JPS63186916A - Control of operation of power turbine - Google Patents

Control of operation of power turbine

Info

Publication number
JPS63186916A
JPS63186916A JP62017347A JP1734787A JPS63186916A JP S63186916 A JPS63186916 A JP S63186916A JP 62017347 A JP62017347 A JP 62017347A JP 1734787 A JP1734787 A JP 1734787A JP S63186916 A JPS63186916 A JP S63186916A
Authority
JP
Japan
Prior art keywords
exhaust gas
power
turbine
bypass
power turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62017347A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sugihara
啓之 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62017347A priority Critical patent/JPS63186916A/en
Publication of JPS63186916A publication Critical patent/JPS63186916A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To reduce the variation width of the quantity of exhaust gas supplied into a supercharger by adjusting the quantity of exhaust gas introduced into a power turbine, in the constitution in which a power piston for recovering the exhaust gas supplied from a Diesel engine as power is equipped. CONSTITUTION:A supercharger 1 consisting of a turbine T driven by exhaust gas and a compressor C driven by the power of the turbine T is connected with a Diesel engine 2. A bypass line 3 making a detour around the turbine T of the supercharger 1 is formed, and a power turbine 4 is installed midway into the bypass line 3, and the energy of the exhaust gas is recovered as the power in the power turbine 4, and transmitted to the main shaft 6 of the engine 2. With such constitution, the gas inlet to the power turbine 4 is divided into two parts, and bypass pipes 8 and 9 into which the bypass valves 5a and 5b are installed are connected with the gas inlets 7a and 7b. Each bypass valve 5a, 5b is opening/closing-controlled stepwise according to the load.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は過給機を装着したディーゼル機関から排出され
る排気ガスのエネルギーを動力として回収するためにデ
ィーゼル機関に付属させて用いるパワータービンの運転
制御方法に関するものでおる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a power turbine attached to a diesel engine that is used to recover the energy of exhaust gas discharged from a diesel engine equipped with a supercharger as power. This is related to the operation control method.

[従来の技術] 過給機を装着したディーゼル機関では、該ディーゼル機
関から排出されて過給機に送られる排気ガスのエネルギ
ーを動力として回収するためにパワータービンが装備さ
れている。
[Prior Art] A diesel engine equipped with a supercharger is equipped with a power turbine to recover the energy of exhaust gas discharged from the diesel engine and sent to the supercharger as power.

従来のパワータービン付ディーゼル機関としては、第3
図に示す如く、導入されるガスにより翼車を回転するタ
ービン丁と該タービンTにより翼車が回転させられて吸
気を圧縮して吐出させるコンプレッサCとを備える過給
機1を、ディーゼル機関2に接続し、過給機1のコンプ
レッサCから圧縮空気がディーゼル機関2に、又、ディ
ーゼル機関2からの排気ガスが過給機1のタービンTに
それぞれ送られるようにした構成において、上記過給機
1のタービン丁へ送られる排気ガスの一部をバイパスさ
けるバイパスライン3を設け、該バイパスラインの途中
にパワータービン4、バイパス弁5を組み込んで、排気
ガスのエネルギーをパワータービン4て動力として回収
させるようにし、ディーゼル機関2の主軸6を回転させ
るようにしである。
As a conventional diesel engine with a power turbine, the third
As shown in the figure, a supercharger 1 is equipped with a turbine T that rotates a blade wheel by introduced gas, and a compressor C that rotates the blade wheel by the turbine T, compresses intake air, and discharges it. In a configuration in which the compressor C of the supercharger 1 is connected to the diesel engine 2 and the exhaust gas from the diesel engine 2 is sent to the turbine T of the supercharger 1, A bypass line 3 is provided to bypass a part of the exhaust gas sent to the turbine of the engine 1, and a power turbine 4 and a bypass valve 5 are installed in the middle of the bypass line, and the energy of the exhaust gas is used as motive power by the power turbine 4. The main shaft 6 of the diesel engine 2 is rotated.

