JPS6064110A - Low nox burner - Google Patents

Low nox burner

Info

Publication number
JPS6064110A
JPS6064110A JP17214783A JP17214783A JPS6064110A JP S6064110 A JPS6064110 A JP S6064110A JP 17214783 A JP17214783 A JP 17214783A JP 17214783 A JP17214783 A JP 17214783A JP S6064110 A JPS6064110 A JP S6064110A
Authority
JP
Japan
Prior art keywords
pulverized coal
air
flow
furnace
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17214783A
Other languages
Japanese (ja)
Other versions
JPH0555763B2 (en
Inventor
Shigeki Morita
茂樹 森田
Tadahisa Masai
政井 忠久
Shigeto Nakashita
中下 成人
Toshio Uemura
俊雄 植村
Fumio Koda
幸田 文夫
Takeshi Nawata
縄田 豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP17214783A priority Critical patent/JPS6064110A/en
Publication of JPS6064110A publication Critical patent/JPS6064110A/en
Publication of JPH0555763B2 publication Critical patent/JPH0555763B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To carry out effectively gaseous phase reduction of NOx, by a method wherein a vortex forming component is arranged to an end part of a furnace side of either a path of gas or fuel and a reductive atmosphere is formed favorably by dividing a gas flow from a fuel flow through the vortex. CONSTITUTION:A furnace side opening of a pulverized coal pipe is made into an outward frame cap 100 constituted so as to expand the diameter of the opening toward an end of the opening. A sleeve 42 and the other sleeve 43 are arranged on an external circumferential part of the pulverized coal pipe 41 and further on an external circumferential part of the sleeve 42 respectively so that they form annular paths for passing of gas. Although a pulverized coal flow 10 consisting of primary air and pulverized coal is burnt by injecting the same into a furnace through the pulverized coal pipe 41, the pulverized coal flow 10 is controlled from dispersing outward through a flow of an eddy 103 to be formed in the frame cap 100, and a high temperature reductive flame 105 is formed centering around the center axis 104 of a burner, through which gaseous phase reduction of NOx is made into N2. A circulating vortex as shown by a symbol A in an illustration is formed by making a little secondary air 20 spout at turning strength which is different from that of tertiary air, the tertiary air B is once separated from the pulverized coal flow 10 through the circulating vortex and mixes with the high temperature reductive flame 105 at its rear flow.

Description

【発明の詳細な説明】 この発明は窒素酸化物(以下「NOX」と略称する)を
低減する燃焼装置に係り、特に微粉炭の燃焼時に大幅な
低NOx化を達成できる燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device that reduces nitrogen oxides (hereinafter abbreviated as “NOX”), and particularly relates to a combustion device that can achieve a significant reduction in NOx during combustion of pulverized coal.

最近の燃料小情の変化により、火力発電所用おいても石
炭を燃料とするものが増加している。
Due to recent changes in fuel conditions, the number of thermal power plants that use coal as fuel is increasing.

この場合、石炭は微粉砕され、例えば200メツシュ通
過fi7o%程度の微粉炭とされ、燃焼性。
In this case, the coal is finely pulverized, for example, into pulverized coal with a fi of about 70% passing through 200 meshes, and has good combustibility.

制御性を向上させるようにしている。この微粉炭燃焼技
術そのものは、古くより確立され今や重油並みの高効率
燃焼が可能となっている。ガス、油量様微粉炭燃焼器も
種々のものが開発されかつ使用されているが、その最も
基本的かつ最も高負荷高効率燃焼に適した形式として、
微粉炭供給管を中心軸に有する環状空気旋回型バーナが
挙げられる。該バーナにおいては、石炭はミルで微粉に
粉砕された後、燃焼用空気の20%程度の搬送用空気に
よって気流輸送され、バーナ口より火炉に投入される。
We are trying to improve controllability. This pulverized coal combustion technology itself has been established for a long time, and now it is possible to burn it as efficiently as heavy oil. Various gas and oil type pulverized coal combustors have been developed and are in use, but the most basic and most suitable type for high-load, high-efficiency combustion is the pulverized coal combustor.
An example is an annular air swirl type burner having a pulverized coal supply pipe as the central axis. In the burner, the coal is pulverized into fine powder by a mill, and then transported by air flow using conveying air that accounts for about 20% of the combustion air, and then introduced into the furnace through the burner port.

残りの燃焼用空気は、−重もしくは二重に環状分離され
た状態でバーナ口近傍で通常はある程度の旋回を与えら
れて該微粉炭噴流の周囲より噴出される。
The remaining combustion air is normally given a certain amount of swirl in the vicinity of the burner mouth in a heavily or double annularly separated state and is ejected from around the pulverized coal jet.

