, FIG. 2 is a front view of the combustion device shown in FIG. 1, and FIG. 3 is a spacer showing a second embodiment. FIG. 4 is a vertical cross-sectional partial view of a spacer ring showing a modification of the second embodiment.

Claims (3)

【特許請求の範囲】[Claims] (1)一次空気と共に燃料を噴射供給するスリーブの周
囲から二次空気及び三次空気を供給するよう構成した燃
焼装置において、燃料を噴射供給するスリーブの周囲に
、所定の肉厚を有するスペーサリングを同心円状に配置
し、三次空気を噴射する三次噴口を、燃料を噴射する一
次噴口から隔離して形成したことを特徴とする低NOx
燃焼装置。
(1) In a combustion device configured to supply secondary air and tertiary air from around a sleeve that injects and supplies fuel together with primary air, a spacer ring having a predetermined wall thickness is installed around the sleeve that injects and supplies fuel. Low NOx characterized by being arranged concentrically and having a tertiary nozzle for injecting tertiary air separated from a primary nozzle for injecting fuel.
Combustion device.
(2)前記スペーサリングの火炉側端部に、その軸心か
ら外側に拡散するよう円錐台状のテーパー部を形成した
ことを特徴とする特許請求の範囲第(1)項記載の低N
Ox燃焼装置。
(2) A truncated conical tapered portion is formed at the furnace side end of the spacer ring so as to diffuse outward from its axis.
Ox combustion device.
(3)前記テーパー部の外テーパー角を内テーパー角よ
りも大きく形成したことを特徴とする特許請求の範囲第
(2)項記載の低NOx燃焼装置。
(3) The low NOx combustion device according to claim (2), wherein the outer taper angle of the tapered portion is formed to be larger than the inner taper angle.
JP62018562A 1987-01-30 1987-01-30 Low nox combustion apparatus Pending JPS63187011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018562A JPS63187011A (en) 1987-01-30 1987-01-30 Low nox combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018562A JPS63187011A (en) 1987-01-30 1987-01-30 Low nox combustion apparatus

Publications (1)

Publication Number Publication Date
JPS63187011A true JPS63187011A (en) 1988-08-02

Family

ID=11975061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018562A Pending JPS63187011A (en) 1987-01-30 1987-01-30 Low nox combustion apparatus

Country Status (1)

Country Link
JP (1) JPS63187011A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147920A (en) * 1983-02-14 1984-08-24 Mitsubishi Heavy Ind Ltd Burner
JPS61184309A (en) * 1985-02-12 1986-08-18 Babcock Hitachi Kk Fine powdered coal burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147920A (en) * 1983-02-14 1984-08-24 Mitsubishi Heavy Ind Ltd Burner
JPS61184309A (en) * 1985-02-12 1986-08-18 Babcock Hitachi Kk Fine powdered coal burner

Similar Documents

Publication Publication Date Title
JP3180138B2 (en) Premixed gas nozzle
US5201181A (en) Combustor and method of operating same
JPH02208417A (en) Gas-turbine burner and operating method therefor
CA2016579A1 (en) Combustion chamber of a gas turbine
JP2002022171A (en) Method and apparatus for decreasing combustor emissions with swirl stabilized mixer
US6461145B1 (en) Flat flame burners
JPH01137117A (en) Premixing pilot nozzle for dry type low nox combustion apparatus
US4515094A (en) Fuel jet method and apparatus for pulverized coal burner
US5433600A (en) Burner for the combustion of coke oven gas
JPH03213901A (en) Method and burner for burning fuel by step supply
JPS63187011A (en) Low nox combustion apparatus
JPS60126508A (en) Finely powdered coal burning device
CN210601615U (en) Coke oven gas burner with low NOx emission
JPS6064110A (en) Low nox burner
JPH0116885Y2 (en)
JPH0814562A (en) Combustion equipment for gas turbine
JP3059288B2 (en) Low nitrogen oxide boiler equipment
JPH0452414A (en) Air supplier for combustion
WO2019029062A1 (en) Gas combustor
JPS6078207A (en) Low nox type burner
JPS60218505A (en) Burner
JP5057363B2 (en) Gas turbine combustor
JPH06174233A (en) Gas turbine combustor
JPH0123682B2 (en)
JPS6280409A (en) Combustion device with low nox of solid fuel