JP2751063B2 - Liquid phase epitaxial growth film forming method - Google Patents

Liquid phase epitaxial growth film forming method

Info

Publication number
JP2751063B2
JP2751063B2 JP2592389A JP2592389A JP2751063B2 JP 2751063 B2 JP2751063 B2 JP 2751063B2 JP 2592389 A JP2592389 A JP 2592389A JP 2592389 A JP2592389 A JP 2592389A JP 2751063 B2 JP2751063 B2 JP 2751063B2
Authority
JP
Japan
Prior art keywords
substrate
film
liquid phase
phase epitaxial
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2592389A
Other languages
Japanese (ja)
Other versions
JPH02206113A (en
Inventor
亮 榎本
雅哉 山田
靖史 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12179300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2751063(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2592389A priority Critical patent/JP2751063B2/en
Publication of JPH02206113A publication Critical patent/JPH02206113A/en
Application granted granted Critical
Publication of JP2751063B2 publication Critical patent/JP2751063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液相エピタキシャル法により基板の片面の
みにエピタキシャル成長膜を形成する方法である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a method for forming an epitaxially grown film on only one surface of a substrate by a liquid phase epitaxial method.

(従来の技術及び解決すべき課題) 光スイッチ、光変調器、SHG素子、光アイソレータな
ど光デバイスの製造に際しては、各種の基板の上に種々
の酸化物結晶膜を形成させ、この結晶膜の表面を基板と
平行に研磨する必要が生ずる場合が多くある。
(Prior art and problems to be solved) In manufacturing optical devices such as optical switches, optical modulators, SHG elements, and optical isolators, various oxide crystal films are formed on various substrates, and these crystal films are formed. Often it is necessary to polish the surface parallel to the substrate.

ところで、基板の表面に液相エピタキシャル法により
エピタキシャル成長膜を形成するには、従来は、基板を
爪で固定して融液中に浸漬し、基板表面に薄膜結晶を成
長させる方法が採用されている。この方法では基板の表
面のみならず、裏面にも結晶膜が形成される。液相エピ
タキシャル成長の場合、通常基板を回転させながら結晶
を育成するために、結晶膜は基板中央部には薄く、周辺
部には厚く育成し、マクロ的にみて結晶膜表面に凹凸が
生じるので、このように裏面にも結晶膜が形成されてい
ると、基板の表面に形成された結晶膜を研磨するとき、
裏面の結晶膜の凹凸のため研磨の基準面が設定できな
く、従って基板と結晶膜との平行度の高い研磨を行うこ
とが困難である。本発明は、上記の欠点を除くため、基
板の表面のみ(すなわち、基板の片面のみ)に液相エピ
タキシャル成長による結晶膜を形成させることを目的と
する。
By the way, in order to form an epitaxially grown film on the surface of a substrate by a liquid phase epitaxial method, a method of fixing a substrate with a nail, immersing the substrate in a melt, and growing a thin film crystal on the substrate surface has conventionally been adopted. . In this method, a crystal film is formed not only on the front surface of the substrate but also on the back surface. In the case of liquid phase epitaxial growth, the crystal film is usually grown thinly at the center of the substrate and thickly grown at the periphery to grow the crystal while rotating the substrate. When the crystal film is also formed on the back surface as described above, when polishing the crystal film formed on the front surface of the substrate,
Because of the unevenness of the crystal film on the back surface, a reference plane for polishing cannot be set, and therefore it is difficult to perform highly parallel polishing between the substrate and the crystal film. An object of the present invention is to form a crystal film by liquid phase epitaxial growth only on the surface of a substrate (that is, only on one surface of the substrate) in order to eliminate the above-mentioned disadvantages.