微粉炭は、この適度な旋回流によって生ずるバーナスロ
ート近傍の再循環流と、場合によってはインペラの追設
によって保炎をされ定常燃焼が維持される。単に微粉炭
を燃焼させるにあたっては、この種の燃焼器により所期
の目的は通常十分に達成される。
Pulverized coal is flame-stabilized and steady combustion is maintained by the recirculation flow near the burner throat generated by this moderate swirling flow and, in some cases, by the addition of an impeller. For simply burning pulverized coal, this type of combustor usually satisfies the intended purpose.

しかしながら、周知の通り、燃焼によって副成するNO
xは往々にして高負荷燃焼バーナにおいて発生しやすく
、これが大気汚染の元凶の一成分であるところから、幾
つかの基本的バーナ改良もしくは火炉全体の燃焼改善が
行われて来ている。微粉炭燃焼において特に問題となる
のは、微粉炭中に大量に(通常は1〜2wt%)含有さ
れる有機形態の窒素(以下Fuel Nと称す)に起因
するNOX (以下Fuel NOxと称す)であり、
排ガス中NOxの大部分を占めている。
However, as is well known, NO, which is produced as a by-product of combustion,
Since x is often generated in high-load combustion burners and is one of the causes of air pollution, some basic burner improvements or overall combustion improvements in the furnace have been carried out. A particular problem in pulverized coal combustion is NOx (hereinafter referred to as Fuel NOx) caused by organic nitrogen (hereinafter referred to as Fuel N) that is contained in large amounts (usually 1 to 2 wt%) in pulverized coal. and
It accounts for most of the NOx in exhaust gas.

ここで、Fuel NからのNOxとN2の成牛反応は
各々次式(LL (2)に示すとおりであり、かつ両反
応が競合的に行なわれている。
Here, the adult cow reactions of NOx from Fuel N and N2 are as shown in the following equations (LL (2)), and both reactions are performed competitively.

+02 Fuel N −NOx =−(1) −1−N。+02 Fuel N - NOx = - (1) -1-N.

Fuel N−m−中g −(2) 従ってN2の生成を優先し且つ成る程度高温負荷燃焼を
維持させるためには、高温還元炎の確保が重要なポイン
トとなる。
Fuel N-m-g-(2) Therefore, in order to give priority to the generation of N2 and maintain high-temperature load combustion to a certain extent, securing a high-temperature reducing flame is an important point.

一般に二段燃焼と呼ばれる燃焼法はこの燃焼反応の応用
であり、バーナゾーンで空気不足状態を作って高温還元
炎を形成させ、不足分をノく一ナゾーン後流の俗称アフ
タエアポートより投入することにより火炉全体で燃焼改
善を行なってNOx排出量を低減するものである。現在
においては、一般的な石炭において新設ボイラの場合2
00ppm程度までNOx排出濃度は抑制されるに至っ
ている。
The combustion method, which is generally called two-stage combustion, is an application of this combustion reaction.It creates an air-deficient state in the burner zone to form a high-temperature reducing flame, and then injects the insufficient amount from the after-air port downstream of the nokuichi-na zone. This improves combustion throughout the furnace and reduces NOx emissions. Currently, in the case of a new boiler for general coal, 2
The NOx emission concentration has been suppressed to about 0.00 ppm.

しかしながら、微粉炭の燃焼にあっては、空気不足なバ
ーナゾーンで還元気と共に残存する燃え残りの石炭粒子
(チャー)をアフタエアによって完全燃焼せしめるには
相当のボイラ(火炉)空間を必要とする。従って上記燃
焼法は原理的には極めて有効な低NOx燃焼法であるに
もかかわらず、ある程度の限界を有している。
However, in the combustion of pulverized coal, a considerable amount of boiler (furnace) space is required to completely burn unburnt coal particles (char) remaining together with reducing air in the air-deficient burner zone by after-air. Therefore, although the above combustion method is in principle an extremely effective low NOx combustion method, it has certain limitations.

