JPS63185900A - Heat-treating method of single crystal of composite oxide ferroelectrics - Google Patents

Heat-treating method of single crystal of composite oxide ferroelectrics

Info

Publication number
JPS63185900A
JPS63185900A JP62019040A JP1904087A JPS63185900A JP S63185900 A JPS63185900 A JP S63185900A JP 62019040 A JP62019040 A JP 62019040A JP 1904087 A JP1904087 A JP 1904087A JP S63185900 A JPS63185900 A JP S63185900A
Authority
JP
Japan
Prior art keywords
single crystal
wafer
composite oxide
heat
crystal wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62019040A
Other languages
Japanese (ja)
Inventor
Yasuo Namikawa
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62019040A priority Critical patent/JPS63185900A/en
Publication of JPS63185900A publication Critical patent/JPS63185900A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To readily remove a thermal strain in a crystal which is main cause of unevenness of optical characteristics, by heat-treating a wafer of single crystal of composite oxide ferroelectrics while controlling temperature and time. CONSTITUTION:A single crystal wafer of composite oxide ferroelectrics selected from Bi12SiO20, LiTaO3, LiNbO3, Y3AlO12 and BaTiO3 is maintained at 885-895 deg.C for 1hr to heat-treat the wafer. The thermal strain in the crystal can be removed and the single crystal wafer of composite oxide ferroelectrics having wholly uniform optical characteristics can be produced thereby. Therefore, production of bismuth silicon oxide single crystal wafer having big size and high quality which has been difficult hitherto is made possible and the resultant single crystal wafer is preferably used as a photoconductor, etc., for photoimage processing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複合酸化物強誘電体、特に電気光学効果、光伝
導効果などをもつ光機能材料であるビスマス・シリコン
・オキシイド(13i、2Si(b。、以下BS○と略
す)単結晶ウェハの熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to complex oxide ferroelectric materials, particularly bismuth silicon oxide (13i, 2Si(b), which is an optical functional material having electro-optical effects, photoconductive effects, etc.). , hereinafter abbreviated as BS○)) relates to a heat treatment method for single crystal wafers.

従来の技術 BS○、あるいはLiTaO3、LiNbQ、、Y3A
+5[+12およびBaT+Ozなどの複合酸化物強誘
電体の単結晶の多くは、引き上げ法(チョクラルスキー
法)と呼ばれる結晶成長技術により育成される。これは
、原理的にはるつぼ内で加熱融解した結晶原料の表面に
小さな種結晶を接触させ、回転させながらゆっくり引者
上げていくことにより、結晶を種結晶のまわりに成長さ
せる方法である。
Conventional technology BS○, or LiTaO3, LiNbQ, Y3A
Many single crystals of complex oxide ferroelectrics such as +5[+12 and BaT+Oz are grown by a crystal growth technique called a pulling method (Czochralski method). In principle, this is a method in which a small seed crystal is brought into contact with the surface of a crystal raw material heated and melted in a crucible, and the crystal is grown around the seed crystal by slowly pulling it up while rotating it.

複合酸化物強誘電体、特にBSOは電気光学効果、光伝
導効果などをもつ光機能材料であり、光画像処理素子や
液晶元画(象処理素子などに用いられる光伝導体として
の用途がある。BSOを上記のような光伝導体として用
いる場合、情報量は素子面接に比例するため、特にウェ
ハの大型化が望まれている。しかしながら、BSO単結
晶から得られるウェハにはこれまで、下記のような問題
があった。
Composite oxide ferroelectric materials, especially BSO, are optical functional materials that have electro-optic effects, photoconductive effects, etc., and are used as photoconductors used in optical image processing devices and liquid crystal original images (image processing devices, etc.) When BSO is used as a photoconductor as described above, the amount of information is proportional to the element surface area, so it is particularly desirable to increase the size of the wafer.However, until now, wafers obtained from BSO single crystals have the following There was a problem like this.

発明が解決しようとする問題点 すなわち、引き上げ法で育成されるB、 S O単結晶
には成長中に熱歪みが生じ、これが結晶中に残留する。
The problem to be solved by the invention is that thermal strain occurs in the B, SO single crystal grown by the pulling method during growth, and this strain remains in the crystal.

このような残留歪みを有するBSO単結晶をスライス加
工したウェハには光学的特性にむろがあり、このため光
機能材料として1吏用するのに難点となったっ このようなりSOの光学的特性のむらは、レーデ光源を
用い、偏光子を通し、光軸にπ/4傾いた偏光面を持つ
偏波を結晶中に入射し、消光比を求めて一般に評価する
。このような光学的特性のむらは、単結晶育成時の結晶
材料の融液組成にも影響されるが、結晶育成後の結晶冷
却中に生じた熱歪みによるものが多い。
Wafers made by slicing BSO single crystals with such residual strain have uneven optical properties, which makes it difficult to use them as optical functional materials. Generally, evaluation is performed by using a Rade light source, passing a polarized wave having a polarization plane tilted by π/4 to the optical axis into a crystal, and determining the extinction ratio. Such unevenness in optical properties is influenced by the composition of the melt of the crystal material during single crystal growth, but is often due to thermal distortion that occurs during crystal cooling after crystal growth.

従って本発明の目的は、上記の結晶中の残留歪みを除去
し、光学的特性が全体的に均一な複合酸化物強誘電体、
特にBSOの単結晶ウェハを得ることを可能にする熱処
理方法を提供する二とにある。
Therefore, an object of the present invention is to remove the residual strain in the crystal and create a composite oxide ferroelectric with uniform optical properties as a whole.
In particular, it provides a heat treatment method that makes it possible to obtain BSO single crystal wafers.

問題を解決するための手段 本発明者等は、上記した従来技術の問題を解決せんとし
て、種々の実験、検討を行った結果、本発明を完成した
ものである。
Means for Solving the Problems The present inventors have completed the present invention as a result of various experiments and studies in an attempt to solve the above-mentioned problems of the prior art.

本発明に従うと、複合酸化物強誘電体の単結晶のウェハ
を885℃乃至895℃の範囲の濃度で1時間以上保持
することを特徴とする複合酸化物強誘電体の単結晶ウェ
ハの熱処理方法が提供される。
According to the present invention, a method for heat treatment of a single crystal wafer of a composite oxide ferroelectric is characterized by holding the single crystal wafer of a composite oxide ferroelectric at a concentration in the range of 885°C to 895°C for 1 hour or more. is provided.

複合酸化物強誘電体としては、B11゜SlO20、L
iTaO5、L+NbQ3、YzAlsO+2またはB
aTin3であり、好ましくは本発明の方法はBi、2
SiO20の単結晶のウェハの処理に適用される。
As a composite oxide ferroelectric material, B11°SlO20, L
iTaO5, L+NbQ3, YzAlsO+2 or B
aTin3, preferably the method of the invention is Bi,2
It is applied to the processing of SiO20 single crystal wafers.

さらに本発明の好ましい態様に従うと、複合酸化物強誘
電体の単結晶のウェハは、チョクラルスキー法により育
成された単結晶インゴットを厚さQ、 5mm以上3.
 0mm以下にスライス加工したものである。
Further, according to a preferred embodiment of the present invention, the single crystal wafer of the composite oxide ferroelectric is formed by forming a single crystal ingot grown by the Czochralski method to a thickness Q of 5 mm or more.
It is sliced into pieces of 0 mm or less.

作用 このように、本発明に従い、複合酸化物強誘電体の単結
晶のウェハを熱処理することにより、これまで光伝導体
としての利用に大きな障害となっていた結晶中の残留歪
みを除去することができる。
As described above, according to the present invention, by heat-treating a single crystal wafer of composite oxide ferroelectric, residual strain in the crystal, which has hitherto been a major obstacle to its use as a photoconductor, can be removed. Can be done.

熱処理濃度は、885℃乃至895℃の範囲である。The heat treatment concentration ranges from 885°C to 895°C.

これは、已SOの融点が900℃なので、895℃を超
える濃度に加熱すると、単結晶ウェハが融解するおそれ
があり、一方、885℃未満の濃度で熱処理しても残留
歪み除去のための加熱時間が長くなり、また歪み除去の
効果が小さくなるからである。
This is because the melting point of SO is 900°C, so heating to a concentration higher than 895°C may cause the single crystal wafer to melt; This is because the time will be longer and the effect of distortion removal will be reduced.

熱処理は、単結晶ウェハを885℃乃至395℃の範囲
の濃度で1時間以上保持して行う。1時間未満の保持時
間では、残留歪みの除去が十分に行われない場合がある
からである。さらに、単結晶ウェハの加熱および冷却は
熱歪が生じないように徐々に実施することが必要であり
、特に冷却は加熱炉内で徐冷することが重要である。
The heat treatment is performed by holding the single crystal wafer at a concentration in the range of 885° C. to 395° C. for one hour or more. This is because residual strain may not be removed sufficiently if the holding time is less than one hour. Furthermore, it is necessary to heat and cool the single crystal wafer gradually so as not to cause thermal distortion, and it is particularly important to gradually cool the single crystal wafer in a heating furnace.

さらに、加工されるウェハの厚さは0.5mm乃至3、
0mmの範囲が好ましい。3. Ommを超える厚さの
ウェハの場合、均一に加熱するのが困難であり、さらに
このような厚いウェハに一旦形成された残留歪みは除去
するのが困難にである。また、再度の熱歪を生じさせず
に、結晶全体を均熱状態のまま冷却するのに非常に長い
時間を必要とする。もし不均一な熱分布のまま冷却する
と、冷却時にあらたに熱歪みが発生し、致命的である。
Furthermore, the thickness of the wafer to be processed is 0.5 mm to 3 mm,
A range of 0 mm is preferred. 3. Wafers thicker than 0 mm are difficult to uniformly heat, and furthermore, residual strains once formed in such thick wafers are difficult to remove. Furthermore, it takes a very long time to cool the entire crystal in a uniformly heated state without causing thermal distortion again. If cooling is performed with uneven heat distribution, new thermal distortion will occur during cooling, which is fatal.

一方、Q、 5mm未満の厚みの薄いウェハに熱処理を
施すと、残留歪みの緩和は容易であるが、同時に、結晶
が変形し、クラックが生じる危険性がある。
On the other hand, if heat treatment is applied to a thin wafer with a thickness of less than Q, 5 mm, residual strain can be easily alleviated, but at the same time, there is a risk that the crystal will deform and cracks will occur.

従って、上述の条件で複合酸化物強誘電体、特にBSO
単結晶ウェハに熱処理を施せば、結晶中の残留歪みは除
去され、光学的に特性が均一で大型のウェハが得られ、
高品質の光伝導体としての利用が可能となる。
Therefore, under the above conditions, complex oxide ferroelectrics, especially BSO
By applying heat treatment to a single crystal wafer, residual strain in the crystal is removed, and a large wafer with uniform optical properties can be obtained.
It becomes possible to use it as a high-quality photoconductor.

実施例 以下、実施例により本発明についてさらに詳しく説明す
るが、以下に示すものは本発明の単なる一実施例にすぎ
ず、本発明の技術的範囲を何ら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but what is shown below is merely an example of the present invention, and does not limit the technical scope of the present invention in any way.

まず、チョクラルスキー法で育成されたBSO単結晶を
ウェハ状にスライス加工した。得られたウェハのサイズ
は、45 X45 xl、 5 mm3であった。
First, a BSO single crystal grown by the Czochralski method was sliced into wafers. The size of the obtained wafer was 45 x 45 xl, 5 mm3.

ウェハに熱処理を行う前に、ウェハの両面を鏡面研磨し
、残留歪みの分布を光弾性法により評価した。その結果
、ウェハ面内の消光比は、25dB〜40dBと大きく
ばらついており、強い残留歪みが存在していることがわ
かった。
Before heat-treating the wafer, both sides of the wafer were mirror-polished, and the distribution of residual strain was evaluated using a photoelastic method. As a result, it was found that the extinction ratio within the wafer plane varied widely, ranging from 25 dB to 40 dB, and that strong residual distortion existed.

本発明に従い、このウェハをゴールドファーネスと呼ば
れる横型の炉に装入してウェハを均一に加熱した。加熱
雲囲気は大気であり、室温から2時間かけて890℃に
昇温し、この濃度に4時間保持した。その後、4時間か
けて室温まで冷却した。
According to the present invention, this wafer was placed in a horizontal furnace called a gold furnace to uniformly heat the wafer. The heated cloud atmosphere was the atmosphere, and the temperature was raised from room temperature to 890° C. over 2 hours, and maintained at this concentration for 4 hours. Thereafter, it was cooled to room temperature over 4 hours.

上記の如く熱処理の施されたウェハの表面には熱による
凹凸が生じていたので、再び鏡面研磨を行った。研摩さ
れたウェハを熱処理前に行ったものと同様の光弾性法に
より評価したところ、ウェハ面内での消光比は35dB
〜40dBとばらつきが極く小さくなり、本発明による
熱処理方法を施されたウェハ全体における光学的特性の
均一性が向上していることがHされた。
Since the surface of the wafer that had been heat-treated as described above had unevenness due to heat, mirror polishing was performed again. When the polished wafer was evaluated using the same photoelastic method as that used before heat treatment, the extinction ratio in the wafer plane was 35 dB.
It was confirmed that the variation was extremely small at ~40 dB, and that the uniformity of optical characteristics across the entire wafer subjected to the heat treatment method according to the present invention was improved.

発明の詳細 な説明したように、本発明によれば、複合酸化物強誘電
体、特にBSOの単結晶ウェハに熱処理を施すことによ
って、光学的特性のむらの主原因である結晶中の残留歪
みが除去される。従って本発明の方法で処理されたウェ
ハの光学的特性は全体に均一化し、さらに光機能材料と
しての品質が向上することになる。従って、これまで困
難であった大型で高品質のBSO単結晶ウェハが実現さ
れ、光画像処理用の光伝導体として利用すると特に有利
である。
As described in detail, according to the present invention, residual strain in the crystal, which is the main cause of uneven optical properties, is removed by heat-treating a single crystal wafer of a composite oxide ferroelectric material, particularly BSO. removed. Therefore, the optical properties of the wafer processed by the method of the present invention are made uniform throughout, and the quality as an optical functional material is further improved. Therefore, large, high quality BSO single crystal wafers, which have been difficult to achieve up to now, have been realized and are particularly advantageous when used as photoconductors for optical imaging.

Claims (4)

【特許請求の範囲】[Claims] (1)複合酸化物強誘電体の単結晶のウエハを885℃
乃至895℃の範囲の濃度で1時間以上保持して結晶中
の熱歪を除去することを特徴とする複合酸化物強誘電体
の単結晶ウエハの熱処理方法。
(1) A single crystal wafer of composite oxide ferroelectric material was heated to 885°C.
1. A method for heat treatment of a single crystal wafer of a composite oxide ferroelectric, characterized by holding the concentration at a temperature in the range of 895° C. to 895° C. for 1 hour or more to remove thermal strain in the crystal.
(2)上記複合酸化物強誘電体は、Bi_1_2SiO
_2_0、LiTaO_3、LiNbO_3、Y_3A
l_3O_1_2およびBaTiO_3からなる群れよ
り選択された1種であることを特徴とする特許請求の範
囲第1項に記載の複合酸化物強誘電体の単結晶ウエハの
熱処理方法。
(2) The above composite oxide ferroelectric material is Bi_1_2SiO
_2_0, LiTaO_3, LiNbO_3, Y_3A
The method for heat treatment of a single crystal wafer of a composite oxide ferroelectric according to claim 1, characterized in that the single crystal wafer is one selected from the group consisting of l_3O_1_2 and BaTiO_3.
(3)上記複合酸化物強誘電体は、Bi_1_2SiO
_2_0であることを特徴とする特許請求の範囲第2項
に記載の複合酸化物強誘電体の単結晶ウエハの熱処理方
法。
(3) The above composite oxide ferroelectric material is Bi_1_2SiO
_2_0. The heat treatment method for a single crystal wafer of a composite oxide ferroelectric material according to claim 2, wherein the wafer is _2_0.
(4)上記複合酸化物強誘電体の単結晶のウエハは、チ
ョクラルスキー法により育成された単結晶を厚さ0.5
mm以上3.0mm以下にスライス加工したものである
ことを特徴する特許請求の範囲第1項乃至第3項のいず
れか1項に記載の複合酸化物強誘電体の単結晶ウエハの
熱処理方法。
(4) The single crystal wafer of the above-mentioned composite oxide ferroelectric material is a single crystal grown by the Czochralski method to a thickness of 0.5 cm.
The method for heat treatment of a single crystal wafer of a composite oxide ferroelectric according to any one of claims 1 to 3, wherein the wafer is sliced into wafers of 3.0 mm or more and 3.0 mm or more.
JP62019040A 1987-01-29 1987-01-29 Heat-treating method of single crystal of composite oxide ferroelectrics Pending JPS63185900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019040A JPS63185900A (en) 1987-01-29 1987-01-29 Heat-treating method of single crystal of composite oxide ferroelectrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019040A JPS63185900A (en) 1987-01-29 1987-01-29 Heat-treating method of single crystal of composite oxide ferroelectrics

Publications (1)

Publication Number Publication Date
JPS63185900A true JPS63185900A (en) 1988-08-01

Family

ID=11988314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019040A Pending JPS63185900A (en) 1987-01-29 1987-01-29 Heat-treating method of single crystal of composite oxide ferroelectrics

Country Status (1)

Country Link
JP (1) JPS63185900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773225B2 (en) 2004-02-16 2010-08-10 Tiziano Barea Device for the optical analysis, including two-dimensional, of a thread or yarn
US7794179B2 (en) 2004-01-14 2010-09-14 Nisshin Steel Co., Ltd. Rockbolt of high strength steel pipe and method of manufacturing the same
US7927043B2 (en) 2003-11-17 2011-04-19 Nisshin Steel Co., Ltd. Rockbolts made of steel pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927043B2 (en) 2003-11-17 2011-04-19 Nisshin Steel Co., Ltd. Rockbolts made of steel pipes
US7794179B2 (en) 2004-01-14 2010-09-14 Nisshin Steel Co., Ltd. Rockbolt of high strength steel pipe and method of manufacturing the same
US7773225B2 (en) 2004-02-16 2010-08-10 Tiziano Barea Device for the optical analysis, including two-dimensional, of a thread or yarn

Similar Documents

Publication Publication Date Title
US7544247B2 (en) Lithium tantalate substrate and method of manufacturing same
US7309392B2 (en) Lithium niobate substrate and method of producing the same
JP3512480B2 (en) Method for producing potassium niobate single crystal
JPS63185900A (en) Heat-treating method of single crystal of composite oxide ferroelectrics
Garrett et al. A method for poling barium titanate, BaTiO3
JP2007033489A (en) Manufacturing method of ferroelectric crystal and electrooptical element
US10651818B2 (en) Method of producing lithium niobate single crystal substrate
KR0143799B1 (en) Single crystal growth method for bariumtitanikm oxide using noncrystalline solio growth
US5766340A (en) Method for post-poling mobile ion redistribution in lithium niobate
JP2004328712A (en) Lithium-tantalate substrate and its manufacturing method
JPH0218395A (en) Method for forming single domain in lithium niobate single crystal
JPH06191996A (en) Method for producing lithium niobate single crystal and optical element
JP3132956B2 (en) Method for producing oxide single crystal
JP2751063B2 (en) Liquid phase epitaxial growth film forming method
US10301742B2 (en) Lithium niobate single crystal substrate and method of producing the same
JP3013206B2 (en) Method for producing lithium niobate single crystal
JP2833714B2 (en) Method for producing oxide garnet film
US20180148858A1 (en) Lithium niobate single crystal substrate and method of producing the same
JPH05105594A (en) Method for producing single crystal of lithium tantalate and optical element
JPH101391A (en) Manufacture of ferroelectric optical single crystal substrate product
JPH0367999B2 (en)
JPS58145699A (en) Method for making single domain of lithium niobate single crystal
JPH0585897A (en) Method for forming lithium niobate single crystal into single domain
JPS6065706A (en) Production of amorphous oxide
JPH0365598A (en) Growing of bismuth-substituted garnet crystal