JPH0116885Y2 - - Google Patents

Info

Publication number
JPH0116885Y2
JPH0116885Y2 JP1982059746U JP5974682U JPH0116885Y2 JP H0116885 Y2 JPH0116885 Y2 JP H0116885Y2 JP 1982059746 U JP1982059746 U JP 1982059746U JP 5974682 U JP5974682 U JP 5974682U JP H0116885 Y2 JPH0116885 Y2 JP H0116885Y2
Authority
JP
Japan
Prior art keywords
burner
air
reduction
combustion
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982059746U
Other languages
Japanese (ja)
Other versions
JPS58165406U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5974682U priority Critical patent/JPS58165406U/en
Publication of JPS58165406U publication Critical patent/JPS58165406U/en
Application granted granted Critical
Publication of JPH0116885Y2 publication Critical patent/JPH0116885Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は窒素酸化物の排出量を減少させる燃
焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a combustion device that reduces nitrogen oxide emissions.

窒素酸化物(以下「NOx」と略称する)は大
気汚染物質の一つとしてその排出量を減少させる
燃焼方法、燃焼装置が種々提案されかつ実用化さ
れている。
Nitrogen oxides (hereinafter abbreviated as "NOx") are one of the air pollutants, and various combustion methods and combustion devices have been proposed and put into practical use to reduce their emissions.

従来から行なわれているNOx低減燃焼方法と
しては、 (イ) 排ガスの一部を燃焼用空気に混合して酸素分
圧を下げて燃焼温度の低下を図る排ガス再循環
法。
Conventional NOx reduction combustion methods include: (a) Exhaust gas recirculation method, which mixes a portion of exhaust gas with combustion air to lower oxygen partial pressure and lower combustion temperature.

(ロ) 燃焼用空気を二段階もしくはそれ以上に分
け、一段目の空気供給量を理論空気量以下と
し、不足分の空気を2段目以後で供給するよう
にした二段燃焼法、 (ハ) 燃焼用空気を低温化させて燃焼温度を低下さ
せる方法、 等種々のものが提案されているが、いづれも熱
効率が大幅に低下したり、燃焼が不安定となる等
の問題があり、これらの方法のみではNOxの低
減率をさらに大幅に高めることは困難であるのが
実情である。
(b) A two-stage combustion method in which the combustion air is divided into two or more stages, the air supply amount in the first stage is less than the theoretical air amount, and the insufficient air is supplied in the second stage and thereafter; ) Various methods have been proposed, such as lowering the combustion temperature by lowering the temperature of the combustion air, but all of them have problems such as a significant decrease in thermal efficiency and unstable combustion. The reality is that it is difficult to further significantly increase the NOx reduction rate using only this method.

最近、バイアス燃焼法の一つとして空燃比を極
端に低下したバーナにおいて発生した還元性中間
生成物によりNOxを燃焼段階で還元除去する方
法、すなわち炉内脱硝法が開発され、注目されて
いる。
Recently, as a bias combustion method, an in-furnace denitrification method has been developed and is attracting attention, in which NOx is reduced and removed during the combustion stage using reducing intermediate products generated in a burner with an extremely low air-fuel ratio.

この燃焼法は主として熱負荷を受け持つ主バー
ナにおいて生じたNOxを、極端に低い空燃比で
燃焼を行なう還元バーナから発生した還元性中間
生成物によつて還元するものであるため、制御を
誤ると燃焼が不安定となつたり、大量の未燃分を
発生させる等の問題もある。
This combustion method mainly reduces NOx generated in the main burner, which is responsible for the heat load, using reducing intermediate products generated from the reduction burner, which performs combustion at an extremely low air-fuel ratio. There are also problems such as combustion becomes unstable and a large amount of unburned matter is generated.

さらに、還元バーナ火炎と主バーナ火炎との接
触が早過ぎると前記バーナ火炎は主バーナの燃焼
用空気によつて空燃比が上昇して「主バーナ火炎
化」してしまいNOxの還元が不可能となるばか
りでなく、かえつてNOxの生成量自体を増加さ
せることにもなつてしまう。つまりこの方法にお
いては中間生成物を生成すべきバーナ火炎の空燃
比をできるだけ正確に制御すること、還元性中間
生成物が生成されるまでの間は両火炎を分離して
還元火炎の「主バーナ火炎化」を防止することが
重要である。
Furthermore, if the reducing burner flame and the main burner flame come into contact too quickly, the air-fuel ratio of the burner flame will increase due to the combustion air of the main burner, turning it into a "main burner flame," making it impossible to reduce NOx. Not only this, but also the amount of NOx generated itself increases. In other words, in this method, it is necessary to control the air-fuel ratio of the burner flame in which the intermediate product is to be produced as accurately as possible, and to separate the two flames until the reducing intermediate product is produced. It is important to prevent "flaming".

この考案の目的は上述した必要性に鑑み構成し
た燃焼装置を提供することにあり、具体的には還
元バーナにおける中間生成物の生成を良好に行な
い、かつ中間生成物生成後の主バーナ火炎と還元
バーナ火炎との混合を良好に行なうよう構成した
燃焼装置を提供することにある。
The purpose of this invention is to provide a combustion device configured in view of the above-mentioned needs. Specifically, it is possible to efficiently generate intermediate products in the reduction burner, and to improve the production of intermediate products in the main burner flame after the intermediate products have been generated. An object of the present invention is to provide a combustion device configured to achieve good mixing with a reducing burner flame.

要するにこの考案は、主バーナの周囲に配置し
た還元バーナに対して空気供給筒、弁を介してそ
の供給量が制御される不活性ガス供給筒を配置
し、還元バーナ火炎全長のうち一部を不活性ガス
でその周囲を覆い、炉内に存在する酸素の多少に
影響されることなく空燃比の制御を行なつて還元
性中間生成物の生成を行ない、かつ中間生成物生
成後、主バーナ火炎と混合させて主バーナ火炎中
のNOxを気相還元するよう構成した燃焼装置で
ある。
In short, the idea is to arrange an air supply cylinder and an inert gas supply cylinder whose supply amount is controlled via a valve to the reduction burner arranged around the main burner, and to reduce part of the total length of the reduction burner flame. The surrounding area is covered with inert gas, the air-fuel ratio is controlled without being affected by the amount of oxygen present in the furnace, and reducing intermediate products are generated, and after the intermediate products are generated, the main burner is This is a combustion device configured to reduce NOx in the main burner flame into a gas phase by mixing it with the flame.

以下この考案の実施例を図面に基づき説明す
る。
Examples of this invention will be described below based on the drawings.

第1図および第2図において、火炉前壁5のバ
ーナスロート4の中心部には保炎板3が配置して
あり、この保炎板3を中心として周囲に主バーナ
1が複数本(図示の場合は4本)配置してある。
8は燃料11(例えば天然ガス)を各バーナに供
給するマニホールドである。ガスの燃焼はバーナ
単管につき燃焼容量の制限があるので図示の如く
最大負荷に対応する本数の主バーナを設ける。2
は主バーナ1を中心としてその周囲に配置した還
元バーナである。この還元バーナ2の周囲には同
バーナ2の中心軸線とこの軸線を同一にする様に
空気供給筒20が設けてあり、さらにこの空気供
給筒20の火炉側端部には不活性ガス供給筒21
が同一軸心線上に配置される。符号22は各空気
供給筒20へ燃焼用空気10を供給する空気供給
管路、23はこれら各空気供給管路22に設けた
弁、24は不活性ガス供給管路、25は同管路に
設けた弁である。
1 and 2, a flame holding plate 3 is arranged at the center of the burner throat 4 of the front wall 5 of the furnace, and a plurality of main burners 1 (not shown) are arranged around this flame holding plate 3. In the case of , 4 pieces) are arranged.
8 is a manifold that supplies fuel 11 (for example, natural gas) to each burner. Since the combustion of gas is limited by the combustion capacity of a single burner tube, the number of main burners corresponding to the maximum load is provided as shown in the figure. 2
are reduction burners arranged around the main burner 1. An air supply cylinder 20 is provided around the reduction burner 2 so that the central axis of the burner 2 and this axis are the same, and an inert gas supply cylinder is provided at the end of the air supply cylinder 20 on the furnace side. 21
are arranged on the same axis. Reference numeral 22 denotes an air supply pipe for supplying the combustion air 10 to each air supply cylinder 20, 23 indicates a valve provided in each air supply pipe 22, 24 indicates an inert gas supply pipe, and 25 indicates an inert gas supply pipe in the same pipe. It is a valve installed.

この燃焼装置において、風箱7に流入した燃焼
用空気10はエアレジスタ6において旋回力を与
えられ主バーナ1用の燃焼用空気としてスロート
4から噴射し主バーナ火炎F1を形成する。この
場合主バーナ1における空燃比は約1.4〜1.5とす
る。
In this combustion apparatus, combustion air 10 that has flowed into the wind box 7 is given a swirling force by the air register 6, and is injected from the throat 4 as combustion air for the main burner 1 to form the main burner flame F1 . In this case, the air-fuel ratio in the main burner 1 is approximately 1.4-1.5.

一方還元バーナ2に対してはマニホールド9を
経て燃料12が供給されると共に、空気供給管2
2を介して燃焼用空気10が供給される。この場
合還元バーナの空燃比は約0.4、もしくはこれ以
下、場合によつては弁23を全閉として全く空気
を供給しない。以下同バーナ2に対して一定量の
空気を供給する場合を例として説明する。図中F
はこの様な低空燃比により形成された還元バーナ
火炎である。一方不活性ガス供給筒21からは不
活性ガスG、例えば燃料ガス12が弁でその供給
量を制御されて供給される。この不活性ガスGは
各還元バーナ火炎F2を各々包み込む様に炉内に
噴射される。これにより還元バーナ火炎Fは火炎
全長が第2図に点線で示すように不活性ガスGに
よつて覆われ、主バーナ1のためにスロート4か
ら供給された燃焼用空気との接触が遮断される。
つまり不活性ガスGによつて同火炎F2を覆うこ
とにより同火炎F2は殆んど空気供給筒20から
供給される空気のみにより燃焼する。従つて還元
バーナ2の空燃比は燃料12の供給量と、弁23
を調節することによる燃焼用空気10の供給量を
調節することによりほぼ完全に制御することがで
きる。この様な制御の下で還元バーナ2における
燃焼は空燃比を極端に低下させるかもしくは空燃
比0として燃焼を行なわせるため、燃焼は緩慢で
ありNOxの還元に使用するCN,NH等の中間生
成物は火炎上流側では発生しない。この中間生成
物の生成域は不活性ガスGにより覆われているの
で主バーナ火炎F1との接触による「主バーナ火
炎化」の虞れもない。
On the other hand, fuel 12 is supplied to the reduction burner 2 via a manifold 9, and an air supply pipe 2
Combustion air 10 is supplied via 2. In this case, the air-fuel ratio of the reduction burner is about 0.4 or less, and in some cases, the valve 23 is fully closed to supply no air at all. An example in which a fixed amount of air is supplied to the burner 2 will be described below. F in the diagram
is the reducing burner flame formed by such a low air-fuel ratio. On the other hand, an inert gas G, for example, a fuel gas 12, is supplied from the inert gas supply cylinder 21, the amount of which is controlled by a valve. This inert gas G is injected into the furnace so as to surround each reducing burner flame F2 . As a result, the entire length of the reducing burner flame F is covered with the inert gas G as shown by the dotted line in FIG. 2, and contact with the combustion air supplied from the throat 4 for the main burner 1 is cut off. Ru.
That is, by covering the flame F 2 with the inert gas G, the flame F 2 burns almost exclusively with the air supplied from the air supply tube 20 . Therefore, the air-fuel ratio of the reduction burner 2 depends on the supply amount of the fuel 12 and the valve 23.
Almost complete control can be achieved by adjusting the supply of combustion air 10 by adjusting the amount of combustion air 10 . Under such control, the combustion in the reduction burner 2 is performed by extremely reducing the air-fuel ratio or by setting the air-fuel ratio to 0, so the combustion is slow and the intermediate production of CN, NH, etc. used for reducing NOx is reduced. Objects do not occur upstream of the flame. Since the region where this intermediate product is produced is covered with the inert gas G, there is no risk of "main burner flame formation" due to contact with the main burner flame F1 .