しかして、本発明とは異なる目的で、すなわち融液の
浪費を避け、融液の寿命を延ばす目的で基板を融液に浮
かせて液相エピタキシャル成長を行わせ、基板の片面の
みに結晶膜を形成する方法が知られている(特開昭57−
76822号公報)が、この方法では、基板の位置制御が難
しく、結晶育成操作中に基板の熱分布が不均一になるた
め歪が生じやすい欠点がある。又、基板の一部分を予め
白金などでマスクしておき、この基板を融液中に浸漬
し、該マスクを施さない部分のみに結晶膜を形成する方
法も知られている(特開昭55−55511号公報)が、この
方法も白金などのマスク材料が高価であり、且つ除去が
困難であり、又マスク材料が融液中に混入して膜を劣化
させる欠点があった。
Thus, for the purpose different from the present invention, that is, for avoiding waste of the melt and extending the life of the melt, the substrate is floated on the melt to perform liquid phase epitaxial growth, and a crystal film is formed only on one surface of the substrate. There is known a method of performing
However, this method has a drawback that it is difficult to control the position of the substrate, and the heat distribution of the substrate becomes non-uniform during the crystal growing operation, so that distortion tends to occur. There is also known a method in which a part of a substrate is masked in advance with platinum or the like, the substrate is immersed in a melt, and a crystal film is formed only in a part where the mask is not applied (Japanese Patent Laid-Open No. 55-55). However, this method also has the disadvantage that the mask material such as platinum is expensive and difficult to remove, and the mask material is mixed in the melt to deteriorate the film.

本発明は、これら従来法の欠点を除き、簡単に基板の
片面のみに液体エピタキシャル成長法によりエピタキシ
ャル成長膜を形成させる方法を提供するものである。
The present invention provides a method for easily forming an epitaxially grown film on only one surface of a substrate by a liquid epitaxial growth method, excluding these disadvantages of the conventional method.

(課題を解決するための手段) 本発明者等は、液体エピタキシャル成長により基板上
に成長させたエピタキシャル膜の結晶の性質、状態は、
基板の表面の粗さの程度に著しく影響され、基板の表面
の粗さがある程度以上になると、結晶膜の形成そのもの
が阻害され、また結晶膜が形成されてもその膜質は極度
に劣悪であり化学的エッチングで簡単に除去できること
を知見し、この現象を巧みに利用して本発明を完成し
た。
(Means for Solving the Problems) The present inventors have determined that the crystal properties and state of an epitaxial film grown on a substrate by liquid epitaxial growth are as follows:
The degree of roughness of the surface of the substrate is significantly affected, and when the surface roughness of the substrate exceeds a certain level, the formation of the crystal film itself is inhibited, and even if the crystal film is formed, the quality of the film is extremely poor. The inventors have found that they can be easily removed by chemical etching, and have successfully utilized this phenomenon to complete the present invention.

すなわち、本発明は、片面を鏡面状態にし、他面に粗
面加工を施した基板に、液相エピタキシャル法によって
結晶成長を行わせることにより、基板の片面のみに液相
エピタキシャル成長膜を形成すること特徴とする液相エ
ピタキシャル成長膜形成方法である。
That is, the present invention is to form a liquid-phase epitaxial growth film on only one side of a substrate by making one side of the substrate into a mirror surface state and performing crystal growth by a liquid-phase epitaxial method on a substrate having a roughened surface on the other side. This is a method for forming a liquid phase epitaxial growth film.

本発明は、液相エピタキシャル成長法に通常使用され
ている方法、装置をそのまま使用して、又融液を汚染す
ることなく、しかも粗面加工という極めて簡単な方法
で、基板の片面のみにエピタキシャル成長膜を形成でき
るので非常に有利である。
The present invention provides an epitaxially grown film on only one side of a substrate by using a method and apparatus usually used for liquid phase epitaxial growth as it is, without contaminating the melt, and by a very simple method of rough surface processing. Is very advantageous since

