JPS6096813A - Low nox type high efficiency burning device - Google Patents

Low nox type high efficiency burning device

Info

Publication number
JPS6096813A
JPS6096813A JP20371983A JP20371983A JPS6096813A JP S6096813 A JPS6096813 A JP S6096813A JP 20371983 A JP20371983 A JP 20371983A JP 20371983 A JP20371983 A JP 20371983A JP S6096813 A JPS6096813 A JP S6096813A
Authority
JP
Japan
Prior art keywords
combustion
area
injection pipe
type high
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20371983A
Other languages
Japanese (ja)
Other versions
JPH0368286B2 (en
Inventor
Shigeki Morita
茂樹 森田
Tadahisa Masai
政井 忠久
Toshio Uemura
俊雄 植村
Shigeto Nakashita
中下 成人
Fumio Koda
幸田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20371983A priority Critical patent/JPS6096813A/en
Publication of JPS6096813A publication Critical patent/JPS6096813A/en
Publication of JPH0368286B2 publication Critical patent/JPH0368286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To retain the NOX reducing efficiency at high level, and maintain the thermal efficiency at high level by a method wherein a main burning area to be loaded mainly the thermal load and a reduction area to be performed the reduction of generated NOX are simultaneously formed. CONSTITUTION:The diffusion flow of a finely powdered coal 11 and secondary air A are mixed rapidly in the vicinity of a burner throat 50, a rapid burning is performed under high efficiency, then a main burning area 111 is formed, the thermal load of a burning device is maintained in said area 11. Meanwhile, a high speed fluid 101 is injected through a fluid injecting pipe 100, a reduction substance generation area 112 containing a large amount of reduction properties intermediate product is formed by the remainder of a finely powdered coal flow in the central part of the main burning area 111. Thereby, the NOX reducing efficiency is retained at high level, also the thermal efficiency is maintained at high level.

Description

【発明の詳細な説明】 この発明は窒素酸化物(以下1NOX」と称する)を低
減し得る燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device capable of reducing nitrogen oxides (hereinafter referred to as 1NOX).

手業用ボイラ等の大型燃焼装置から排出される燃焼排ガ
ス中に含まれるNOxは、自動車排ガス中のそれに比べ
て、たとえ低濃度といえどもその排出量が大きい為、環
境汚染防止上からは重要且つ緊急に対策を要すものであ
る。
NOx contained in combustion exhaust gas emitted from large combustion equipment such as manual boilers is important from the perspective of preventing environmental pollution, as the amount of NOx emitted is larger than that in automobile exhaust gas, even if the concentration is low. Moreover, it requires urgent countermeasures.

衆知の通り、近事燃料需要問題から、石炭焚きボイラの
新設もしくは改造が進められつつある。石炭中には、重
油に比べて約10倍の有機窒素が含有されており、当然
のことながらこれは燃焼によってNOxに転換しやすく
、上記の環境問題からは従来にも増して高度の処理技術
が要求される。
As is well known, recent fuel demand issues have led to the construction or modification of coal-fired boilers. Coal contains approximately 10 times more organic nitrogen than heavy oil, and naturally this is easily converted into NOx through combustion, and due to the environmental issues mentioned above, more advanced treatment technologies than ever have been developed. is required.

最も簡便且つ確実にNOxを処理する技術としては排ガ
ス流路中に脱硝装置を設置する方法があるが、燃焼装置
の大容量化に伴い脱硝装置自体もきわめて大型のものと
なり用地の確保が困難な場1合も生じ、また不経済でも
ある。従って最も理想的なのは、石炭中窒素の除去(脱
窒)の如き原炭処理もしくは燃焼改善である。この脱窒
および燃焼改善は最近の内外の諸研究の成果により原理
的には相当効果が期待出来るようになって来ている。と
りわけ燃焼技術においてLtNOxの生成消滅のメカニ
ズムが徐々に明確にされるに至り、従来は単にNOxの
生成のみを抑制せんが為に成る程度燃焼効率を犠牲にせ
ざるを得なかったが、最近では燃焼反応の進行に伴いN
Oxの消減反応未競合する点に注目した研究成果を基に
これも又有効に利用する技術へと発展しつつある。
The simplest and most reliable technology for treating NOx is to install a denitrification device in the exhaust gas flow path, but as the capacity of combustion equipment increases, the denitrification device itself becomes extremely large, making it difficult to secure land. This is also uneconomical. Therefore, the most ideal method is to treat raw coal or improve its combustion, such as removing nitrogen from coal (denitrification). This denitrification and combustion improvement has come to be expected to be quite effective in principle, based on the results of recent research at home and abroad. Particularly in combustion technology, the mechanism of LtNOx production and extinction has gradually become clearer.In the past, combustion efficiency had to be sacrificed to simply suppress the production of NOx, but recently, combustion As the reaction progresses, N
Based on research results that focused on the non-competitive nature of the Ox extinction reaction, this is also being developed into a technology that effectively utilizes this.