このことからボイラ全体の燃焼を制御する代りに、各バ
ーナが各々前記原理に基づいて低NOx燃焼を行うよう
構成した、いわゆるデュアルレジスタタイプのバーナが
開発された。第1図はこのデュアルレジスタタイプのバ
ーナを示す。図中、微粉炭は気流輸送用空気(−次空気
)と共に微粉炭流1oとなって微粉炭管41がら炉内に
噴射する。この微粉炭流は火炉内に噴射して低空気比で
燃焼し、還元性中間生成物を生成しNOxの一部を気相
還元する。一方この火炎の外周部に対しては、二次エア
レジスタ61を経、がつ空気ベーン71で旋回力を与え
られた二次空気20が、またさらにその外周に対しては
三次エアレジスタ62を経て供給される三次空気3oが
噴射される。これにより気相還元後の火炎に対して空気
を供給し、未燃分を燃焼させるように構成しである。こ
れによりバーナ単体で二段燃焼が行われ、NOxは40
0ppm程度(低減率40%程度)に低減されることが
実証されている。この形式のバーナにおいては、低NO
x化を達成するためにはバーナスロート近傍の火炉内で
はバーナ火炎と、二次、三次、の空気が分離され良好な
還元雰囲気が形成されること、及びこの火炎の下流側に
おいては逆にこれら各空気と火炎(またはガス)が混合
して未燃分を良好に燃焼させることが要求される。しか
しながら、この種のタイプのバーナでは、通常、二次空
気20と三次空気30はスリーブで分離されてはいるも
のの実際にはバーナスロート出口近傍では微粉炭流、二
次空気噴流及び三次空気噴流は容易に混合し燃焼初期に
おいて高温還元炎を十分に分離維持することが不可能で
あり、この種の燃焼装置でこれ以上のNOx低減は極め
て困難であることが判明した。
For this reason, a so-called dual register type burner has been developed in which each burner is configured to perform low NOx combustion based on the above-mentioned principle, instead of controlling the combustion of the entire boiler. FIG. 1 shows this dual register type burner. In the figure, the pulverized coal is injected into the furnace through the pulverized coal pipe 41 as a pulverized coal flow 1o together with air for transporting the air (minus air). This pulverized coal stream is injected into the furnace and combusted at a low air ratio to produce reducing intermediates and reduce some of the NOx in the gas phase. On the other hand, the secondary air 20 that has been given a swirling force by the air vane 71 passes through the secondary air register 61 to the outer periphery of the flame, and the tertiary air register 62 to the outer periphery of the flame. The tertiary air 3o supplied through the air is injected. In this way, air is supplied to the flame after gas-phase reduction, and unburned matter is combusted. As a result, two-stage combustion is performed in the burner alone, and NOx is reduced to 40
It has been demonstrated that it is reduced to about 0 ppm (reduction rate of about 40%). This type of burner has low NO
In order to achieve the It is required that the air and flame (or gas) mix to effectively burn unburned components. However, in this type of burner, although the secondary air 20 and tertiary air 30 are usually separated by a sleeve, in reality, the pulverized coal flow, secondary air jet, and tertiary air jet are separated near the burner throat outlet. It has been found that it is impossible to mix easily and maintain sufficient separation of the high-temperature reducing flame in the early stages of combustion, and it is extremely difficult to further reduce NOx in this type of combustion apparatus.

この発明は上述した問題点に鑑み構成したものであり、
NOx低減率を大幅に向上させた燃焼装置を提供するこ
とにある。
This invention was constructed in view of the above-mentioned problems,
An object of the present invention is to provide a combustion device with significantly improved NOx reduction rate.

要するにこの発明は気体通路、及びまたは燃料通路の火
炉側端部に対して渦流形成部材を配置し、この渦流によ
り気体と燃料流とを分割して還元性雰囲気を良好に形成
し、NOxの気相還元を効果的に行える装置を提供する
ことにある。
In short, this invention arranges a vortex forming member on the furnace side end of the gas passage and/or the fuel passage, and uses this vortex to separate the gas and fuel flow to form a good reducing atmosphere, thereby reducing NOx gas. The object of the present invention is to provide an apparatus that can effectively perform phase reduction.

先ず、この発明の実施例を示す前に、この発明に至った
技術的ポイントのいくつかについて説明する。先に述べ
たようにバーナ単体で二段燃焼的効果を生ぜしめ且つこ
れによっても高効率燃焼を維持して灰中未燃分の十分な
る抑制を行なうには次の各々の技術的ポイントに応じた
改良が必要である。
First, before showing embodiments of the present invention, some of the technical points that led to the present invention will be explained. As mentioned earlier, in order to produce a two-stage combustion effect with a single burner, maintain high efficiency combustion, and sufficiently suppress unburned content in the ash, the following technical points must be met. Further improvements are needed.

(1)微粉炭流を出来る限り拡散散布させない。(1) Avoid spreading the pulverized coal flow as much as possible.

(2) (1)によって生ずる微粉炭気流の高温還元炎
を維持する。
(2) Maintain the high-temperature reducing flame of the pulverized coal airflow produced by (1).

(3)最外周空気を(1)(2)で形成される初期燃焼
域と出来る限り分離する。(高温還元炎によるNOx抑
制) (4)(3ンの操作後、ある程度の滞留時間を経た後今
度は該高温還元炎と最外周エアの混合を良好に行う(未
燃分の低減)。
(3) Separate the outermost air from the initial combustion zone formed in (1) and (2) as much as possible. (NOx Suppression by High Temperature Reducing Flame) (4) (After 3 hours of operation, after a certain residence time, the high temperature reducing flame and the outermost air are mixed well (reduction of unburned matter).