本発明方法で適用できる基板は、ガドリニウム・ガリ
ウム・ガーネット(GGG,Gd3Ga5O12)、サマリウム・ガ
リウム・ガーネット(SmGG,Sm3Ga5O12)、ネオジウム・
ガリウム・ガーネット(NdGG,Nd3Ga5O12)、サファイア
(Al2O3)、ニオブ酸リチウム(LiNbO3)タンタル酸リ
チウム(LiTaO3)をはじめとする光学用単結晶基板であ
る。
Substrates applicable in the method of the present invention include gadolinium gallium garnet (GGG, Gd 3 Ga 5 O 12 ), samarium gallium garnet (SmGG, Sm 3 Ga 5 O 12 ), neodymium.
Gallium garnet (NdGG, Nd 3 Ga 5 O 12), sapphire (Al 2 O 3), an optical single crystal substrate including lithium niobate (LiNbO 3) lithium tantalate (LiTaO 3).

これら基板の片面を粗面加工し、他の面は鏡面状態に
しておく。粗面加工には、表面を機械的に処理して粗面
にする機械的方法、表面を化学薬品で処理して粗面にす
る化学的方法があるが、機械的方法を採用するのが好ま
しい。この機械的方法は、研磨紙で擦る方法が簡単で能
率的である。研磨紙としては#3000より粗いのものを用
いるのが好ましい。粗面加工した面の粗いの程度によっ
てエピタキシャル成長による膜が全く育成されない場合
と、膜の育成は見られるが、膜の結晶性が著しく劣悪で
化学的エッチングで容易に除去できる場合がある。液相
エピタキシャル操作の条件にもよるが、#1500〜#3000
の範囲の研磨紙でラッピングした場合には上記した現象
が見られる。
One surface of these substrates is roughened, and the other surface is mirror-finished. The rough surface processing includes a mechanical method of mechanically treating the surface to give a rough surface, and a chemical method of treating the surface with a chemical to make the surface rough, but it is preferable to employ a mechanical method. . With this mechanical method, the method of rubbing with abrasive paper is simple and efficient. It is preferable to use abrasive paper coarser than # 3000. Depending on the degree of roughness of the roughened surface, a film may not be grown at all by epitaxial growth, or a film may be grown, but the crystallinity of the film is extremely poor and may be easily removed by chemical etching. Depending on the conditions of the liquid phase epitaxial operation, # 1500 to # 3000
The above phenomenon is observed when lapping is performed with abrasive paper in the range of (1).

従って、本発明によれば、粗面加工した面に膜が形成
されない場合にはそのままで、また粗面加工した面にも
膜が形成された場合には基板全体に施す簡単な化学的エ
ッチングで膜を除去することにより、鏡面状態の面の
み、すなわち片面のみに結晶膜が育成した基板が得られ
る。そして、この基板の他の面には粗面加工した状態の
ままで、膜の形成に起因する前述した結晶膜の凹凸がな
いため、この面を基準にすると基板の平行面を容易に決
めることができる。その為、基板の片面に形成させた結
晶膜の表面を基板と平行に研磨することが容易となる。
Therefore, according to the present invention, when a film is not formed on the roughened surface, the film is left as it is, and when a film is formed on the roughened surface, the entire substrate is subjected to simple chemical etching. By removing the film, a substrate having a crystal film grown only on the mirror-finished surface, that is, only on one surface is obtained. Then, since the other surface of the substrate is still roughened and has no irregularities of the crystal film due to the formation of the film, it is easy to determine the parallel surface of the substrate based on this surface. Can be. Therefore, it becomes easy to polish the surface of the crystal film formed on one side of the substrate in parallel with the substrate.

本発明は、基板表面に液相エピタキシャル成長法によ
り酸化物結晶膜を育成する際に好適であり、例えば、
(Bi,Y)(Fe,Al)5O12,(Bi,Gd)(Fe,Ga)5O12,
(Bi,Y)(Fe,Ga)5O12,(Bi,Gd)(Fe,Al)5O12,L
iNbO2,Ba2NaNb5O15などの結晶膜の形成に適用される。
The present invention is suitable for growing an oxide crystal film on a substrate surface by a liquid phase epitaxial growth method, for example,
(Bi, Y) 3 (Fe, Al) 5 O 12 , (Bi, Gd) 3 (Fe, Ga) 5 O 12 ,
(Bi, Y) 3 (Fe , Ga) 5 O 12, (Bi, Gd) 3 (Fe, Al) 5 O 12, L
It is applied to the formation of a crystal film of iNbO 2 , Ba 2 NaNb 5 O 15 or the like.