第1図は従来の微粉炭燃焼用低NOxバーナを示し、第
5図はこのバーナによる燃焼のフローチャー1・を示ず
。両図において、微粉炭と一次空気の混合体たる微粉炭
流11(1微粉炭供給管1゜を経て炉内に供給され初期
燃焼域22を形成する。
FIG. 1 shows a conventional low NOx burner for pulverized coal combustion, and FIG. 5 does not show flowchart 1 of combustion by this burner. In both figures, a pulverized coal stream 11 (a mixture of pulverized coal and primary air) is fed into the furnace through a pulverized coal supply pipe 1° to form an initial combustion zone 22.

一方二次空気A、および三次空気A、はこの初期燃焼域
22を包むよう炉内に噴射し、これによって初期燃焼域
形成部においてはこれら空気は層状に流れてこの初期燃
焼域は低0□燃焼を行う。これにより初期燃焼域におい
ては還元性の中間生成物が形成されNOxを気相還元し
、かつこの初期燃焼域下流においては各空気は混合して
低02燃焼で発生した未燃分の燃焼を行なうようにして
いる。つまりこの形式のバーナにおいては火炎上流側で
は火炎と空気が良好に分離されること、また気相還元を
終った下流側においては反対にこれら二次、三次空気お
よび二段燃焼を行っている場合にはこれらに加えて二段
燃焼空気との混合が良好であることが要求される。しか
し従来の形式のバーナにおいてはこれらの分離混合は必
ずしも良好に行うことができず、分離を良好に行うよう
にすると下流側での混合が不良となり未燃分の排出量が
増大し、反対に混合を良好にしようとすると還元雰囲気
の形成が不十分となってNOxの低減率が低下するとい
う問題が生している。さらに従来型の燃焼装置において
は熱負荷を負うべき火炎が初期の低02燃焼によって低
’1jofとなっているため熱効率をあまり高くするこ
とはできなかった。
On the other hand, secondary air A and tertiary air A are injected into the furnace so as to surround this initial combustion zone 22, and as a result, these airs flow in a layered manner in the initial combustion zone forming part, and this initial combustion zone has a low 0□ Perform combustion. As a result, reducing intermediate products are formed in the initial combustion zone to reduce NOx in the gas phase, and downstream of this initial combustion zone, each air is mixed and the unburned matter generated in low 02 combustion is combusted. That's what I do. In other words, in this type of burner, the flame and air are well separated on the upstream side of the flame, and on the downstream side after gas phase reduction, secondary and tertiary air and two-stage combustion are performed. In addition to these requirements, good mixing with the second-stage combustion air is required. However, in conventional burners, it is not always possible to perform these separations and mixes well, and if separation is done well, mixing on the downstream side will be poor, resulting in an increase in the amount of unburned substances emitted, and vice versa. If an attempt is made to improve the mixing, a problem arises in that the formation of a reducing atmosphere becomes insufficient and the NOx reduction rate decreases. Furthermore, in conventional combustion apparatuses, the flame that bears the heat load has a low '1 jof due to the initial low 02 combustion, so it has not been possible to increase the thermal efficiency very much.