上記のうち(LL (2)は微粉炭流について、(3)
(4)は最外周空気についての流体力学上の技術的ポイ
ントであるが、(1)(,2)あるいは(3)(4)は
各々一般的には相矛循する問題をかかえている。
Among the above, (LL (2) is for pulverized coal flow, (3)
(4) is a technical point in terms of fluid dynamics regarding the outermost air, but (1), (2), or (3) and (4) each generally have contradictory problems.

例えば(1)に示す拡散散布の抑制、達成のためには通
常用いられるような菊状インペラは使用出来ず、従って
(2)の高温還元炎達成には新らたな工夫を要す。又、
(3)の空気の分離達成にあたってはその後流で(4)
の効果的な混合達成のための新らたな工夫を要す〇 つまりバーナ毎の低NOx化を飛躍的に向上させるため
には、単に最外周空気の混合を遅延させて二段燃焼的効
果を生ぜしめるという従来の概念を涜篤する必要があり
、この発明は上記(1)〜(4)項について技術的解決
を図ったものである。
For example, in order to suppress the diffusion shown in (1), the chrysanthemum-shaped impeller that is normally used cannot be used, and therefore, a new method is required to achieve the high-temperature reducing flame in (2). or,
In order to achieve air separation in (3), (4)
In other words, in order to dramatically improve the reduction of NOx for each burner, we need to create a two-stage combustion effect by simply delaying the mixing of the outermost air. It is necessary to deviate from the conventional concept of causing a problem, and this invention aims to provide a technical solution to the above-mentioned items (1) to (4).

第2図はこの発明の一実施例を示す。FIG. 2 shows an embodiment of the invention.

先ず、微粉炭管41の火炉側開口はその口径を開口端に
向って拡大するよう構成した外向きフレームキャップ(
以下単に「フレームキャップ」と称する)100となっ
ている。このフレームキャップ100は微粉炭管41と
一体的に形成する外別個に形成した後、微粉炭管端部に
装着するようにしてもよい。また、このフレームキャッ
プを複数枚のフレームキャップ構成片によって菊片の開
閉を行い、フレームキャップの口径を変化させるよう構
成してもよい。
First, the furnace-side opening of the pulverized coal pipe 41 is fitted with an outward-facing frame cap (
(hereinafter simply referred to as "frame cap") 100. The frame cap 100 may be formed integrally with the pulverized coal pipe 41 or may be formed separately and then attached to the end of the pulverized coal pipe. Further, the frame cap may be configured such that the chrysanthemum pieces are opened and closed using a plurality of frame cap constituent pieces to change the diameter of the frame cap.

次に微粉炭管41の外周部にはスリーブ42が、さらに
その外周部には他のスリーブ43が各々気体通過用の環
状の通路を形成するよう配置しである。これらスリーブ
は従来型スリーブと同様に先端部の口径を拡大しない形
状、つまりスリーブ全体を円筒を切断した形状に形成す
る外、図示の如く、フレームキャップ100と同様に開
口端に向って口径を拡大させる漏」−状部101゜10
2を形成すると後述の如く気体の分離をより効果的に行
うことができる。なお、フレームキャップ及び漏斗状部
共に火炉側開口端に向って部材壁の厚みを漸増させるこ
とによりこれらフレームキャップ、漏斗状部の外径部が
内径部よりも急角度で開口端に向って展開するよう構成
してもよい。
Next, a sleeve 42 is disposed around the outer periphery of the pulverized coal pipe 41, and another sleeve 43 is disposed around the outer periphery of the pulverized coal pipe 41 to form an annular passage for gas passage. Like conventional sleeves, these sleeves have a shape that does not enlarge the diameter at the tip, that is, the entire sleeve is formed into a cut-off cylindrical shape. 101゜10
If 2 is formed, gas separation can be performed more effectively as will be described later. In addition, by gradually increasing the thickness of the member walls of both the frame cap and the funnel-shaped part toward the open end on the furnace side, the outer diameter part of the frame cap and the funnel-shaped part expands toward the open end at a steeper angle than the inner diameter part. It may be configured to do so.

以上の構成の装置において、−次空気と微粉炭とから成
る微粉炭流10は微粉炭管41を経て炉内にuM ac
t 1.優位するが−この鳩舎、詰粉1お管に対しては
インペラは設置しておらず、かつ微粉炭流はフレームキ
ャップ100において形成される小さな渦流103によ
って外側に拡散するのを抑制され、このためバーナ軸心
104を中心としてバーナ近傍に高温還元炎105を形
成する。この高温還元炎の・N H,・ON等のラジカ
ルおよびCO等の還元性中間生成物によってNOxをN
2に気相還元する。つまり、フレームキャップによって
微粉炭の拡散を防止できるので高温還元域を従来型バー
ナに比較してバーナ側に近づけることができ、従来型の
スリーブを用いて二次空気、三次空気を噴射してもこれ
ら空気の混合点より上流側に高温還元域が形成されるの
で比較的良好な気相還元が行える。
In the apparatus configured as above, the pulverized coal flow 10 consisting of sub-air and pulverized coal passes through the pulverized coal pipe 41 into the furnace.
t1. However, in this pigeon house, no impeller is installed for the stuffing tube, and the pulverized coal flow is suppressed from spreading outward by the small vortex 103 formed in the frame cap 100. Therefore, a high-temperature reducing flame 105 is formed near the burner centering on the burner axis 104. NOx is reduced by radicals such as ・NH, ・ON and reducing intermediate products such as CO in this high-temperature reducing flame.
2 by gas phase reduction. In other words, since the flame cap can prevent pulverized coal from dispersing, the high-temperature reduction zone can be brought closer to the burner side compared to conventional burners, and even when secondary air and tertiary air are injected using conventional sleeves. Since a high temperature reduction region is formed upstream of the mixing point of these airs, relatively good gas phase reduction can be achieved.