本発明方法は、通常の液相エピタキシャル法および装
置が使用される。
In the method of the present invention, a usual liquid phase epitaxial method and apparatus are used.

実施例1 1)直径2インチ、厚さ0.5mmのGGG(Gd3Ga2O12、ガド
リニウム・ガリウム・ガーネット)単結晶ウエハを平行
度が<2μmとなるように片面を鏡面研磨、もう一方の
面を#1000の耐水研磨紙でラッピングした後、超音波洗
浄、乾燥した。
Example 1 1) One surface of a single crystal wafer of GGG (Gd 3 Ga 2 O 12 , gadolinium gallium garnet) having a diameter of 2 inches and a thickness of 0.5 mm is mirror-polished so that the parallelism is <2 μm, and the other is mirror-polished. After the surface was wrapped with # 1000 water-resistant abrasive paper, it was ultrasonically washed and dried.

2)得たウエハを、基板を回転させながら融液中に浸漬
し基板上に結晶膜を育成させるLPE成長育成装置にセッ
トし、PbO,Bi2O3,B2O3をフラックス成分としたBi1Y2Fe4
Al1O12+PbO+Bi2O3+B2O3の混合物融液中で、(Bi,Y)
(Fe,Al)5O12単結晶薄膜をウエハ上に育成した。育
成条件は、基板回転数100rpm、育成温度840℃、育成時
間10分であった。次いで基板回転数1000rpm、30秒間融
液上で融液を振り切る。徐冷の後、酢酸に12時間浸漬す
ることにより余剰な付着物であるフラックス成分を除去
した。
2) The obtained wafer is set in an LPE growth and growth apparatus for growing a crystal film on a substrate by immersing the wafer in a melt while rotating the substrate, and using PbO, Bi 2 O 3 , and B 2 O 3 as flux components. Bi 1 Y 2 Fe 4
In a mixture melt of Al 1 O 12 + PbO + Bi 2 O 3 + B 2 O 3 , (Bi, Y)
3 (Fe, Al) 5 O 12 single crystal thin film was grown on the wafer. The growth conditions were a substrate rotation speed of 100 rpm, a growth temperature of 840 ° C., and a growth time of 10 minutes. Then, the melt is shaken off on the melt for 30 seconds at a substrate rotation speed of 1000 rpm. After slow cooling, the residue was immersed in acetic acid for 12 hours to remove a flux component as an extraneous deposit.

3)鏡面研磨面には、膜厚が8〜12μmの良質な(Bi,
Y)(Fe,Al)5O12単結晶薄膜が成長したが、研磨紙で
ラッピングした研磨面には結晶薄膜は何ら成長せず、ラ
ップ研磨面のままであった。
3) The mirror-polished surface has a high quality (Bi,
Although a single crystal thin film of Y) 3 (Fe, Al) 5 O 12 grew, no crystal thin film grew on the polished surface wrapped with abrasive paper, and the lap polished surface remained.

4)このラップ研磨面を基準面とし、(Bi,Y)(Fe,A
l)5O12単結晶薄膜のラッピング、鏡面研磨を行ったと
ころ、基板との平行度が<2μmと、GGG単結晶ウエハ
と同等の平行度を有する(Bi,Y)(Fe,Al)5O12単結
晶薄膜を得た。
4) Using this lap polished surface as a reference surface, (Bi, Y) 3 (Fe, A
l) When the lapping and mirror polishing of the 5 O 12 single crystal thin film were performed, the parallelism with the substrate was <2 μm, which is equivalent to that of the GGG single crystal wafer (Bi, Y) 3 (Fe, Al) A 5 O 12 single crystal thin film was obtained.