上記パワータービン4は、ディーゼル機関2の負荷が約
50%以上のときに使用されるが、ディーゼル機関2か
ら排出される排気ガスの全量に対して成る比率で排気ガ
スをバイパスさせるようにパワータービン4の容量が定
められ、バイパスされるガスによりパワータービン4の
性能を維持すると共に、過給機1に送られる排気ガスに
よって過給機1の出力が得られてディーゼル機関2の性
能も高められるようにしである。
The power turbine 4 is used when the load of the diesel engine 2 is about 50% or more, and the power turbine 4 is designed to bypass exhaust gas at a proportion to the total amount of exhaust gas discharged from the diesel engine 2. 4 is determined, and the performance of the power turbine 4 is maintained by the bypassed gas, and the output of the supercharger 1 is obtained by the exhaust gas sent to the supercharger 1, thereby increasing the performance of the diesel engine 2. That's how it is.

上記のように排気ガスのバイパス比率が成る値に定めら
れるのは、バイパス間が少な過ぎると、パワータービン
4により十分な動力が回収できず、又、逆に、バイパス
量が多過ぎると、パワータービン4の回収動力は高めら
れるが、過給機1へ送られる排気ガス量が減少して十分
な過給機出力が得られず、ディーゼル機関2の性能を悪
化させるおそれがあるので、これらを防止するためであ
る。
The reason why the exhaust gas bypass ratio is set to a value as described above is that if the number of bypasses is too small, sufficient power cannot be recovered by the power turbine 4, and conversely, if the amount of bypass is too large, the power Although the recovery power of the turbine 4 can be increased, the amount of exhaust gas sent to the supercharger 1 will be reduced, making it impossible to obtain sufficient supercharger output, and there is a risk that the performance of the diesel engine 2 will deteriorate. This is to prevent this.

[発明が解決しようとする問題点] ところが、従来採用されているパワータービン4では、
バイパスされる排気ガスの入ロアが1つで、且つその大
きざが定められて、常に一定のバイパス量となるように
してあり、しかもバイパス量は成る程度の量としておる
ため、バイパス弁5を開閉してバイパスされる排気ガス
をパワータービン4に入れたり停止したりしてパワータ
ービン4を制御するとき、過給機1へ送られる排気ガス
の量は大きく変化しており、これがディーゼル機関2の
吸気圧力の大ぎな差となっている。すなわち、従来のパ
ワータービン4は、バイパスされる排気ガスの変化量を
少なく調整できる構成とはなってあらず、バイパス間が
多いため、バイパス弁5の開時はパワータービン4に入
るバイパス排気ガスの量のために過給機1へ送られる排
気ガスの量はその分だけ急激に少なくなり、又、バイパ
ス弁5の閉時はパワータービン4へ入るように流れるバ
イパス量が零であるため過給機1へ送られる排気ガスの
量は急激に増加することになり、バイパス弁5の開閉時
に過給機1へ送られる排気ガスの量の変動が大きく、又
、パワータービン4に作用したり作用しなかったりする
排気ガスの量に大きな幅がある。そのため過給機1から
ディーゼル機関2へ入る吸気圧力Pscは大きな差が生
じて、バイパス弁5の開閉時に第4図に示す如く大きく
変化し、又、タービン入口a度TVTとタービン出口温
度TN丁もバイパス弁5の開閉時に第4図の如く大きく
変化している。この変化はバイパス量が大ぎいほど大き
くなる。上記圧力や温度の急激な変化がディーゼル機関
の寿命短縮をもたらす要因となりうる。
[Problems to be solved by the invention] However, in the conventional power turbine 4,
There is only one inlet lower for the exhaust gas to be bypassed, and its size is determined so that the amount of bypass is always constant, and since the amount of bypass is set to a certain amount, the bypass valve 5 is When controlling the power turbine 4 by introducing or stopping the exhaust gas bypassed by opening and closing the power turbine 4, the amount of exhaust gas sent to the supercharger 1 changes greatly, and this changes the amount of exhaust gas sent to the diesel engine 2. There is a huge difference in the intake pressure. That is, the conventional power turbine 4 is not configured to be able to reduce the amount of change in the bypassed exhaust gas, and has many bypasses, so when the bypass valve 5 is open, the bypass exhaust gas entering the power turbine 4 is The amount of exhaust gas sent to the supercharger 1 decreases rapidly due to the amount of The amount of exhaust gas sent to the charger 1 will increase rapidly, and the amount of exhaust gas sent to the supercharger 1 will fluctuate greatly when the bypass valve 5 is opened and closed, and it will also affect the power turbine 4. There is a wide range in the amount of exhaust gas that may or may not work. Therefore, there is a large difference in the intake pressure Psc entering the diesel engine 2 from the supercharger 1, and it changes greatly as shown in FIG. 4 when the bypass valve 5 is opened and closed. The angle also changes greatly when the bypass valve 5 is opened and closed, as shown in FIG. This change becomes larger as the amount of bypass increases. The above-mentioned rapid changes in pressure and temperature can be a factor that shortens the life of the diesel engine.

そこで、本発明は、排気ガスの一部をバイパスしてパワ
ータービンを運転させるときでも、又、バイパス量を零
とするときでも過給機へ送られる排気ガスの量の変化幅
を小さくするようにして前記従来の諸問題を解消しよう
とするものである。
Therefore, the present invention aims to reduce the range of change in the amount of exhaust gas sent to the supercharger even when the power turbine is operated by bypassing a part of the exhaust gas, or when the amount of bypass is set to zero. This is an attempt to solve the above-mentioned conventional problems.

L問題点を解決するための手段] 本発明は、上記目的を達成するために、パワータービン
に入ってバイパスされる排気ガスの量を段階的に調整で
きるようにして、バイパス弁の開閉時に過給機へ送られ
る排気ガスの岳の差を小さくするようパワータービンへ
のバイパスガス量を調整する方法とする。
[Means for Solving the L Problem] In order to achieve the above object, the present invention makes it possible to adjust in stages the amount of exhaust gas that enters the power turbine and is bypassed, so as to avoid excess gas when opening and closing the bypass valve. The method is to adjust the amount of bypass gas to the power turbine so as to reduce the difference in the amount of exhaust gas sent to the feeder.

[作  用] バイパス弁の開閉を行うときに、パワータービンに入る
バイパスガス量を少なくすると、バイパスさせるときと
ざぜないときの過給機への排気ガス量の差が少なくなり
、ディーゼル機関に入る吸気圧力は急激に変化すること
がなくなる。又、バイパス量を少なくすることからター
ビン入口温度、出口温度の変化も小さく抑えることがで
きる。
[Effect] When opening and closing the bypass valve, reducing the amount of bypass gas that enters the power turbine reduces the difference in the amount of exhaust gas that enters the turbocharger when bypassing and when there is no turbulence, which reduces the amount of exhaust gas that enters the diesel engine. Intake pressure no longer changes suddenly. Furthermore, since the amount of bypass is reduced, changes in the turbine inlet temperature and outlet temperature can also be suppressed to a small level.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法の一実施例を示すもので、過給機
1を装着したディーゼル機関2に、該ディーゼル機関2
からの排気ガスのエネルギーを動力として回収させるた
めパワータービン4を付属させ、排気ガスの一部をバイ
パスさせるようにした構成において、上記パワータービ
ン4へのガス入口を2つ7a、7bに分割し、各ガス入
ロアa、 7bごとにバイパス管8.9を接続し、各バ
イパス管8.9にバイパス弁5a、 5bを各々設ける
。図中、第3図と同一のものには同一符号が付しである
FIG. 1 shows an embodiment of the method of the present invention, in which a diesel engine 2 equipped with a supercharger 1 is
In a configuration in which a power turbine 4 is attached to recover the energy of the exhaust gas from the exhaust gas as motive power, and a part of the exhaust gas is bypassed, the gas inlet to the power turbine 4 is divided into two parts 7a and 7b. , a bypass pipe 8.9 is connected to each of the gas-filled lowers a and 7b, and each bypass pipe 8.9 is provided with a bypass valve 5a and 5b, respectively. In the figure, the same parts as in FIG. 3 are given the same reference numerals.

ディーゼル機関2の負荷が約50%以上のときは排気ガ
スの一部をバイパスさせてパワータービン4を運転し、
排気ガスのエネルギーをパワータービン4により動力と
して回収し、これを主Itl16の回転として戻す等に
利用させるが、バイパス弁を開閉して排気ガスをバイパ
スさせたり、排気ガスをバイパスさせないですべて過給
機1に送ったりするときは次のようにして行う。
When the load of the diesel engine 2 is about 50% or more, a part of the exhaust gas is bypassed to operate the power turbine 4,
The energy of the exhaust gas is recovered as power by the power turbine 4 and used to return it as the rotation of the main Itl 16, but the exhaust gas is bypassed by opening and closing the bypass valve, or the exhaust gas is not bypassed and all of it is supercharged. When sending to machine 1, do the following.

先ず、排気ガスを一部バイパスさせないときは、各バイ
パス管8.9のバイパス弁5a、 5bをともに閉にす
る(工程工)。
First, when part of the exhaust gas is not to be bypassed, both the bypass valves 5a and 5b of each bypass pipe 8.9 are closed (process).

次に、一定時間後に、たとえば、一方のバイパス弁5a
のみを開く(工程■)。このとき他方のバイパス弁5b
は閉じているので、バイパスされる排気ガスの量は全バ
イパス量の半分でおり、バイパスされる排気ガスの量が
少ないので、両バイパス弁5a、 5bが閉じていると
きに過給機1に送られる排気ガスの伍に比して、バイパ
ス弁5aのみを開にしたときに過給機1へ送られる排気
ガスの量はそれほど少なくない。そのため、第2図に示
す如く、ディーゼル機関2の吸気圧力Pscの変化幅が
第4図に示す従来方式に比して大幅に小さくなり、急激
に変化することがなくなる。又、タービン入口温度TV
Tとタービン出口温度TN下もバイパス量が少ないこと
から変化幅が第2図に示す如く小さくなる。
Next, after a certain period of time, for example, one of the bypass valves 5a
Open only (Step ■). At this time, the other bypass valve 5b
Since the bypass valves 5a and 5b are closed, the amount of exhaust gas bypassed is half of the total amount of bypass, and since the amount of exhaust gas bypassed is small, when both bypass valves 5a and 5b are closed, Compared to the amount of exhaust gas sent, the amount of exhaust gas sent to the supercharger 1 when only the bypass valve 5a is opened is not so small. Therefore, as shown in FIG. 2, the range of change in the intake pressure Psc of the diesel engine 2 is significantly smaller than in the conventional system shown in FIG. 4, and there is no sudden change. Also, the turbine inlet temperature TV
Since the amount of bypass is small under T and the turbine outlet temperature TN, the range of change becomes small as shown in FIG.

次に、一定時間後にバイパス弁5bを開にすると(工程
III)、両バイパス弁5a、 5bがすべて開となっ
て多くのガスがバイパスされパワータービン4に入るこ
とになる。このときも、バイパス量の変化は、バイパス
弁5bが開くことによって増加する分であり、第2図の
工程■と工程■との間ではバイパス弁5bのみのガス量
の変化であり、ディーゼル機関2の吸気圧力も温度も急
激に変化することはなくなる。
Next, when the bypass valve 5b is opened after a certain period of time (step III), both the bypass valves 5a and 5b are all opened, and a large amount of gas is bypassed and enters the power turbine 4. At this time as well, the change in the bypass amount is the increase due to the opening of the bypass valve 5b, and between the process 2, the intake pressure and temperature no longer change rapidly.

なお、本発明は上記実施例のみに限定されるものではな
く、たとえば、パワータービン4のガス入口を2つ以上
として2個以上のバイパス弁を設けるようにしてもよい
。ガス入口の数を増やしてバイパス弁を順次開閉して行
くようにすることにより、吸気圧力、温度等の変化幅を
 7より小さくすることができて有利であること、又、
パワータービン4のガス入口を複数にして複数のバイパ
ス弁を設ける構成に代え、ガス入口を1個にして1個の
バイパス弁を設は且つバイパスされるガスの量を調整で
きる可変容量型ノズルを採用してもよい。かかるノズル
を用いれば、滑らかな変化が得られる利点がおる。
Note that the present invention is not limited to the above-described embodiment, and for example, the power turbine 4 may have two or more gas inlets and two or more bypass valves may be provided. By increasing the number of gas inlets and sequentially opening and closing the bypass valves, it is advantageous that the range of change in intake pressure, temperature, etc. can be made smaller than 7.
Instead of the configuration in which the power turbine 4 has a plurality of gas inlets and a plurality of bypass valves, a variable capacity nozzle is used in which the power turbine 4 has one gas inlet and one bypass valve, and the amount of bypassed gas can be adjusted. May be adopted. Using such a nozzle has the advantage that smooth changes can be obtained.

[発明の効果] 以上述べた如く、本発明の方法によれば、パワータービ
ンに入ってバイパスされる排気ガスの量を小さい幅で変
化させるようパワータービンに入るガスの川を調整させ
るので、バイパス弁の全開から全開又はその逆のときの
バイパスされるガス量を段階的にあるいは滑らかに変化
させ得られてディーゼル機関の吸気圧力、タービン入口
、出口の温度を急激に変化させることがなくなり、パワ
ータービン付ディーゼル機関のより一層の寿命延長が図
れる、という優れた効果を奏し得る。
[Effects of the Invention] As described above, according to the method of the present invention, the flow of gas entering the power turbine is adjusted so as to change the amount of exhaust gas entering the power turbine and being bypassed in a small range. The amount of bypassed gas can be changed stepwise or smoothly when the valve is fully open or vice versa, eliminating sudden changes in the intake pressure of the diesel engine and the temperatures at the turbine inlet and outlet, thereby increasing the power output. The excellent effect of further extending the life of the turbine-equipped diesel engine can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図、第2図は本発
明によった場合の吸気圧力、温度の変化の度合いを示す
図、第3図は従来の方式を示す概略図、第4図は従来の
場合の吸気圧力、温度の変化の度合いを示す図である。 1・・・過給機、2・・・ディーゼル機関、3・・・バ
イパスライン、4・・・パワータービン、5.5a、 
5b・・・バイパス弁、7.7a、 7b・・・ガス入
口。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the degree of change in intake pressure and temperature according to the present invention, and FIG. 3 is a schematic diagram showing a conventional system. FIG. 4 is a diagram showing the degree of change in intake pressure and temperature in the conventional case. 1...Supercharger, 2...Diesel engine, 3...Bypass line, 4...Power turbine, 5.5a,
5b...Bypass valve, 7.7a, 7b...Gas inlet.

Claims (1)

【特許請求の範囲】[Claims] 1)ディーゼル機関からの排気ガスのエネルギーを動力
として回収させるためディーゼル機関に付属させたパワ
ータービンに入れてバイパスさせる排気ガスの量を、上
記パワータービンに入れるときに調整し、ディーゼル機
関から過給機へ送られる排気ガスの量の変化幅を小さく
することを特徴とするパワータービンの運転制御方法。
1) In order to recover energy from the exhaust gas from the diesel engine as power, the amount of exhaust gas that is bypassed by entering the power turbine attached to the diesel engine is adjusted when entering the power turbine, and supercharging is performed from the diesel engine. A power turbine operation control method characterized by reducing the range of change in the amount of exhaust gas sent to a turbine.
JP62017347A 1987-01-29 1987-01-29 Control of operation of power turbine Pending JPS63186916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62017347A JPS63186916A (en) 1987-01-29 1987-01-29 Control of operation of power turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62017347A JPS63186916A (en) 1987-01-29 1987-01-29 Control of operation of power turbine

Publications (1)

Publication Number Publication Date
JPS63186916A true JPS63186916A (en) 1988-08-02

Family

ID=11941514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62017347A Pending JPS63186916A (en) 1987-01-29 1987-01-29 Control of operation of power turbine

Country Status (1)

Country Link
JP (1) JPS63186916A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138840A (en) * 1988-04-08 1992-08-18 Kabushiki Kaisha Komatsu Seisakusho Power transmission apparatus for internal combustion engine including supercharger
JP2010138875A (en) * 2008-12-15 2010-06-24 Mitsubishi Heavy Ind Ltd Exhaust energy collection device
WO2010150856A1 (en) 2009-06-25 2010-12-29 三菱重工業株式会社 Engine exhaust energy recovery device
WO2011040456A1 (en) 2009-09-30 2011-04-07 三菱重工業株式会社 Control device for power generation system, power generation system, and control method for power generation system
JP2011131692A (en) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd Engine control system of ship
WO2011089989A1 (en) 2010-01-21 2011-07-28 三菱重工業株式会社 Engine exhaust energy recovery device, ship provided therewith, and power generation plant provided with said engine exhaust energy recovery device
WO2012039063A1 (en) 2010-09-24 2012-03-29 三菱重工業株式会社 Control method and device for turbine generator
US20130055711A1 (en) * 2011-09-07 2013-03-07 Douglas C. Hofer Method and system for a turbocharged engine
CN105888821A (en) * 2014-12-09 2016-08-24 曹悦胜 Pneumatic power engine
WO2018155239A1 (en) * 2017-02-23 2018-08-30 三菱重工業株式会社 Power generation system and power generation system control method
CN114876630A (en) * 2022-01-25 2022-08-09 侯杰 Turbo charger of cold pressure boost in high efficiency

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138840A (en) * 1988-04-08 1992-08-18 Kabushiki Kaisha Komatsu Seisakusho Power transmission apparatus for internal combustion engine including supercharger
JP2010138875A (en) * 2008-12-15 2010-06-24 Mitsubishi Heavy Ind Ltd Exhaust energy collection device
WO2010150856A1 (en) 2009-06-25 2010-12-29 三菱重工業株式会社 Engine exhaust energy recovery device
WO2011040456A1 (en) 2009-09-30 2011-04-07 三菱重工業株式会社 Control device for power generation system, power generation system, and control method for power generation system
JP2011131692A (en) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd Engine control system of ship
CN102472161A (en) * 2010-01-21 2012-05-23 三菱重工业株式会社 Engine exhaust energy recovery device, ship provided therewith, and power generation plant provided with said engine exhaust energy recovery device
WO2011089989A1 (en) 2010-01-21 2011-07-28 三菱重工業株式会社 Engine exhaust energy recovery device, ship provided therewith, and power generation plant provided with said engine exhaust energy recovery device
WO2012039063A1 (en) 2010-09-24 2012-03-29 三菱重工業株式会社 Control method and device for turbine generator
EP2913486A1 (en) 2010-09-24 2015-09-02 Mitsubishi Heavy Industries, Ltd. Power generation method and turbine generator
US20130055711A1 (en) * 2011-09-07 2013-03-07 Douglas C. Hofer Method and system for a turbocharged engine
US8813494B2 (en) * 2011-09-07 2014-08-26 General Electric Company Method and system for a turbocharged engine
CN105888821A (en) * 2014-12-09 2016-08-24 曹悦胜 Pneumatic power engine
WO2018155239A1 (en) * 2017-02-23 2018-08-30 三菱重工業株式会社 Power generation system and power generation system control method
CN108779688A (en) * 2017-02-23 2018-11-09 三菱重工业株式会社 The control method of electricity generation system and electricity generation system
CN114876630A (en) * 2022-01-25 2022-08-09 侯杰 Turbo charger of cold pressure boost in high efficiency

Similar Documents

Publication Publication Date Title
KR910010170B1 (en) Changable turbo charger device in internal combustion engine
JP2001140653A (en) Turbo charger system for diesel engine.
JPS6353364B2 (en)
JPS63186916A (en) Control of operation of power turbine
JPS5982526A (en) Supercharger for internal-combustion engine
US6381961B1 (en) Method for operating a supercharged internal combustion engine
JP3664181B2 (en) EGR supercharging system
JPS61200331A (en) Multi-turbocharger
JPS62113829A (en) Control device for supercharge pressure in engine with two-stage supercharger
JPH03217621A (en) Control method for engine with supercharger
KR102633858B1 (en) Engine system and method using the same
JPH10169455A (en) Turbo charger engine
JPS5932620A (en) Controller for supercharger for diesel engine
JPH01142214A (en) Turbo supercharged engine
JPH0223229A (en) Twin-type exhaust turbocharger
JP2522422B2 (en) Supercharging control method for supercharged engine
JPS6248051B2 (en)
JP2000064844A (en) Supercharging device for internal combustion engine
JPS5968521A (en) Multi-turbo charger device for internal-combustion engine
JPH0417725A (en) Supercharged pressure control device of two stage supercharged internal combustion engine
JPS63183225A (en) Method of operating diesel engine with power turbine
JPH01322A (en) Turbocharged air-cooled internal combustion engine
CN108757154A (en) Dynamoelectric compressor and turbocharger tandem pressure charging system
JPS6138127A (en) Turbo-compound engine
JPH0521634Y2 (en)