一方主バーナ火炎F1においても火炎温度は下
流側の方が高くなるのでNOxはこの下流側で発
生し易く、このため主バーナ火炎F1と還元バー
ナ火炎F2とは各々火炎前記の下流側でNOxの発
生しやすい個所、所謂燃え切り位置で混合される
方がNOxの還元効率が高い。つまり不活性ガス
供給筒21から供給される不活性ガスGは、還元
バーナ火炎F2中で還元性中間生成物が生成され
るべき火炎長さのみ還元バーナ火炎Fを覆い、そ
れ以後は噴射エネルギーを失つて、両火炎が積極
的に混合するよう弁25により不活性ガスGの供
給量を調節する。還元性中間生成物と接触した
NOxはN2に気相還元され低NOx化を達成する。
On the other hand, since the flame temperature of the main burner flame F 1 is higher on the downstream side, NOx is more likely to be generated on this downstream side. Therefore, the main burner flame F 1 and the reduction burner flame F 2 are respectively located on the downstream side of the flame. The NOx reduction efficiency is higher when the mixture is mixed at the location where NOx is likely to be generated, the so-called burnout location. In other words, the inert gas G supplied from the inert gas supply cylinder 21 covers the reducing burner flame F2 only for the flame length in which reducing intermediate products are to be produced, and after that, the inert gas G is used to inject energy into the reducing burner flame F2. The supply amount of the inert gas G is adjusted by the valve 25 so that the two flames are actively mixed. came into contact with reducing intermediates
NOx is reduced to N2 in the gas phase to achieve low NOx reduction.

即ち主バーナを囲みその近傍にあるO2を還元
バーナで消費することなく、また還元バーナで生
じた中間生成物を不活性ガスGで包み込み主バー
ナの燃え切り位置に投入混合し最適のNOx除去
をさせるものである。このためには負荷に応じ火
炎の燃え切り位置がバーナノズルからの距離の伸
び縮みすることに対応して不活性ガスの噴出速度
をかえて還元成分を無事に燃え切り位置に到達さ
せるべく各不活性ガスの供給量を弁で制御するも
のである。
In other words, the O 2 surrounding the main burner is not consumed by the reduction burner, and the intermediate products generated in the reduction burner are wrapped in inert gas G and mixed in at the burnout point of the main burner, thereby achieving optimal NOx removal. It is something that makes you do. To achieve this, the ejection speed of the inert gas is changed in response to the distance of the flame burnout position from the burner nozzle being expanded or contracted depending on the load, so that the reducing components can safely reach the flame burnout position. The amount of gas supplied is controlled by a valve.

この考案を実施することにより還元バーナ火炎
の全長のうち、還元性中間生成物を生成すべき部
分をほぼ完全に不活性ガスで覆うので、還元バー
ナ火炎の空燃比を正確に制御でき、NOxの気相
還元に必要な中間生成物を過不足なく生成し得
る。
By implementing this idea, the part of the reducing burner flame that should generate reducing intermediate products is almost completely covered with inert gas, making it possible to accurately control the air-fuel ratio of the reducing burner flame and reduce NOx. It is possible to generate just the right amount of intermediate products required for gas phase reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る燃焼装置の正面図、第
2図は第1図のA−A線による断面図である。 1……主バーナ、2……還元バーナ、10……
燃焼用空気、20……空気供給筒、21……不活
性ガス供給筒、F1……主バーナ火炎、F2……還
元バーナ火炎、G……不活性ガス。
FIG. 1 is a front view of a combustion device according to this invention, and FIG. 2 is a sectional view taken along line A--A in FIG. 1. 1... Main burner, 2... Reduction burner, 10...
Combustion air, 20...Air supply tube, 21...Inert gas supply tube, F1 ...Main burner flame, F2 ...Reduction burner flame, G...Inert gas.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 主バーナ近傍に還元バーナを配置し、主バーナ
で発生した窒素酸化物を還元バーナで発生した還
元性中間生成物で還元処理するものにおいて、空
気比1以上の複数の主バーナを環状に第1の仮想
円周上に配置し、更にこの第1の仮想円周と同軸
心にして囲む第2の仮想円周上に複数の還元バー
ナを配置し、各還元バーナは夫々の還元バーナを
囲む空気供給筒、この空気供給筒を囲みかつ弁を
介してその供給量が調整される不活性ガス供給筒
を設け、還元バーナ火炎全長に対して還元バーナ
火炎周囲を不活性ガスで覆うよう構成した低
NOx燃焼装置。
In a device in which a reducing burner is arranged near the main burner and nitrogen oxides generated in the main burner are reduced with a reducing intermediate product generated in the reducing burner, a plurality of main burners with an air ratio of 1 or more are arranged in a first A plurality of reduction burners are arranged on a virtual circumference of the first virtual circle, and a plurality of reduction burners are arranged on a second virtual circumference coaxially surrounding the first virtual circle, and each reduction burner is connected to the air surrounding the respective reduction burner. An inert gas supply cylinder surrounds this air supply cylinder and the supply amount is adjusted via a valve.
NOx combustion equipment.
JP5974682U 1982-04-26 1982-04-26 Low NOX combustion device Granted JPS58165406U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5974682U JPS58165406U (en) 1982-04-26 1982-04-26 Low NOX combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5974682U JPS58165406U (en) 1982-04-26 1982-04-26 Low NOX combustion device

Publications (2)

Publication Number Publication Date
JPS58165406U JPS58165406U (en) 1983-11-04
JPH0116885Y2 true JPH0116885Y2 (en) 1989-05-17

Family

ID=30070036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5974682U Granted JPS58165406U (en) 1982-04-26 1982-04-26 Low NOX combustion device

Country Status (1)

Country Link
JP (1) JPS58165406U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135213A (en) * 1983-12-23 1985-07-18 株式会社イナックス Method and device for cutting two-part tile element body
JPS60147008A (en) * 1984-01-09 1985-08-02 Babcock Hitachi Kk Combustion method for reducing nitrogen oxide
JP7183868B2 (en) * 2019-02-28 2022-12-06 株式会社Ihi combustor burner and combustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270432A (en) * 1975-12-08 1977-06-11 Hitachi Zosen Corp Method of two-stage burning for suppressing generation of nitrogen oxi des
JPS543925A (en) * 1977-06-10 1979-01-12 Mitsubishi Heavy Ind Ltd Solid fuel combustion
JPS55123909A (en) * 1979-03-19 1980-09-24 Babcock Hitachi Kk Low nox burner device for stabilizing combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270432A (en) * 1975-12-08 1977-06-11 Hitachi Zosen Corp Method of two-stage burning for suppressing generation of nitrogen oxi des
JPS543925A (en) * 1977-06-10 1979-01-12 Mitsubishi Heavy Ind Ltd Solid fuel combustion
JPS55123909A (en) * 1979-03-19 1980-09-24 Babcock Hitachi Kk Low nox burner device for stabilizing combustion

Also Published As

Publication number Publication date
JPS58165406U (en) 1983-11-04

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
EP0399336A1 (en) Combustor and method of operating same
JPH02208417A (en) Gas-turbine burner and operating method therefor
JPH0116885Y2 (en)
RU2242674C2 (en) Burner for multistage fuel combustion in air affording low nox emissions (alternatives) and method for reducing nox emissions
JPS556107A (en) Combustion device for furnace
JPS62169907A (en) Pulverized coal combustion boiler
JP3059288B2 (en) Low nitrogen oxide boiler equipment
JPS58138906A (en) Low nox combustion device
JPS60171310A (en) Low nox burner
JP3059289B2 (en) Low nitrogen oxide boiler equipment
JPS6078207A (en) Low nox type burner
JPH0614721U (en) Nitrogen oxide low generation burner device
JP2647461B2 (en) Thermal baking equipment
JP3121151B2 (en) Combustion burner and combustion method
JPS58102006A (en) Low nox pulverized coal burner
JP3999286B2 (en) Combustion method using catalytic combustor and catalytic combustor
KR200309303Y1 (en) A FUEL-STAGED GAS BURNER TO REUDCE NOx
JPS60218505A (en) Burner
JPS58182005A (en) Combustion method for low nox
JP2742150B2 (en) Combustors and combustion equipment
JPS60129503A (en) Device to control air for combustion and method thereof
JPS6219645B2 (en)
JPS6218807Y2 (en)
JPS5949412A (en) Low nox combustion method