実施例2 1)直径2インチ、厚さ0.5mmのGGG(Gd3Ga5O12、ガド
リニウム・ガリウム・ガーネット)単結晶ウエハを平行
度が<2μmとなるように片面を鏡面研磨、もう一方の
面を#2000の耐水研磨紙でラッピングした後、超音波洗
浄、乾燥した。
Example 2 1) GGG (Gd 3 Ga 5 O 12 , gadolinium gallium garnet) single crystal wafer having a diameter of 2 inches and a thickness of 0.5 mm is mirror-polished on one side so that the parallelism is <2 μm, and the other is mirror-polished. After the surface was wrapped with # 2000 water-resistant abrasive paper, it was ultrasonically washed and dried.

2)得たウエハを実施例1と同じLPE成長育成装置にセ
ットし、PbO,Bi2O3,B2O3をフラックス成分としたBi1Y2F
e4Al1O12+PbO+Bi2O3+B2O3の混合物融液中で、(Bi,
Y)(Fe,Al)5O12単結晶薄膜をウエハ上に育成した。
育成条件は、基板回転数100rpm、育成温度840℃、育成
時間10分であった。実施例1と同様に融液を振り切り、
徐冷の後、酢酸に12時間浸漬することにより余剰な付着
物であるフラックス成分を除去した。
2) The obtained wafer was set in the same LPE growth and growth apparatus as in Example 1, and Bi 1 Y 2 F containing PbO, Bi 2 O 3 , and B 2 O 3 as flux components
In a melt of a mixture of e 4 Al 1 O 12 + PbO + Bi 2 O 3 + B 2 O 3 , (Bi,
A single crystal thin film of Y) 3 (Fe, Al) 5 O 12 was grown on a wafer.
The growth conditions were a substrate rotation speed of 100 rpm, a growth temperature of 840 ° C., and a growth time of 10 minutes. Shake off the melt in the same manner as in Example 1,
After slow cooling, the residue was immersed in acetic acid for 12 hours to remove a flux component as an extraneous deposit.

3)鏡面研磨面には、膜厚が8〜12μmの良質な(Bi,
Y)(Fe,Al)5O12単結晶薄膜が成長した。ラップ研磨
面には、かなり膜質が劣る(Bi,Y)(Fe,Al)5O12
即ち若干の単結晶部位を含む多結晶薄膜が成長した。次
いで、90℃リン酸で10分間化学エッチングを行ったとこ
ろ、単結晶薄膜には何ら変化が見られなかったが、単結
晶含有多結晶薄膜は消失し、元来のGGGラップ研磨面が
露出した。
3) The mirror-polished surface has a high quality (Bi,
A single crystal thin film of Y) 3 (Fe, Al) 5 O 12 grew. On the lap polished surface, the film quality is considerably inferior (Bi, Y) 3 (Fe, Al) 5 O 12 ,
That is, a polycrystalline thin film containing some single crystal parts grew. Then, when the chemical etching was performed at 90 ° C. for 10 minutes with phosphoric acid, no change was observed in the single crystal thin film, but the single crystal containing polycrystalline thin film disappeared, and the original GGG lap polished surface was exposed. .

4)このラップ研磨面を基準面とし、(Bi,Y)(Fe,A
l)5O12単結晶薄膜のラッピング、鏡面研磨を行ったと
ころ、基板との平行度が<2μmと、GGG単結晶ウエハ
と同等の平行度を有する(Bi,Y)(Fe,Al)5O12単結
晶薄膜を得た。
4) Using this lap polished surface as a reference surface, (Bi, Y) 3 (Fe, A
l) When the lapping and mirror polishing of the 5 O 12 single crystal thin film were performed, the parallelism with the substrate was <2 μm, which is equivalent to that of the GGG single crystal wafer (Bi, Y) 3 (Fe, Al) A 5 O 12 single crystal thin film was obtained.

実施例3 1)直径2インチ、厚さ0.5mmのSmGG(Sm3Ga5O12,サマ
リウム・ガリウム・ガーネット)単結晶ウエハおよび、
NdGG(Nd3Ga5O12,ネガジウム・ガリウム・ガーネット)
単結晶ウエハを平行度が<2μmとなるように片面を鏡
面研磨、もう一方の面を#1000の耐水研磨紙でラッピン
グした後、超音波洗浄、乾燥した。
Example 3 1) SmGG (Sm 3 Ga 5 O 12 , samarium gallium garnet) single crystal wafer having a diameter of 2 inches and a thickness of 0.5 mm;
NdGG (Nd 3 Ga 5 O 12 , Negium Gallium Garnet)
The single crystal wafer was mirror-polished on one side so that the parallelism was <2 μm, wrapped on the other side with # 1000 water-resistant abrasive paper, and then ultrasonically washed and dried.

2)得たウエハを実施例1と同じLPE成長育成装置にセ
ットし、PbO,Bi2O3,B2O3をフラックス成分としたBi1Y2F
e4Al1O12+PbO+Bi2O3+B2O3の混合物融液中で、(Bi,
Y)(Fe,Al)5O12単結晶薄膜をウエハ上に育成した。
育成条件は、基板回転数100rpm、育成温度840℃、育成
時間10分であった。実施例1と同様に融液を振り切り、
徐冷の後、酢酸に12時間浸漬することにより余剰な付着
物であるフラックス成分を除去した。
2) The obtained wafer was set in the same LPE growth and growth apparatus as in Example 1, and Bi 1 Y 2 F using PbO, Bi 2 O 3 , and B 2 O 3 as flux components
In a melt of a mixture of e 4 Al 1 O 12 + PbO + Bi 2 O 3 + B 2 O 3 , (Bi,
A single crystal thin film of Y) 3 (Fe, Al) 5 O 12 was grown on a wafer.
The growth conditions were a substrate rotation speed of 100 rpm, a growth temperature of 840 ° C., and a growth time of 10 minutes. Shake off the melt in the same manner as in Example 1,
After slow cooling, the residue was immersed in acetic acid for 12 hours to remove a flux component as an extraneous deposit.

3)鏡面研磨面には、膜厚が8〜12μmの良質な(Bi,
Y)(Fe,Al)5O12単結晶薄膜が成長したが、研磨紙で
ラッピングした面には何ら成長せず、ラップ研磨面のま
まであった。
3) The mirror-polished surface has a high quality (Bi,
Although a single crystal thin film of Y) 3 (Fe, Al) 5 O 12 grew, it did not grow on the surface wrapped with the polishing paper, and remained a lap polished surface.

4)このラップ研磨面を基準面とし、(Bi,Y)(Fe,A
l)5O12単結晶薄膜のラッピング、鏡面研磨を行ったと
ころ、基板との平行度が<2μmと、SmGG(Sm3Ga5O12,
サマリウム・ガリウム・ガーネット)単結晶ウエハおよ
び、NdGG(Nd3Ga5O12,ネオジウム・ガリウム・ガーネッ
ト)単結晶ウエハと同等の平行度を有する(Bi,Y)
(Fe,Al)5O12単結晶薄膜を得た。
4) Using this lap polished surface as a reference surface, (Bi, Y) 3 (Fe, A
l) The lapping and mirror polishing of the 5 O 12 single crystal thin film showed that the parallelism with the substrate was <2 μm and that SmGG (Sm 3 Ga 5 O 12 ,
It has the same degree of parallelism as a samarium gallium garnet single crystal wafer and a NdGG (Nd 3 Ga 5 O 12 , neodymium gallium garnet) single crystal wafer (Bi, Y)
3 (Fe, Al) 5 O 12 single crystal thin film was obtained.

(発明の効果) 本発明によれば、片面を鏡面状態にし、他面に粗面加
工を施すという極めて簡単な手段を採用するだけで、通
常の液相エピタキシャル成長法および装置により、基板
の片面にのみにエピタキシャル成長の結晶膜を育成する
ことができる。その結果、基板の表面に育成した結晶膜
の表面、基板と平行度良く研磨するのが容易となるとい
う格別の効果を奏するとともに、融液の浪費を避け、そ
の寿命を延ばすという効果をも発揮する。
(Effects of the Invention) According to the present invention, one surface is mirror-finished, and the other surface is roughened only by employing a very simple means. Only the epitaxially grown crystal film can be grown. As a result, it has the special effect that it is easy to polish the surface of the crystal film grown on the surface of the substrate with good parallelism with the substrate, and also has the effect of avoiding waste of the melt and extending its life. I do.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−133400(JP,A) 特開 昭62−292694(JP,A) 特開 昭58−215017(JP,A) 特開 昭57−76822(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-133400 (JP, A) JP-A-62-292694 (JP, A) JP-A-58-215017 (JP, A) JP-A-57-215 76822 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】片面を鏡面状態にし、他面に粗面加工を施
した基板に、液相エピタキシャル法によって結晶成長を
行わせることにより、基板の片面のみに液相エピタキシ
ャル成長膜を形成すること特徴とする液相エピタキシャ
ル成長膜形成方法。
1. A liquid phase epitaxial growth film is formed only on one side of a substrate by subjecting one of the substrates to a mirror surface state and crystal growth on a substrate having a roughened surface on the other side by liquid phase epitaxy. Liquid phase epitaxial growth film forming method.
JP2592389A 1989-02-06 1989-02-06 Liquid phase epitaxial growth film forming method Expired - Lifetime JP2751063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2592389A JP2751063B2 (en) 1989-02-06 1989-02-06 Liquid phase epitaxial growth film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2592389A JP2751063B2 (en) 1989-02-06 1989-02-06 Liquid phase epitaxial growth film forming method

Publications (2)

Publication Number Publication Date
JPH02206113A JPH02206113A (en) 1990-08-15
JP2751063B2 true JP2751063B2 (en) 1998-05-18

Family

ID=12179300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2592389A Expired - Lifetime JP2751063B2 (en) 1989-02-06 1989-02-06 Liquid phase epitaxial growth film forming method

Country Status (1)

Country Link
JP (1) JP2751063B2 (en)

Also Published As

Publication number Publication date
JPH02206113A (en) 1990-08-15

Similar Documents

Publication Publication Date Title
JP3252702B2 (en) Method for manufacturing semiconductor single crystal mirror-finished wafer including vapor phase etching step and semiconductor single crystal mirror wafer manufactured by this method
WO2002006568A2 (en) Slicing of single-crystal films using ion implantation
JP2002541673A (en) Single crystal film slicing method using ion implantation
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
JP2751063B2 (en) Liquid phase epitaxial growth film forming method
JPH1010348A (en) Production of optical waveguide device
Holstein Etching study of ferroelectric microdomains in LiNbO3 and MgO: LiNbO3
US4372808A (en) Process for removing a liquid phase epitaxial layer from a wafer
US4154025A (en) Method for preparing oxide piezoelectric material wafers
JP2787324B2 (en) Method of manufacturing channel type optical waveguide
JP2800973B2 (en) Method for producing oxide garnet single crystal
JPH06333771A (en) Manufacture of garnet single crystal film
JPH0218612B2 (en)
JPS5827238B2 (en) Single crystal manufacturing method
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
JP3894685B2 (en) Method for producing oxide garnet single crystal film
JPH02259608A (en) Production of optical waveguide consisting of lithium niobate
JPH04171707A (en) Manufacture of garnet oxide film
JP2903474B2 (en) How to make a channel type optical waveguide
JPS6232160B2 (en)
JPS5849520B2 (en) garnet
JPH02251912A (en) Production of thin-film waveguide type optical isolator
JP3014152B2 (en) Method for manufacturing semiconductor wafer
JPH0710695A (en) Production of lithium niobate single crystal film
JPH05152264A (en) Wafer polishing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

EXPY Cancellation because of completion of term