しかし、以下の様にして二次空気及び三次空気を噴射す
ればより効果的である。つまり二次空気ダンパ321.
三次空気ダンパ331の制御及びもしくは二次、三次個
別空気ファンの設置による二次空気20.三次空気30
の末端旋回器たる二次空気でベーン71および三次エア
レジスタ62上流の圧力及び風量の独立制御方式により
、この二次空気及び三次空気を高温還元炎105と分離
する。
However, it is more effective to inject secondary air and tertiary air as follows. In other words, the secondary air damper 321.
Secondary air 20. by controlling a tertiary air damper 331 and/or installing secondary and tertiary individual air fans. Tertiary air 30
The secondary air and the tertiary air are separated from the high-temperature reducing flame 105 by independent control of the pressure and air volume upstream of the vane 71 and the tertiary air register 62.

この場合、三次空気30の圧力はエアレジスタ62の上
流側で120mmAg以」二で運転すると良好な結果が
得られることが確認できた。またこの際三次空気と二次
空気の風量は約4=1とすると効果的であることもU(
I認できた。
In this case, it was confirmed that good results could be obtained by operating the tertiary air 30 at a pressure of 120 mmAg or higher on the upstream side of the air register 62. Also, it is effective to set the volume of tertiary air and secondary air to approximately 4=1 at this time.
I was able to recognize it.

以上により、三次空気30は強力な旋回力と適切な風量
が維持されバーナスロートにおいて二次空気、三次空気
共に広い角度で炉内に噴射し前述の如く高温還元炎がバ
ーナ近傍で形成されるのと相まって両者の混合は僅かで
あり良好な気相還元を行える。またこの高温還元炎の下
流側においては二次空気、三次空気の噴射エネルギーも
低下しバーナ軸心104側に流れ込み、未燃分の燃焼を
行う。
As a result, the tertiary air 30 maintains a strong swirling force and appropriate air volume, and both the secondary air and tertiary air are injected into the furnace at a wide angle at the burner throat, and a high-temperature reducing flame is formed near the burner as described above. Combined with this, the mixing of the two is slight and good gas phase reduction can be achieved. Further, on the downstream side of this high-temperature reducing flame, the injection energy of secondary air and tertiary air also decreases and flows toward the burner axis 104, where unburned air is combusted.

なお、スロート径の小さなバーナをこの発明に係るバー
ナに改造する場合には以上の空気供給方式をバックアッ
プするために、各スリーブ42、43の先端に漏斗状部
101.102を形成するときわめて効果的である。
In addition, when converting a burner with a small throat diameter to the burner according to the present invention, it is extremely effective to form funnel-shaped portions 101 and 102 at the tips of each sleeve 42 and 43 in order to back up the above air supply system. It is.

又、少量の二次空気20を、三次空気とは異なる旋回強
度をもって噴出させることにより、図中Aで示される如
き固定された循環渦を形成させることが出来ることも実
験により確認された。
It has also been confirmed through experiments that a fixed circulating vortex as shown by A in the figure can be formed by blowing out a small amount of secondary air 20 with a swirling strength different from that of tertiary air.

この循環渦Aの存在により、最外周空気(当実施例では
三次空気B)は、この循環渦のまわりで一旦微粉炭流l
Oとは極めて効果的に分離されしかもこの渦の存在のた
めに、その後流では微粉炭流により形成した高温還元炎
105の後流との混合改善が成される。
Due to the existence of this circulating vortex A, the outermost air (tertiary air B in this example) is once turned into a pulverized coal flow around this circulating vortex.
O is separated very effectively, and the presence of this vortex improves mixing with the wake of the high-temperature reducing flame 105 formed by the pulverized coal flow in its wake.

更に、排ガス通路50は、微粉炭流と二次空気の空間的
分離のために有効であり必ずしも多量の排ガスを必要と
するものでは無く、実用的な見地からも従来バーナに比
して問題とはならない。
Furthermore, the exhaust gas passage 50 is effective for spatially separating the pulverized coal flow and the secondary air, does not necessarily require a large amount of exhaust gas, and is less problematic than conventional burners from a practical standpoint. Must not be.