この発明は上述した問題点に鑑み構成したものであり、
NOxを大幅に低減でき、かつ熱効率も高い燃焼装置を
提供することにある。
This invention was constructed in view of the above-mentioned problems,
An object of the present invention is to provide a combustion device that can significantly reduce NOx and also has high thermal efficiency.

要するにこの発明は、燃料噴射口をエジェクタtl”J
 造とし、炉内に噴射した燃料流に対して濃淡を形成し
、燃178装置の熱負荷を高めかつ同時にNOxの気相
還元を良好に行うよう構成した装置6である。
In short, this invention connects the fuel injection port to the ejector tl"J
The device 6 is constructed so as to form a concentration of the fuel flow injected into the furnace, increase the heat load of the combustion device 178, and at the same time perform good gas phase reduction of NOx.

以下この発明の実施例を図面によ、り説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図はこの発明の第1の実施例を示す。なお図示した
装置の燃料として微粉炭を例として説明するが、この装
置は微粉炭燃焼用に限定するものではない。符号10は
燃料噴射管たる微粉炭供給管であり、その炉内側開口部
は開口端に向ってその口径を漸次大きくするよう構成し
た拡散部]、Oaとなっている。110はこの拡散部1
0a内に、その中心がバーナ軸心とほぼ一致するよう配
置した縮流部材である。この縮流部材110は中央に噴
射口110aを有するよう平面形が環状に形成してあり
、またその断面は図示の如く、火炉側端部に向って徐々
に肉厚となるよう略三角形に形成しである。
FIG. 2 shows a first embodiment of the invention. Although pulverized coal will be used as an example of fuel for the illustrated device, this device is not limited to combustion of pulverized coal. Reference numeral 10 denotes a pulverized coal supply pipe which is a fuel injection pipe, and the opening inside the furnace is a diffusion section Oa whose diameter is gradually increased toward the opening end. 110 is this diffusion section 1
This is a contracting flow member placed within 0a so that its center substantially coincides with the burner axis. The flow contracting member 110 has an annular planar shape with an injection port 110a in the center, and its cross section is approximately triangular so that it gradually becomes thicker toward the furnace side end, as shown in the figure. It is.

次に符号100は微粉炭供給管10とほぼ同一軸心線上
に位置するよう配置した流体注入管であり、そのノズル
部は上記の縮流部材110の噴射口110aの近傍に開
口位置している。
Next, reference numeral 100 denotes a fluid injection pipe arranged so as to be located approximately on the same axis as the pulverized coal supply pipe 10, and its nozzle portion is located in the vicinity of the injection port 110a of the above-mentioned flow contraction member 110. .

以上の構成の装置の燃焼状態を第6図も参考にして説明
する。
The combustion state of the apparatus having the above configuration will be explained with reference to FIG.

一次空気と微粉炭との混合流体たる微粉炭流11は微粉
炭供給管10を経て炉内に噴射されるわけであるが、大
部分の微粉炭流は縮流部材110と拡散部10aとから
形成される環状空間を経て炉内に拡散噴射される。一方
ウインドボックス40に供給された二次空気A2は二次
空気旋回器20によって旋回力を与えられバーナスロー
ト50から炉内に噴射する。これにより、前記微粉炭の
拡散流と二次空気とはバーナスロート近傍において急速
に混合し、高効率の急速燃焼を行い主燃焼域111を形
成し燃焼装置の熱負荷を担当する。
The pulverized coal flow 11, which is a mixed fluid of primary air and pulverized coal, is injected into the furnace through the pulverized coal supply pipe 10, but most of the pulverized coal flow is from the flow contraction member 110 and the diffusion section 10a. It is diffused and injected into the furnace through the annular space that is formed. On the other hand, the secondary air A2 supplied to the wind box 40 is given a swirling force by the secondary air swirler 20 and is injected into the furnace from the burner throat 50. As a result, the diffusion flow of the pulverized coal and the secondary air rapidly mix in the vicinity of the burner throat, resulting in highly efficient rapid combustion, forming the main combustion zone 111, which takes charge of the heat load of the combustion device.

一方流体lj二人管100から(は高速の流体101(
例えば燃焼期ガス等の不活性ガス)が噴射し、微粉炭σ
1εの残りはこの流体の噴出により縮流部4′A」10
の噴射fil]、lOaを経て炉内に噴射する。この微
粉炭は炉内に拡散ぜず、かつ高速流体のα分圧も低いの
で前記主燃焼域111の中心部つまりバーナ軸心101
の延長線を中心として炉内に還元性中間生成分を多量に
含有する還元物質生成域11.2を形成する。この還元
物質生成域112においては例えば・NH2,・ON等
のラジカルやCO等の還元性を有する中間生成物が相当
多嵐に生成される。
On the other hand, the fluid lj from the two-person pipe 100 (is the high-speed fluid 101 (
For example, inert gas such as combustion phase gas) is injected, and the pulverized coal σ
The remainder of 1ε is caused by the ejection of this fluid, which forms the contraction part 4'A'10
injection fil] into the furnace via lOa. This pulverized coal does not diffuse into the furnace, and the alpha partial pressure of the high-velocity fluid is low, so the center of the main combustion zone 111, that is, the burner axis 101,
A reducing substance producing region 11.2 containing a large amount of reducing intermediate products is formed in the furnace centered on the extension line of . In this reducing substance generation region 112, for example, radicals such as .NH2 and .ON and intermediate products having reducing properties such as CO are generated in considerable numbers.

次に、還元物質生成域112の外周部と急速にIIA敗
し燃焼した主燃焼域111により還元物質生成域工12
の下流に(は負圧部が形成され、この負圧部に向って主
燃焼域11]−の火炎や高温ガスが流入する。ここにお
いて、前記還元域の中間生成物と主燃焼域において形成
されたNOxとが混合し、NOxの気相還元域113が
形成される。この気相還元域におけるNOxの気相還元
を、NOxの大半を占めるN Oを例に示せば次式のと
おりになる。
Next, the outer circumference of the reducing material producing region 112 and the main combustion region 111, which was rapidly destroyed by IIA and burned, caused the reducing material producing region 12
A negative pressure section is formed downstream of the main combustion zone 11, into which flames and high-temperature gases flow into the main combustion zone. The gas-phase reduction region 113 of NOx is formed.The gas-phase reduction of NOx in this gas-phase reduction region can be expressed as follows using the example of NOx, which accounts for the majority of NOx. Become.

No−1−、・NI(2−−ヤNt + H,O・・・
(1)No +・ON −→N 十co =−(2)N
o 十Co −→l/2N2 + Co x =(3)
なお以上の還元反応は数百分の一秒の短時間で終了する
ので燃焼に対する影響は実用上問題とならない。また気
相還元域113の下流には主燃焼域Illにおいて混合
しなかった二次空気A2の残りが流入するので、この二
次空気A2によって未燃分は燃焼する。但し、燃β“6
装置全体として二段燃焼を行えば未燃分はより完全に燃
焼する。
No-1-, NI (2--YNt + H, O...
(1) No +・ON −→N 10 co = −(2) N
o 10 Co −→l/2N2 + Co x = (3)
Note that since the above reduction reaction is completed in a short time of several hundredths of a second, the effect on combustion does not pose a practical problem. Further, the remainder of the secondary air A2 that was not mixed in the main combustion zone Ill flows into the downstream of the gas phase reduction zone 113, so that the unburned matter is combusted by this secondary air A2. However, the combustion β “6
If the entire device performs two-stage combustion, the unburned matter will be more completely combusted.

次に第3図は第2図に示す装置の変形例を示す。この場
合には、バーナスロー)50を微粉炭管10の拡散部1
0aに対応してゆるやかに形成しつまりバーナスロート
の表面を曲面に形成し、このl’A 敗ifH10aと
バーナスロート50との間の空間を通過する二次空気A
2の噴射を円滑にしたものである。
Next, FIG. 3 shows a modification of the apparatus shown in FIG. 2. In this case, the burner throw) 50 is
The secondary air A passing through the space between the burner throat 50 and the burner throat 50 is formed gently corresponding to 0a, that is, the surface of the burner throat is formed into a curved surface.
This makes the injection of No. 2 smoother.

第4図はさらに別の実JAM例を示す。この実施例の場
合に(1、二次空気通路の外周部に三次空気の通過する
通路を形成し、生態;克域11の外周部に二次輩気及び
三次空気流を形成するよう構成したものである。
FIG. 4 shows yet another actual JAM example. In the case of this embodiment, (1) a passage through which tertiary air passes is formed on the outer periphery of the secondary air passage, and a secondary air and tertiary air flow is formed on the outer periphery of the ecological area 11; It is something.

この実施例の燃焼装置は、二次空気と三次空気の両者を
噴射する既設の燃L′と装置を改造する場合に!1.l
Iに効果的である。
The combustion device of this embodiment is suitable for modifying an existing combustion device that injects both secondary air and tertiary air! 1. l
It is effective for I.

この発明を実施することにより生として熱負荷を負坦す
る主燃焼域と、発生したNOXを還元する還)じ域とを
同時に形成できるためNOx低減率を高率に保持し、か
つ熱効率を高く維持することができる。
By implementing this invention, it is possible to simultaneously form a main combustion zone that bears the heat load as raw material and a return zone that reduces the generated NOx, thereby maintaining a high NOx reduction rate and increasing thermal efficiency. can be maintained.

4− 図1rlj (7) I!j inな、説明第1
図は従来の燃か゛ε装置の断面図、第2図はこのう6明
に係る燃焼装置の断面図、第3図は第2の実施例を、第
4図は第3の実施例を各々示す燃焼装置の断面図、第5
図は第1図の燃焼装置の運転状態を示すフローチャート
、第6図は第2図に示す燃焼装置の運転状態を示すフロ
ーチャートである。
4- Figure 1rlj (7) I! j in, explanation 1st
The figure is a sectional view of a conventional combustion device, FIG. 2 is a sectional view of a combustion device according to the sixth invention, FIG. 3 is a second embodiment, and FIG. 4 is a third embodiment. Cross-sectional view of the combustion device shown, No. 5
FIG. 6 is a flow chart showing the operating state of the combustion device shown in FIG. 1, and FIG. 6 is a flow chart showing the operating state of the combustion device shown in FIG.

10 ・・・・・・微粉炭供給管 10a ・・・・・・拡散部 100 ・・・・・・流体注入管 110 ・・・・・・縮流部材 110a・・・・・・噴射口 Ill ・・・・・・主燃焼域 112 ・・・・・・還元物質生成域 113 ・・・・・・気相還元域10...Pulverized coal supply pipe 10a... Diffusion part 100...Fluid injection pipe 110... Contract flow member 110a... Injection port Ill... Main combustion zone 112...Reducing substance generation area 113... Gas phase reduction area

Claims (1)

【特許請求の範囲】 1、 燃料噴射管の火炉側開口部に対してエジェクタ部
を形成し、かつこの燃料噴射管の内部にはこの燃料噴射
管と中心軸線をほぼ等しくする流体注入管を配置し、バ
ーナ軸心の炉内側延長線を中心として還元物質生成域を
形成し、この還元物質生成域の周囲に高湿の主燃焼域を
形成し、かつ還元物質生成域の下流部には気相還元域を
形成するよう構成したことを特徴とする低NOx型高効
率燃焼装置。 2、 前記エジェクタ部を、開口端に向って漸次口径が
拡大するような形状で燃料噴射管先端部に対して形成し
た拡散部と、この拡散部内に配置した環状の縮流部材と
から構成したことを特徴とする特許請求の範囲第1項記
載の低NOx型高効率燃焼装置。 3、 流体注入tS・のノズル部が縮流部材の噴射口に
位置するよう構成したことを特徴とする特許請求の範囲
第2項記載の低NOx型高効率燃焼装置。
[Claims] 1. An ejector portion is formed at the furnace-side opening of the fuel injection pipe, and a fluid injection pipe whose center axis is approximately equal to that of the fuel injection pipe is arranged inside the fuel injection pipe. A reducing material producing region is formed around the inner extension of the burner axis, a high humidity main combustion region is formed around this reducing material producing region, and air is provided downstream of the reducing material producing region. A low NOx type high efficiency combustion device characterized by being configured to form a phase reduction region. 2. The ejector section is composed of a diffusion section formed at the tip of the fuel injection pipe in such a shape that the diameter gradually expands toward the opening end, and an annular flow contraction member disposed within the diffusion section. A low NOx type high-efficiency combustion device according to claim 1, characterized in that: 3. The low NOx type high efficiency combustion device according to claim 2, characterized in that the nozzle portion of the fluid injection tS is located at the injection port of the flow contraction member.
JP20371983A 1983-11-01 1983-11-01 Low nox type high efficiency burning device Granted JPS6096813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20371983A JPS6096813A (en) 1983-11-01 1983-11-01 Low nox type high efficiency burning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20371983A JPS6096813A (en) 1983-11-01 1983-11-01 Low nox type high efficiency burning device

Publications (2)

Publication Number Publication Date
JPS6096813A true JPS6096813A (en) 1985-05-30
JPH0368286B2 JPH0368286B2 (en) 1991-10-28

Family

ID=16478710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20371983A Granted JPS6096813A (en) 1983-11-01 1983-11-01 Low nox type high efficiency burning device

Country Status (1)

Country Link
JP (1) JPS6096813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936270A2 (en) * 2006-10-24 2008-06-25 Air Products and Chemicals, Inc. Pulverized solid fuel burner
US9196422B2 (en) 2011-03-09 2015-11-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having high capacity and method of manufacturing the same
CN106026778A (en) * 2016-08-02 2016-10-12 中国矿业大学 Heat energy sustainable utilization and coal fire control system and method for coal field fire zone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123908A (en) * 1979-03-19 1980-09-24 Babcock Hitachi Kk Low nox gas burner device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123908A (en) * 1979-03-19 1980-09-24 Babcock Hitachi Kk Low nox gas burner device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936270A2 (en) * 2006-10-24 2008-06-25 Air Products and Chemicals, Inc. Pulverized solid fuel burner
EP1936270A3 (en) * 2006-10-24 2010-08-18 Air Products and Chemicals, Inc. Pulverized solid fuel burner
US9196422B2 (en) 2011-03-09 2015-11-24 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having high capacity and method of manufacturing the same
CN106026778A (en) * 2016-08-02 2016-10-12 中国矿业大学 Heat energy sustainable utilization and coal fire control system and method for coal field fire zone
CN106026778B (en) * 2016-08-02 2017-10-24 中国矿业大学 A kind of coal-field fire heat energy sustainable use and coal fire governing system and method

Also Published As

Publication number Publication date
JPH0368286B2 (en) 1991-10-28

Similar Documents

Publication Publication Date Title
KR100709849B1 (en) Nox-reduced combustion of concentrated coal streams
JPH0439564B2 (en)
JPH0754162B2 (en) Burner for low NOx combustion
CN107477579B (en) Low nitrogen oxide burner
JPS6096813A (en) Low nox type high efficiency burning device
JPS60126508A (en) Finely powdered coal burning device
KR102261150B1 (en) A Low-NOx combustor capable of internal recirculation of flue gas by using venturi effect through improvement of burner structure
JPH04139312A (en) Gas turbine combustion apparatus
JP3068435B2 (en) Boiler furnace combustion equipment
JPS6064110A (en) Low nox burner
JPH09126412A (en) Low nox boiler
JPS6078206A (en) Burner reducing nox
JPS6078207A (en) Low nox type burner
RU1820150C (en) Method for preparing highly concentrated coal dust for combustion
KR20010108672A (en) Low Nox Burner
JPH0221107A (en) Low nox combustion method for pulverized coal
JPS6280409A (en) Combustion device with low nox of solid fuel
SU1163088A1 (en) Method of combined burning of dust-like and gaseous fuel
KR200145483Y1 (en) Low pollutant burner using three stage combustion
JPS61223411A (en) Catalyst burning method for pulverized coal
JPS58182005A (en) Combustion method for low nox
JPS60162108A (en) Low nox high efficiency combustion chamber
JPS5843311A (en) Combustion method of coal
JPS58145809A (en) Flame whirling type low nox combustion device
JPS58138906A (en) Low nox combustion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees