JPS6318641B2 - - Google Patents

Info

Publication number
JPS6318641B2
JPS6318641B2 JP58016629A JP1662983A JPS6318641B2 JP S6318641 B2 JPS6318641 B2 JP S6318641B2 JP 58016629 A JP58016629 A JP 58016629A JP 1662983 A JP1662983 A JP 1662983A JP S6318641 B2 JPS6318641 B2 JP S6318641B2
Authority
JP
Japan
Prior art keywords
organic binder
powder
finely powdered
raw material
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58016629A
Other languages
Japanese (ja)
Other versions
JPS59143002A (en
Inventor
Michio Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58016629A priority Critical patent/JPS59143002A/en
Publication of JPS59143002A publication Critical patent/JPS59143002A/en
Publication of JPS6318641B2 publication Critical patent/JPS6318641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は、有機溶剤で溶解したり、乾燥工程
や粉砕工程を必要とせず、そのまま原料粉末と混
合して使用できる成形性の優れた微粉末状の有機
バインダーに係り、特に金属の高密度製品やフエ
ライト系磁石、希土類系磁石等の微粒子型磁石の
製造に用いて優れた製品特性が得られる粉末冶金
用の有機バインダーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a finely powdered organic binder with excellent moldability that can be used as is by mixing with raw material powder without dissolving it in an organic solvent or requiring a drying or pulverizing process. In particular, the present invention relates to an organic binder for powder metallurgy that provides excellent product properties when used in the production of high-density metal products and fine particle magnets such as ferrite magnets and rare earth magnets.

一般に粉末冶金法では、金属粉末や酸化物微粉
末(以下原料粉末と云う)を配合、混合後加圧成
形し、焼結工程を経て焼結製品にするが、一般に
上記原料粉末は加圧成形に際して潤滑性や結合力
を付与するためのバインダーが混和される。そし
てバインダーの種類や形状、分散状態は成形性や
製品の特性に重要な影響をもつている。
In general, in the powder metallurgy method, metal powder or oxide fine powder (hereinafter referred to as raw material powder) is blended, mixed, and then pressure-formed, and a sintered product is made through a sintering process. During this process, a binder is mixed to provide lubricity and binding strength. The type, shape, and dispersion state of the binder have important effects on moldability and product properties.

粉末冶金法において使用される昇華性有機バイ
ンダーとしてカンフアー、ボルネオール、パラジ
クロールベンゼン、ナフタリン、チモール等があ
る。これらの昇華性有機バインダーはプレス特性
に優れ、かつ焼結に際して、その昇華性のために
残留しないという利点を有するが、その性質上凝
縮するために通常は比較的大きな粒状やフレーク
状あるいはブロツク状をなしている。
Examples of sublimable organic binders used in powder metallurgy include camphor, borneol, paradichlorobenzene, naphthalene, and thymol. These sublimable organic binders have excellent press properties and have the advantage that they do not remain during sintering due to their sublimation properties. is doing.

このため、例えばアルニコ系焼結磁石や超硬合
金等の高密度製品あるいはフエライト系、希土類
系等の微粒子型磁石を製造する場合のように原料
粉末が特に微細な微粉末である場合、かかる微粉
末原料と上記昇華性有機バインダーとを混和する
には、従来昇華性有機バインダーを原料粉末に
直接添加し、混合、粉砕するか、または昇華性
有機バインダーを有機溶剤に溶解し、原料粉末と
混練した後乾燥させて粉砕するかの方法が行われ
ていた。しかしの場合には昇華性有機バインダ
ーが十分微粉砕されないため焼結後空孔が残り、
密度の低い製品となりやすい問題があり、また
の場合には有機溶剤による溶解工程、乾燥工程を
必要とするほか、乾燥によつて昇華性有機バイン
ダーが昇華しやすい等の問題があつた。
For this reason, when the raw material powder is particularly fine powder, as in the case of manufacturing high-density products such as alnico-based sintered magnets and cemented carbide, or fine-grained magnets such as ferrite-based and rare earth-based magnets, To mix the powder raw material and the above-mentioned sublimable organic binder, conventionally, the sublimable organic binder is directly added to the raw material powder, mixed and pulverized, or the sublimable organic binder is dissolved in an organic solvent and kneaded with the raw material powder. The method used was to dry it, then crush it. However, in this case, the sublimable organic binder is not sufficiently pulverized, leaving voids after sintering.
There is a problem that the product tends to have a low density, and in other cases, a dissolution process using an organic solvent and a drying process are required, and there are also problems such as the sublimable organic binder tends to sublimate during drying.

また、粉末冶金法においてはステアリン酸Ca、
ステアリン酸Al、ステアリン酸Zn、ステアリン
酸Mg等微粉末状ステアリン酸塩の所謂、金属石
鹸或いは微粉末状ステアリン酸、微粉末状ワツク
スもバインダーとして広く用いられている。然し
ながら、これらのバインダーは焼結時にCや酸化
物が製品に残留したり、分解生成物が焼結炉を汚
染したりする問題もあつた。
In addition, in the powder metallurgy method, Ca stearate,
Finely powdered stearates such as Al stearate, Zn stearate, and Mg stearate, so-called metal soaps, finely powdered stearic acid, and finely powdered wax are also widely used as binders. However, these binders have the problem that carbon and oxides remain in the product during sintering, and decomposition products contaminate the sintering furnace.

このような実情に鑑み、本発明者は特に微細な
原料粉末の加圧成形に適した微粉末状有機バイン
ダーの提供を目的として、種々の実験、研究を行
なつた結果、前記昇華性有機バインダーに少量の
金属石鹸、又は微粉末状ステアリン酸、微粉末状
ワツクスの1種を添加、混合して粉砕した微粉末
バインダーは、再び凝縮することがなく、分散し
た微粉末状態を保持することを知見した。
In view of these circumstances, the present inventor conducted various experiments and research with the aim of providing a fine powder organic binder particularly suitable for pressure molding of fine raw material powder, and found that the sublimable organic binder The fine powder binder, which is made by adding a small amount of metal soap, fine powder stearic acid, or one type of fine powder wax, and mixing and pulverizing it, will not condense again and will maintain a dispersed fine powder state. I found out.

そして、この発明の微粉末状有機バインダーを
微粉末状の原料粉末と混和し、加圧成形、焼結し
て得られた焼結製品は従来のバインダーを使用し
た焼結製品に比しはるかに高密度であることが確
認された。
The sintered products obtained by mixing the finely powdered organic binder of this invention with the finely powdered raw material powder, pressure molding, and sintering are far superior to sintered products using conventional binders. It was confirmed that the density was high.

さらに、この微粉末状有機バインダーを、磁場
中プレスによつて配向させるフエライト系磁石や
希土類系磁石の製造に使用すると、配向度が著し
く向上することも確認された。すなわち、従来こ
の種の磁石の原料粉末に有機溶剤を用いて昇華性
有機バインダーと混練する場合、乾燥後粉砕され
た個々の原料粉末は完全に分離解砕されず、従つ
て、磁場プレスの際、個々の原料粉末は完全に磁
場の方向に配向することが不可能であり、配向度
に限界があつた。ところが本願発明者が開発した
上記微粉末状有機バインダーはこの種磁石の原料
粉末と単に混合し、均一化するため、個々の原料
粉末は完全に分離解砕され、磁場プレスの際、
個々の原料粉末は略々完全に磁場の方向に配向す
る。
Furthermore, it has been confirmed that when this fine powder organic binder is used to produce ferrite magnets and rare earth magnets that are oriented by pressing in a magnetic field, the degree of orientation is significantly improved. In other words, when the raw material powder of this type of magnet is conventionally kneaded with an organic solvent and a sublimable organic binder, the individual raw material powders that are ground after drying are not completely separated and crushed, and therefore, during magnetic field pressing, However, it was impossible to completely orient each raw material powder in the direction of the magnetic field, and there was a limit to the degree of orientation. However, the above-mentioned fine powder organic binder developed by the present inventors is simply mixed with the raw material powder of this type of magnet and homogenized, so the individual raw material powders are completely separated and crushed, and during magnetic field pressing,
The individual raw powders are almost completely oriented in the direction of the magnetic field.

本発明は昇華性有機バインダーに1〜30wt%
の金属石鹸、又は微粉末状ステアリン酸、あるい
は微粉末状ワツクスを分散、混合した平均程度
100μ以下を有することを特徴とする粉末冶金用
微粉末有機バインダーを要旨とする。
The present invention uses 1 to 30 wt% of the sublimable organic binder.
The average level of metal soap, finely powdered stearic acid, or finely powdered wax dispersed and mixed.
The subject matter is a fine powder organic binder for powder metallurgy, which is characterized by having a particle size of 100μ or less.

ここで、昇華性有機バインダーに混合する金属
石鹸、又は微粉末状ステアリン酸、あるいは微粉
末状ワツクスの量は1〜30wt%(昇華性有機バ
インダー100%に対して)が好ましい。すなわち、
1wt%以下では微粉砕した昇華性有機バインダー
の凝縮防止に効果がなく、30wt%を越えると昇
華性有機バインダーの結合剤としての特性が低下
するからである。
Here, the amount of metal soap, finely powdered stearic acid, or finely powdered wax to be mixed with the sublimable organic binder is preferably 1 to 30 wt% (based on 100% of the sublimable organic binder). That is,
This is because if it is less than 1 wt%, it will not be effective in preventing the finely pulverized sublimable organic binder from condensing, and if it exceeds 30 wt%, the properties of the sublimable organic binder as a binder will deteriorate.

また、本発明の微粉末有機バインダーを原料粉
末に添加する場合、その添加量は0.1wt%〜5wt
%(原料粉末100%に対して)であることを推奨
する。すなわち、0.1wt%以下ではバインダー効
果が少なく、又5wt%を越えると製品の密度が低
下するから好ましくない。なお、昇華性有機バイ
ンダーがカンフアーである場合は0.5wt%以上添
加する必要がある。またこの発明の微粉末有機バ
インダーの平均粒度が100μ以上になると、焼結
品の外貌が悪化し、且つ空孔を生成するので好ま
しくない。好ましい平均粒度としては50μm以下
で微細である程よい。
In addition, when adding the fine powder organic binder of the present invention to the raw material powder, the amount added is 0.1wt% to 5wt%.
% (relative to 100% raw material powder). That is, if it is less than 0.1 wt%, the binder effect will be small, and if it exceeds 5 wt%, the density of the product will decrease, which is not preferable. In addition, when the sublimable organic binder is camphor, it is necessary to add 0.5 wt% or more. Furthermore, if the average particle size of the fine powder organic binder of the present invention exceeds 100 μm, the appearance of the sintered product will deteriorate and pores will be formed, which is not preferable. The preferred average particle size is 50 μm or less, and the finer the better.

本発明において、微粉末昇華性有機バインダー
が凝縮せずに分散状態であるためには金属石鹸、
又は微粉末状ステアリン酸、あるいは微粉末状ワ
ツクスと均一に混合されていることが必要である
が、そのための混合および粉砕工程は通常0℃以
下の低温で行なう方が好ましい。然し、粉砕方法
によつては室温で行なうことも可能である。
In the present invention, in order for the fine powder sublimable organic binder to be in a dispersed state without condensation, metal soap,
Alternatively, it is necessary to uniformly mix with finely powdered stearic acid or finely powdered wax, but the mixing and pulverizing steps for this purpose are preferably carried out at a low temperature of usually 0° C. or lower. However, depending on the grinding method, it is also possible to carry out the grinding at room temperature.

そして、本発明において、微粉末昇華性有機バ
インダーの分散状態は、昇華性有機バインダーの
表面を金属石鹸、又は微粉末状ステアリン酸、あ
るいは微粉末状ワツクスにてコーテイングした状
態であつてもあるいは昇華性有機バインダーと金
属石鹸、又は微粉末状ステアリン酸、あるいは微
粉末状ワツクスとを単に均一に分散させた状態で
あつてもよい。
In the present invention, the dispersion state of the sublimable organic binder in fine powder can be determined even if the surface of the sublimable organic binder is coated with metal soap, fine powdered stearic acid, or fine powdered wax. The organic binder and metallic soap, finely powdered stearic acid, or finely powdered wax may be simply uniformly dispersed.

次に実施例について記載する。 Next, examples will be described.

実施例 1 カンフアーにステアリン酸Ca5wt%を添加し、
−20℃で混合、粉砕した平均粒度20μの微粉末有
機バインダーを、平均粒度5μに粉砕したSm
(Ni0.15、Fe0.2、Co0.55、Cu0.1)0.7なる組成の
合金微粉末原料に2wt%添加、混合した微粉末を
12KOeの磁界中にて3TON/cm2の圧力で成形し、
該成形体を500℃で1時間の脱バインダー後、
1150℃で1時間焼結、続いて800℃で2時間の時
効処理を行なつた結果、得られた製品特性は配向
度98%、残留磁束密度(Br)10.8KGであつた。
Example 1 Adding 5wt% of Ca stearate to camphor,
A finely powdered organic binder with an average particle size of 20μ mixed and crushed at -20℃ is crushed into an average particle size of 5μ.
(Ni0.15, Fe0.2, Co0.55, Cu0.1) Fine powder mixed with 2wt% added to alloy fine powder raw material with a composition of 0.7.
Molded at a pressure of 3TON/ cm2 in a magnetic field of 12KOe,
After removing the binder from the molded body at 500°C for 1 hour,
As a result of sintering at 1150°C for 1 hour, followed by aging treatment at 800°C for 2 hours, the obtained product properties were a degree of orientation of 98% and a residual magnetic flux density (Br) of 10.8KG.

比較例としてカンフアーを有機溶剤(エチルエ
ーテル)で溶解し、上記同様の組成の合金微粉末
原料と混練、乾燥後これを解砕して微粉末となし
上記同様の工程を経て磁石化した結果、得られた
製品特性は配向度89%、残留磁石密度Br10.2KG
であつた。
As a comparative example, camphor was dissolved in an organic solvent (ethyl ether), kneaded with an alloy fine powder raw material having the same composition as above, and after drying, it was crushed to form a fine powder and magnetized through the same process as above. The obtained product characteristics are orientation degree 89% and residual magnet density Br10.2KG.
It was hot.

なお、配向度はCuKα特性X線の回折強度より
次式で計算した。
The degree of orientation was calculated using the following formula from the diffraction intensity of CuKα characteristic X-rays.

配向度=I(OOL)/ΣI(hkl) 但、I(OOL):C軸方向のX線回折強度 I(hkl):各面のX線回折強度 実施例 2 カンフアーにステアリン酸Zn10wt%を添加し、
−20℃で混合、粉砕した平均粒度15μの微粉末有
機バインダーを、平均粒度1μに粉砕したSro・
6Fe2O3なる組成の微粉末原料に1wt%添加、混合
した微粉末を12KOeの磁界中にて3TON/cm2
圧力で成形し、該成形体を500℃で1時間の脱バ
インダー後、1250℃で1時間焼結した結果、得ら
れた製品の特性は配向度90%、焼結密度4.8g/
cm3であつた。
Degree of orientation = I (OOL) / ΣI (hkl) However, I (OOL): X-ray diffraction intensity in the C-axis direction I (hkl): X-ray diffraction intensity on each surface Example 2 10wt% of Zn stearate added to camphor death,
A finely powdered organic binder with an average particle size of 15μ mixed and crushed at -20℃ is mixed with Sro powder and crushed to an average particle size of 1μ.
A fine powder obtained by adding 1 wt% to a fine powder raw material with a composition of 6Fe 2 O 3 and mixing it was molded at a pressure of 3 TON/cm 2 in a magnetic field of 12 KOe, and the molded body was debinding at 500 ° C for 1 hour. As a result of sintering at 1250℃ for 1 hour, the properties of the obtained product were 90% orientation and a sintered density of 4.8g/
It was warm at cm3 .

比較例として上記同様の組成の微粉末原料に、
粒状カンフアー1wt%を添加、混合した後粉砕し
た微粉末を上記同様の工程を経て磁石化した結
果、得られた製品の特性は配向度88%、焼結密度
4.3g/cm3であつた。
As a comparative example, fine powder raw material with the same composition as above was used.
After adding and mixing 1wt% of granular camphor, the fine powder was crushed and turned into a magnet through the same process as above.
It was 4.3 g/cm 3 .

実施例 3 ボルネオールに微粉末状ワツクス(商品名、ヘ
キスト・ワツクスC)3wt%を添加し、−20℃で
混合、100μ以下に粉砕した微粉末有機バインダ
ーを平均粒度50μのFe―25wt%Cr―9wt%Coなる
成分に配合した粉末に1.5wt%添加、混合した微
粉末を、5TON/cm2の圧力で成形し、該成形体を
400℃で1時間の脱バインダー後、真空中で1300
℃に2時間の焼結、続いて2.000Oeの磁場中にて
650℃で1時間の熱処理を行ない、テンパーを600
℃から20℃/Hrの速度で冷却した時に得られた
製品特性は、残留磁束密度Br:14.0KG、Hc:
650Oe、(BH)m:6.6MGO、焼結密度:7.65
g/cm3であつた。
Example 3 3 wt% of finely powdered wax (trade name, Hoechst Wax C) was added to borneol, mixed at -20°C, and pulverized to 100μ or less.A finely powdered organic binder was mixed with Fe-25wt%Cr- with an average particle size of 50μ. 1.5wt% was added to the powder blended with 9wt%Co, and the mixed fine powder was molded at a pressure of 5TON/ cm2 , and the molded body was
After debinding for 1 hour at 400℃, 1300℃ in vacuum
Sintered at ℃ for 2 hours, followed by a magnetic field of 2.000 Oe.
Heat treated at 650℃ for 1 hour to achieve a temper of 600.
The product characteristics obtained when cooling from ℃ to 20℃/Hr are residual magnetic flux density Br: 14.0KG, Hc:
650Oe, (BH)m: 6.6MGO, sintered density: 7.65
g/ cm3 .

従来、上記成分よりなる原料粉末への昇華性有
機バインダーの添加、混合の場合はエチルエーテ
ル等の有機溶剤を必要としていた。
Conventionally, when adding or mixing a sublimable organic binder to a raw material powder made of the above components, an organic solvent such as ethyl ether has been required.

以上に説明したとおり、本発明の微粉末有機バ
インダーは従来の如く有機溶剤により溶解した
り、乾燥工程や粉砕工程を必要とせず、そのまま
微細な原料粉末と混合して使用することができ、
しかも焼結密度、配向度、残留磁束密度等粉末冶
金製品の全般的な特性を著しく向上させる優れた
効果を有するものであるから、その工業的意義は
多大である。
As explained above, the fine powder organic binder of the present invention does not require dissolving with an organic solvent, drying process, or pulverization process as in conventional methods, and can be used as is by mixing with fine raw material powder.
Moreover, it has an excellent effect of significantly improving the overall properties of powder metallurgy products, such as sintering density, degree of orientation, and residual magnetic flux density, and therefore has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] 1 昇華性有機バインダーに1〜30wt%の微粉
末状ステアリン酸、又は微粉末状ステアリン酸
塩、あるいは微粉末状ワツクスを分散、混合し、
100μm以下の平均粒度を有することを特徴とする
粉末冶金用微粉末有機バインダー。
1 Disperse and mix 1 to 30 wt% of finely powdered stearic acid, finely powdered stearate, or finely powdered wax in a sublimable organic binder,
A fine powder organic binder for powder metallurgy, characterized in that it has an average particle size of 100 μm or less.
JP58016629A 1983-02-02 1983-02-02 Organic binder of fine pulverous powder for powder metallurgy Granted JPS59143002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016629A JPS59143002A (en) 1983-02-02 1983-02-02 Organic binder of fine pulverous powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016629A JPS59143002A (en) 1983-02-02 1983-02-02 Organic binder of fine pulverous powder for powder metallurgy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1058277A Division JP2545603B2 (en) 1989-03-10 1989-03-10 Method for manufacturing anisotropic sintered magnet

Publications (2)

Publication Number Publication Date
JPS59143002A JPS59143002A (en) 1984-08-16
JPS6318641B2 true JPS6318641B2 (en) 1988-04-19

Family

ID=11921648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016629A Granted JPS59143002A (en) 1983-02-02 1983-02-02 Organic binder of fine pulverous powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPS59143002A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212658A (en) * 1985-07-09 1987-01-21 出光石油化学株式会社 Ceramic binder
JPS6465065A (en) * 1987-09-05 1989-03-10 Daihatsu Motor Co Ltd Ceramic molding material
JPH01145362A (en) * 1987-12-02 1989-06-07 Masa Tanimoto Compression molding composition for ceramic moldings
JPH0689362B2 (en) * 1988-08-08 1994-11-09 川崎製鉄株式会社 Method for producing iron-based powder mixture for powder metallurgy
JP2685112B2 (en) * 1992-06-24 1997-12-03 大同特殊鋼 株式会社 Manufacturing method of powder molded products
JP2005298739A (en) * 2004-04-14 2005-10-27 Sekisui Chem Co Ltd Inorganic composite resin particle and manufacturing method of inorganic composite resin particle
JP2005298738A (en) * 2004-04-14 2005-10-27 Sekisui Chem Co Ltd Resin particle and manufacturing method of resin particle

Also Published As

Publication number Publication date
JPS59143002A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
KR100374706B1 (en) Production method of Fine powder of Nd-Fe-B Alloy
JPS6318641B2 (en)
JP2545603B2 (en) Method for manufacturing anisotropic sintered magnet
HUT57286A (en) Alloy, permanent magnet and process for producing them
JPH0372124B2 (en)
US4990307A (en) Method for producing particles for the production of permanent magnets
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP2001207201A (en) Sm-Fe-N SERIES COATED ALLOY POWDER FOR MAGNET AND PRODUCING METHOD THEREFOR
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP2682619B2 (en) Manufacturing method of rare earth permanent magnet
JP2018031053A (en) Manufacturing method of rear earth-iron-nitrogen-based alloy powder
JPH07297013A (en) Manufacture method of magnetic powder
JPH10270223A (en) R-fe-c rare-earth magnet, r-fe-c rare-earth bond magnet, and manufacture therefor
JPH06112019A (en) Nitride magnetic material
JP2591126B2 (en) Grinding method of alloy powder for rare earth permanent magnet
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH06112029A (en) Manufacture of ferrite magnet
JPH0561340B2 (en)
JPS6245684B2 (en)
JP3200201B2 (en) Nitride magnetic powder and method for producing the same
JP2005042156A (en) Rare-earth-iron-nitrogen magnetic material and bond magnet using it
JPS624806A (en) Production of alloy powder for rare earth magnet
JP2001093714A (en) Composite anisotropic bonded magnet
JP2006060049A (en) Rare earth-iron-manganese-nitrogen based magnet powder and its production method