第3図は第2図に示すバーナに対する各気体及び微粉炭
の供給系統を示す。図中符号200は・−=、−、J−
i0八に&+) + 18蛸、M4か批鉛才A Sル、
301は排ガス再循環ファン、302は二次空気ファン
、303は三次空気ファンである。
FIG. 3 shows a supply system for each gas and pulverized coal to the burner shown in FIG. 2. The code 200 in the figure is -=, -, J-
i08 &+) + 18 octopus, M4 or critical lead A S le,
301 is an exhaust gas recirculation fan, 302 is a secondary air fan, and 303 is a tertiary air fan.

この発明になるバーナ装置は、ボイラ火炉に対してアフ
タエアポート等を形成していない旧型のボイラに対して
大きな効果を発揮し、ボイラ本体の改造を行なうことな
く大幅な低NOx化が達成できるが、この型式のボイラ
に限らず、二段燃焼型ボイラ、炉内脱硝型ボイラにおい
ても効果的である。
The burner device of this invention is highly effective for older boilers that do not have an after air port formed in the boiler furnace, and can achieve significant NOx reduction without modifying the boiler body. It is effective not only for this type of boiler but also for two-stage combustion type boilers and in-furnace denitrification type boilers.

第4図は各型式のボイラを示し、(a)は無対策型、(
b)は二段燃焼型、(C)は炉内脱硝型である。
Figure 4 shows each type of boiler, (a) is the unmeasured type, (
b) is a two-stage combustion type, and (C) is an in-furnace denitrification type.

図中符号400はこの発明に係るバーナ、410はアフ
タエアポート、420はこの発明に係るノく−すの空気
比を低下させて脱硝専用のバーナとしたものを示す。
In the figure, reference numeral 400 indicates a burner according to the present invention, 410 indicates an after-air port, and 420 indicates a burner exclusively used for denitration by lowering the air ratio of the nozzle according to the present invention.

先ず無対策型(a)については上述のとおりであるが、
(b)に示す二段燃焼の場合には各バーナから供給され
る二次、三次の各空気がアフタエアとして機能し、各バ
ーナ毎に未燃分をあらかじめ燃焼させるため、従来型の
二段燃焼に比較して灰中未燃分の抑制を効果的に行うこ
とができる。また極く最近第4図(0)に示す如く火炉
内に燃料過濃混合気を投入して火炉内で局所的にNOx
の気相還元を行なう燃焼法(炉内脱硝法)が紹介されて
いるが、本燃焼法においては炉内局所に燃料過濃域を形
成する為に、逆に主燃焼ゾーンでは空気過剰気味となり
、この主燃焼ゾーンで多量のNOxを発生させてしまい
結果的には十分なるNOx低減効果を得がたい場合があ
るが、本発明によるバーナを主燃焼域に設置することで
この種の問題は大幅に改善される。
First, regarding the no-measure type (a), as mentioned above,
In the case of the two-stage combustion shown in (b), the secondary and tertiary air supplied from each burner functions as after air, and the unburned matter is combusted in advance for each burner, so the conventional two-stage combustion The unburned content in the ash can be effectively suppressed compared to the above. In addition, very recently, as shown in Figure 4 (0), a rich mixture of fuel has been injected into the furnace to locally release NOx.
A combustion method (in-furnace denitrification method) that performs gas phase reduction has been introduced, but this combustion method creates a fuel-enriched region locally in the furnace, and conversely, the main combustion zone tends to have an excess of air. However, by installing the burner according to the present invention in the main combustion zone, a large amount of NOx is generated in the main combustion zone, and as a result, it may be difficult to obtain a sufficient NOx reduction effect. Improved.

第5図にこの発明のバーナによるNOx低減効果を示す
。■は従来のデュアルエアレジスタによる最小NOx排
出濃度、IIはこの発明によるバーナで従来のデュアル
エアレジスタバーナと同一操作条件で運転した場合、■
は操作条件を変化させて運転した際の最小NOx排出濃
度である。
FIG. 5 shows the NOx reduction effect of the burner of the present invention. ■ is the minimum NOx emission concentration by the conventional dual air register, and II is the burner according to the present invention when operated under the same operating conditions as the conventional dual air register burner.
is the minimum NOx emission concentration when operating under varying operating conditions.

なおこの実験に当っては日本炭を使用した。Note that Japanese charcoal was used in this experiment.

この日本炭の性状は燃料比(固定炭素分/揮発分)が約
1、窒素含有率1.1% dry ash freeで
あり、500Kg−coal/h 、バーナ空気過剰率
120%で運転した。
The properties of this Japanese coal were that the fuel ratio (fixed carbon content/volatile content) was approximately 1, the nitrogen content was 1.1%, dry ash free, and the operation was performed at 500 kg-coal/h and a burner excess air ratio of 120%.

この発明を実施することにより、各バーナにおいて高温
還元火炎と空気の分離が効果的に行えるのでNOxの気
相還元を効果的に行うことができ従来の型式のバーナに
比較してNOxの排出量を大幅に低減することができる
By implementing this invention, the high-temperature reduction flame and air can be effectively separated in each burner, so NOx can be effectively reduced in the gas phase, resulting in lower NOx emissions compared to conventional burners. can be significantly reduced.

さらに各バーナでBoxの除去を行うので、新設の燃焼
装置のみでなく、既設の装置に対しても燃焼装置自体に
ついては改造することな〈実施できるので幅広い分野に
おいて実施可能である。
Furthermore, since the box is removed from each burner, it can be implemented not only in newly installed combustion equipment but also in existing equipment without modifying the combustion equipment itself, so it can be implemented in a wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の低NOxバーナの断面図、第2図はこの
発明に係る低NOx燃焼装置の断面図、第3図は第2図
の装置に供給する燃料、気体の系統図、第4図(a)な
いしくc)はボイラ火炉断面図、第5図は各燃焼装置の
NOx排出量を示す線図である。 10 ・・・・・・微粉炭流 20 ・・・・・・二次空気 30・・・・・・三次空気 皿・−=−・フレームキャップ 101、102・・・・・・漏斗状部 第1図 n 第2図 手続補正書 (自発) 昭和58年11月15日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58 年 特 許 願第172:147号2、発明
の名称 低NQx燃焼装置a 3、 補正をする者 事件との関係 特許出願人 住 +9i 東京都千代田区大手町2丁目6番2号氏 
名(名称) (544)バブコック日立株式会社4、代
理人 氏 名 NK渋谷コータース 電話 (460) 60
72補正の内容 1、「発明の詳細な説明」の欄について。 (1)明細書第12頁上から第5行目[12ommAg
 Jとあるものを1120mmAqJに訂正する。 (以上)
FIG. 1 is a sectional view of a conventional low NOx burner, FIG. 2 is a sectional view of a low NOx combustion device according to the present invention, FIG. 3 is a system diagram of fuel and gas supplied to the device in FIG. 2, and FIG. Figures (a) to (c) are sectional views of the boiler furnace, and Figure 5 is a diagram showing the NOx emissions of each combustion device. 10...Pulverized coal flow 20...Secondary air 30...Tertiary air pan--=--Frame cap 101, 102...Funnel-shaped part No. Figure 1 n Figure 2 Procedural amendment (voluntary) November 15, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1. Indication of the case 1981 Patent Application No. 172:147 2. Title of the invention Low NQx combustion device a 3. Relationship with the case of the person making the amendment Patent applicant residence +9i Mr. 2-6-2 Otemachi, Chiyoda-ku, Tokyo
Name (544) Babcock Hitachi Co., Ltd. 4, Agent Name NK Shibuya Courters Telephone (460) 60
72 Amendment Contents 1, Regarding the "Detailed Description of the Invention" column. (1) Line 5 from the top of page 12 of the specification [12ommAg
Correct the text “J” to 1120mmAqJ. (that's all)

Claims (1)

【特許請求の範囲】 1、 燃焼装置の燃料通路及びまたは気体通路の火炉側
端部またはその近傍に、渦流形成部材を一以上設け、燃
料流と気体流、及びまたは気体流相互の分割を行うよう
構成したことを特徴とする低NOx燃焼装置。 2・ 燃料通路の火炉側端部に対し、その開口端に向っ
て口径を拡大するフレームキャップを形成して保炎用渦
流形成部材とすることを特徴とする特許請求の範囲第1
項記載の低NOx燃焼装置。 3 3・ 二次空気通路及びまたは三次空気通路の火炉側端
部を、開口端に向って口径を拡大する漏斗状部とし、こ
の漏斗状部を前記渦流形成部材としたことを特徴とする
特許請求の範囲第1項または第2項記載の低NOx燃焼
装置。 なるよう各空気通路に旋回部材を配置し、かつこれら二
次空気及び三次空気の供給量を独立に制御し得るよう構
成したことを特徴とする特許請求の範囲第1項ないし第
3項のいづれかに記載の低NOx燃焼装置。 5、渦流形成部材の開口端の口径を可変とし、かつこの
口径の調節を装置外部から行えるよう構成したことを特
徴とする特許請求の範囲第2項または第3項記載の低N
Ox燃焼装置。 6・ 渦流形成部材の部材壁厚みを火炉側開口端に向っ
て漸増させるよう構成したことを特徴とする特許請求の
範囲第1項記載の低190X燃焼装置。
[Claims] 1. One or more vortex forming members are provided at or near the furnace side end of the fuel passage and/or gas passage of the combustion device to separate the fuel flow and gas flow, and/or the gas flow from each other. A low NOx combustion device characterized by being configured as follows. 2. Claim 1, characterized in that a flame-holding vortex forming member is formed by forming a flame cap whose diameter increases toward the open end of the furnace-side end of the fuel passage.
The low NOx combustion device described in Section 1. 3 3. A patent characterized in that the furnace-side end of the secondary air passage and/or the tertiary air passage is a funnel-shaped part whose diameter increases toward the open end, and this funnel-shaped part is the vortex forming member. A low NOx combustion device according to claim 1 or 2. Any one of claims 1 to 3 is characterized in that a rotating member is arranged in each air passage so that the amount of secondary air and tertiary air supplied can be independently controlled. The low NOx combustion device described in . 5. The low N according to claim 2 or 3, characterized in that the diameter of the opening end of the vortex forming member is variable and the diameter can be adjusted from outside the device.
Ox combustion device. 6. The low 190X combustion device according to claim 1, characterized in that the wall thickness of the vortex forming member is gradually increased toward the open end on the furnace side.
JP17214783A 1983-09-20 1983-09-20 Low nox burner Granted JPS6064110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214783A JPS6064110A (en) 1983-09-20 1983-09-20 Low nox burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214783A JPS6064110A (en) 1983-09-20 1983-09-20 Low nox burner

Publications (2)

Publication Number Publication Date
JPS6064110A true JPS6064110A (en) 1985-04-12
JPH0555763B2 JPH0555763B2 (en) 1993-08-17

Family

ID=15936431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214783A Granted JPS6064110A (en) 1983-09-20 1983-09-20 Low nox burner

Country Status (1)

Country Link
JP (1) JPS6064110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860572A (en) * 1994-08-26 1996-03-05 Nippon Oil & Fats Co Ltd Deinking agent
WO1998021524A3 (en) * 1996-11-12 1998-09-17 Babcock & Wilcox Co An improved pulverized coal burner
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device
JP2018109513A (en) * 2018-03-01 2018-07-12 川崎重工業株式会社 Petroleum pitch fuel burner and method of using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236609A (en) * 1975-09-16 1977-03-22 Takeda Chem Ind Ltd Process for preparation of alcohol and carbon monoxide
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236609A (en) * 1975-09-16 1977-03-22 Takeda Chem Ind Ltd Process for preparation of alcohol and carbon monoxide
JPS56119406A (en) * 1980-02-25 1981-09-19 Kawasaki Heavy Ind Ltd Pulverized coal burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860572A (en) * 1994-08-26 1996-03-05 Nippon Oil & Fats Co Ltd Deinking agent
WO1998021524A3 (en) * 1996-11-12 1998-09-17 Babcock & Wilcox Co An improved pulverized coal burner
US20080017108A1 (en) * 2006-06-30 2008-01-24 Czerniak Michael R Gas combustion apparatus
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device
JP2018109513A (en) * 2018-03-01 2018-07-12 川崎重工業株式会社 Petroleum pitch fuel burner and method of using the same

Also Published As

Publication number Publication date
JPH0555763B2 (en) 1993-08-17

Similar Documents

Publication Publication Date Title
US6672863B2 (en) Burner with exhaust gas recirculation
KR910006234B1 (en) Apparatus for coal combustion
US9822967B2 (en) Apparatus for burning pulverized solid fuels with oxygen
KR100709849B1 (en) Nox-reduced combustion of concentrated coal streams
CN111121023A (en) Fuel side flue gas recirculation nitrogen combustor and combustion method thereof
JP2005024136A (en) Combustion apparatus
JP3643461B2 (en) Pulverized coal combustion burner and combustion method thereof
JPH08135919A (en) Combustion device
IL127097A (en) Method of effecting control over an rsfc burner
JPS6064110A (en) Low nox burner
JP2010270990A (en) Fuel burner and turning combustion boiler
JPS60126508A (en) Finely powdered coal burning device
KR102317704B1 (en) Low NOx Burner comprising recirculation ports
CA2167320A1 (en) Apparatus and Method for Reducing NOx, CO and Hydrocarbon Emissions When Burning Gaseous Fuels
JPH09112820A (en) Pulverized coal burner
WO2019029062A1 (en) Gas combustor
JPS6280413A (en) Low nox combustion device for solid fuel
JPS6086311A (en) Low nox boiler
JPS62116818A (en) Burner device for use in igniting gas, oil coal
JPS6246109A (en) Low nox burner for solid fuel
JPH05264015A (en) Afterburner for gas turbine exhaust
JPS6237606A (en) Solid fuel burning device with low nox concentration
JPS6280409A (en) Combustion device with low nox of solid fuel
JPS6096813A (en) Low nox type high efficiency burning device
JPH0674882B2 (en) Low NOx combustion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees