JPS6232160B2 - - Google Patents

Info

Publication number
JPS6232160B2
JPS6232160B2 JP8441785A JP8441785A JPS6232160B2 JP S6232160 B2 JPS6232160 B2 JP S6232160B2 JP 8441785 A JP8441785 A JP 8441785A JP 8441785 A JP8441785 A JP 8441785A JP S6232160 B2 JPS6232160 B2 JP S6232160B2
Authority
JP
Japan
Prior art keywords
single crystal
cylindrical
cutting
axis
lithium tantalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8441785A
Other languages
Japanese (ja)
Other versions
JPS60246299A (en
Inventor
Tsuguo Fukuda
Hitoshi Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60084417A priority Critical patent/JPS60246299A/en
Publication of JPS60246299A publication Critical patent/JPS60246299A/en
Publication of JPS6232160B2 publication Critical patent/JPS6232160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタンタル酸リチウム単結晶のウエハー
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a wafer of lithium tantalate single crystal.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

酸化物圧電体の単結晶をそのX軸に垂直な方向
で切断して得られるX板ウエハーは、カラーテレ
ビジヨン受像機用のPIF表面波フイルタ等の基板
として有効である。X板ウエハーを単結晶から切
断するための都合上この単結晶はX軸方向に円柱
状に成長された言い換えればX軸を長さ方向とし
た円柱状のものが一般に製造され、利用されてい
る。このような円柱状の単結晶はチヨコラルスキ
ー法等の引き上げ法又は引き下げ法等により製造
される。次に、酸化物圧電体の円柱状単結晶から
X板ウエハーを製造する従来の代表的方法を説明
する。
An X-plate wafer obtained by cutting a single crystal of oxide piezoelectric material in a direction perpendicular to its X-axis is effective as a substrate for PIF surface wave filters for color television receivers and the like. For convenience in cutting an X-plate wafer from a single crystal, this single crystal is grown in a cylindrical shape in the X-axis direction. In other words, a cylindrical one with the length direction along the X-axis is generally manufactured and used. . Such a cylindrical single crystal is produced by a pulling method such as the Czyochoralski method or a pulling method. Next, a typical conventional method for manufacturing an X-plate wafer from a cylindrical single crystal of an oxide piezoelectric material will be described.

最初に、この単結晶のZ軸方向をX線ラウエ
法等により決定し、このZ軸に垂直な2面で単
結晶の(わん曲)側面部を第1図Aに示す如く
一部切断する。
First, the Z-axis direction of this single crystal is determined by the X-ray Laue method, etc., and the (curved) side surface of the single crystal is partially cut along two planes perpendicular to this Z-axis as shown in Figure 1A. .

この切断をZ軸切断という。単結晶1のX面
2と形成されたZ面3とが交叉する稜の長さは
もとの円柱の半径以上が必要である。この両Z
面間に5〜10V/cmの電圧をかけてポーリング
を行なう。ポーリングは結晶成長のマルチドメ
インの単結晶をシングルドメインの単結晶に変
える。
This cutting is called Z-axis cutting. The length of the edge where the X-plane 2 of the single crystal 1 and the formed Z-plane 3 intersect needs to be longer than the radius of the original cylinder. These two Z
Polling is performed by applying a voltage of 5 to 10 V/cm between the surfaces. Pauling transforms a multi-domain single crystal of crystal growth into a single-domain single crystal.

次に、X線ラウエ法等で決定した+112.2゜
Y方向に平行な面で側面部を切断して第1図B
の如くオリエンテーシヨンフラツト4を形成す
る。
Next, the side part was cut along a plane parallel to the +112.2° Y direction determined by the X-ray Laue method, etc., and the
The orientation flat 4 is formed as shown in FIG.

最後に、この単結晶をX軸に垂直な方向に切
断し、オリエンテーシヨンフラツト4の入つた
第1図Cの如くX板ウエハ5を得る。
Finally, this single crystal is cut in a direction perpendicular to the X-axis to obtain an X-plate wafer 5 as shown in FIG. 1C containing an orientation flat 4.

従来の方法によれば、Z軸切断、オリエンテー
シヨンフラツトを形成するための切断及びウエハ
ーを得るための切断によつてそれぞれ単結晶にク
ラツクが発生することが多かつた。
According to the conventional method, cracks were often generated in the single crystal due to Z-axis cutting, cutting to form orientation flats, and cutting to obtain wafers.

特に、大口径の単結晶をZ軸切断する時にクラ
ツクが入ることが多かつた。
In particular, cracks often occurred when cutting large diameter single crystals along the Z axis.

円柱状の成長した単結晶は内部に歪が蓄績して
いるためで、歪が集中している(102)面にクラ
ツクの発生が多いことが知られている。このよう
な切断時におけるクラツクの発生はウエハーの製
造歩留りを著しく低下させ、得られるウエハーの
製造コストを大巾に引き上げる結果となつてい
た。また、上記した従来方法で製造されたX板ウ
エハーの表面積は円柱状の成長した単結晶のX面
の表面積の約85%であり、不経済であつた。
This is because the cylindrical single crystal that grows has accumulated strain inside it, and it is known that cracks often occur on the (102) plane where strain is concentrated. The occurrence of such cracks during cutting significantly reduces the yield of wafers and significantly increases the manufacturing cost of the resulting wafers. Further, the surface area of the X-plate wafer manufactured by the above-mentioned conventional method is approximately 85% of the surface area of the X-plane of the cylindrical grown single crystal, which is uneconomical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記点に鑑みなされたもので、
菱面体晶系のタンタル酸リチウム単結晶から高歩
留りでかつ効率よくウエハーを製造する方法を提
供することである。
The purpose of the present invention was made in view of the above points,
An object of the present invention is to provide a method for efficiently manufacturing wafers from a rhombohedral lithium tantalate single crystal with high yield.

本発明の他の目的は円柱状の上記タンタル酸リ
チウム単結晶を切断するときにクラツクが発生す
ることを防止することである。
Another object of the present invention is to prevent cracks from occurring when cutting the cylindrical lithium tantalate single crystal.

〔発明の概要〕[Summary of the invention]

本発明のウエハーの製造方法は長さ方向をX軸
方向とした円柱状の菱面体のタンタル酸リチウム
単結晶からX板ウエハーを製造する方法で、成長
した円柱状のタンタル酸リチウム単結晶の(わん
曲)側面部分で該単結晶の特定方向にある部分を
長さ方向に沿つてカツトでなく例えば帯状にすり
落してフラツトな部分を形成することを特徴とす
る。すり落すべき上記の特定な方向とは、タンタ
ル酸リチウム単結晶の場合、〈102〉に垂直な方向
±15゜の方向である。なお、長さ方向がX軸であ
る円柱状の単結晶の製造は引き上げ法、例えばチ
ヨクラルスキー(Czochralski)法、又は引き下
げ法により従来と同様に実施する。これらの方法
により製造された円柱状の単結晶は内部に非常に
多くの歪を有している。
The wafer manufacturing method of the present invention is a method for manufacturing an X-plate wafer from a cylindrical rhombohedral lithium tantalate single crystal with the length direction as the X-axis direction. The method is characterized in that a portion of the single crystal in a particular direction is not cut along the length of the side surface portion, but is rubbed off in a band shape, for example, to form a flat portion. In the case of a lithium tantalate single crystal, the above-mentioned specific direction to be rubbed off is a direction of ±15° perpendicular to <102>. Note that the production of a cylindrical single crystal whose length direction is the X axis is carried out in the same manner as conventionally by a pulling method, such as the Czochralski method, or a pulling method. Cylindrical single crystals produced by these methods have a large amount of internal strain.

本発明者等はこの円柱状のLiTaO3単結晶の
〈102〉に垂直な方向にある側面部分を長さ方向に
沿つてすり落すことにより歪が除かれ、後の切断
時にも単結晶にクラツクが発生しないことを見い
出した。単結晶のX軸に垂直な方位のステレオ投
影図である第2図において、〈102〉と垂直な方向
即ち〈012〉方向にある側面部分b及びb′のうち
の少なくとも一個所を長さ方向に沿つてすり落
す。また、これらの方向から±15゜の範囲内の側
面部分であればほぼ同様の効果があることがわか
つた。方向の決定はX線ラウエ法、X線回析法等
による。このすり落しによつて第3図に示すよう
に、円柱状の単結晶20の長さ方向に沿つて帯状
のフラツトな部分21が形成される。フラツトな
部分21とX面22とが交叉する稜の長さ(以
下、すり落し巾という)Wは単結晶の直径Rに依
存する。W/Rが0.2以上でX板ウエハーの製造
歩留りが著しく向上する。しかし、W/Rが0.5
よりも大きくなると、得られるX板ウエハーの表
面積が極めて小さくなると共にすり落しに時間が
かかり不経済である。
The present inventors removed the strain by grinding down the side surface of this cylindrical LiTaO 3 single crystal in the direction perpendicular to <102> along its length, and the single crystal remained stable during subsequent cutting. We found that this does not occur. In FIG. 2, which is a stereo projection view in the direction perpendicular to the X-axis of the single crystal, at least one of the side portions b and b' in the direction perpendicular to <102>, that is, the <012> direction, is shown in the longitudinal direction. Scrape it along. Furthermore, it was found that almost the same effect can be obtained on side portions within a range of ±15° from these directions. The direction is determined by the X-ray Laue method, the X-ray diffraction method, etc. As a result of this scraping, a band-shaped flat portion 21 is formed along the length of the cylindrical single crystal 20, as shown in FIG. The length W of the edge where the flat portion 21 intersects with the X plane 22 (hereinafter referred to as the scraping width) depends on the diameter R of the single crystal. When W/R is 0.2 or more, the manufacturing yield of X-plate wafers is significantly improved. However, W/R is 0.5
If the size is larger than that, the surface area of the resulting X-plate wafer becomes extremely small, and it takes time to scrape off, which is uneconomical.

従つて、W/Rは0.2〜0.5が好ましく、0.3〜
0.4が更に好ましいW/Rとオリエンテーシヨン
フラツト加工工程での良品率との実験結果を第4
図に示した。
Therefore, W/R is preferably 0.2 to 0.5, and preferably 0.3 to 0.5.
The experimental results of the W/R and the good product rate in the orientation flat processing process, which is more preferable to be 0.4, are shown in the fourth section.
Shown in the figure.

本発明方法により、円柱状の単結晶の側面部分
の特定個所をすり落す方法としては研磨又は研削
が最も簡単で且つ能率的である。
According to the method of the present invention, polishing or grinding is the simplest and most efficient method for grinding down a specific part of the side surface of a cylindrical single crystal.

通常約400〜800メツシユのアルミナ粉末を用い
て研磨又は研削する。
Polishing or grinding is usually performed using approximately 400 to 800 mesh alumina powder.

上記すり落しの代りにダイヤモンドホイール等
による切断を利用することはできない。切断では
単結晶の歪を十分除くことができないからであ
る。円柱状の単結晶の〈102〉に垂直な方向にあ
る側面部分をW/R=0.3で切断及びすり落した
場合、その後のオリエンテーシヨンフラツト加工
工程でクラツクが発生する割合は切断した単結晶
では約43%であり、本方法によりすり落した単結
晶では0%であつた。更に、側面部分を一部分す
り落した単結晶をその後約1000℃以上の温度でア
ニールすると歪が一層完全に除かれる。
Cutting with a diamond wheel or the like cannot be used in place of the above-mentioned scraping. This is because the strain in the single crystal cannot be sufficiently removed by cutting. If the side surface of a cylindrical single crystal in the direction perpendicular to <102> is cut and ground down at W/R = 0.3, the rate at which cracks will occur in the subsequent orientation flat processing process will vary depending on the cut unit. In the case of crystals, it was about 43%, and in the case of single crystals ground by this method, it was 0%. Furthermore, if the single crystal with the side surface partially rubbed off is then annealed at a temperature of about 1000°C or higher, the strain will be more completely removed.

単結晶の特定方向にある側面部分をすり落した
単結晶はその後従来と同様に、Z軸切断オリエン
テーシヨンフラツトを入れるための切断を経てX
板ウエハーに切断されてもよい。
The single crystal from which side parts in a particular direction have been scraped off is then cut to insert a Z-axis cutting orientation flat in the same manner as before.
It may also be cut into plate wafers.

〔発明の効果〕〔Effect of the invention〕

本方法によれば、各切断工程で単結晶にクラツ
クがほとんど入らない。尚Z軸切断をせずに円柱
状のままポーリングすることができるので好都合
である。
According to this method, there are almost no cracks in the single crystal during each cutting process. Furthermore, it is convenient because it is possible to poll the columnar shape without cutting it along the Z axis.

次に、本発明を実施例により更に詳しく説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

〔発明の実施例〕 実施例 1 チヨクラルスキー(Czochralski)法によりル
ツボ例えば20〜40%のRhを含むPtルツボを用い
て直経60mm、長さ40mmのタンタル酸リチウムの円
柱状単結晶を製造した。この円柱状単結晶は長さ
方向がX軸となるように成長させた。この円柱状
単結晶の〈102〉に垂直な方向X線ラウエ法によ
り決定した。
[Embodiments of the Invention] Example 1 A cylindrical single crystal of lithium tantalate with a diameter of 60 mm and a length of 40 mm was produced by the Czochralski method using a crucible, for example, a Pt crucible containing 20 to 40% Rh. did. This cylindrical single crystal was grown so that the length direction was the X axis. It was determined by the X-ray Laue method in the direction perpendicular to <102> of this cylindrical single crystal.

この円柱状単結晶を治具に取り付け、〈102〉に
垂直な方向の側面部分をすり落し巾15mmですり落
した。このすり落しはダイヤモンド又はアルミナ
粉で形成したヤスリですり落す。
This cylindrical single crystal was attached to a jig, and the side surface in the direction perpendicular to <102> was ground down to a width of 15 mm. This scraping is done with a file made of diamond or alumina powder.

その後、単結晶をZ軸切断し、ポーリングして
単分域化した。次に、+112.2゜Y方向に沿つてオ
リエンテーシヨンフラツトを形成した。最後に、
単結晶をX軸に垂直な方向に切断して厚さ0.5mm
のX板ウエハーを製造した。1個の単結晶からX
板ウエハー40枚がクラツクが発生することなく製
造できた。
Thereafter, the single crystal was cut along the Z axis and polled to form a single domain. Next, an orientation flat was formed along the +112.2° Y direction. lastly,
Cut the single crystal in the direction perpendicular to the X axis to a thickness of 0.5 mm.
An X-plate wafer was manufactured. X from one single crystal
40 flat wafers were manufactured without any cracks.

従来の方法によりX板ウエハーを製造した場合
上記と同じ大きさの円柱状単結晶から平均25枚の
X板ウエハーが得られた。従つて、本方法によれ
ば従来方法よりもウエハー製造歩留りが1.6倍と
なつた。
When X-plate wafers were manufactured by the conventional method, an average of 25 X-plate wafers were obtained from a cylindrical single crystal of the same size as above. Therefore, according to this method, the wafer manufacturing yield was 1.6 times higher than that of the conventional method.

実施例 2 実施例1と同じ方法により同じ大きさの円柱状
単結晶を用意した。この単結晶を円柱状の結晶の
まま単分域化した。その後、X線ラウエ法により
〈102〉に垂直な方向から+15゜傾いた方向を求
め、この方向の側面部分を実施例1と同様にして
すり落し巾15mmですり落した。次に、112.2゜Y
方向に沿つてオリエンテーシヨンフラツトを形成
した。この時の切断でクラツクは発生しなかつ
た。その後単結晶から厚さ0.5mmのX板ウエハー
を切断した。全くクラツクが入らずに40枚のウエ
ハーが得られた。各ウエハーから2.7mm×10mmの
チツプ基板が25枚製造できた。従つて、1個の円
柱状単結晶から1000のチツプ基板が得られた。
Example 2 Cylindrical single crystals of the same size were prepared by the same method as in Example 1. This single crystal was made into a single domain while still being a cylindrical crystal. Thereafter, a direction inclined by +15° from the direction perpendicular to <102> was determined by the X-ray Laue method, and the side surface portion in this direction was rubbed off in the same manner as in Example 1 with a width of 15 mm. Next, 112.2゜Y
An orientation flat was formed along the direction. No cracks occurred during this cutting. Thereafter, X-plate wafers with a thickness of 0.5 mm were cut from the single crystal. 40 wafers were obtained without any cracks. Twenty-five 2.7 mm x 10 mm chip substrates were produced from each wafer. Therefore, 1000 chip substrates were obtained from one cylindrical single crystal.

これに対して、すり落し工程を除いて上記と同
様にしてX板ウエハーを製造した場合、クラツク
の発生のため同じ大きさの単結晶から25枚のX板
ウエハーしか製造できなかつた。このX板ウエハ
ー1枚から上記寸法の基板が25枚製造できた。従
つて、1個の円柱状単結晶から625枚のチツプ基
板しか製造できなかつた。
On the other hand, when X-plate wafers were manufactured in the same manner as above except for the scraping process, only 25 X-plate wafers could be manufactured from the same size single crystal due to the occurrence of cracks. 25 substrates of the above dimensions could be manufactured from one X-plate wafer. Therefore, only 625 chip substrates could be manufactured from one cylindrical single crystal.

更に、従来方法に従つてポーリングのためにZ
軸切断を行なつた場合には、X板ウエハーの表面
積が小さいので上記寸法のチツプ基板がX板ウエ
ハー1枚から18枚しか製造できない。従つて、1
個の円柱状単結晶から450枚以下のチツプ基板し
か製造できない。
Furthermore, according to the conventional method, Z
When axial cutting is performed, only 18 chip substrates of the above dimensions can be manufactured from one X-plate wafer because the surface area of the X-plate wafer is small. Therefore, 1
Only 450 or fewer chip substrates can be manufactured from a single cylindrical single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法を説明するための図、第2図
は本発明方法の実施例を説明するためのすり落し
の方向を説明するための、単結晶のX軸に垂直な
方位のステレオ投影図、第3図は本発明方法の実
施例を説明するための側面部分の一部をすり落し
て帯状のフラツトな部分を形成して単結晶の斜視
図、第4図は本発明方法による単結晶の直径Rに
対するすり落し巾Wの比、W/Rとすり落し後の
オリエンテーシヨンフラツト加工工程での良品率
との関係を示すグラフである。 20…単結晶、21…フラツト部分、22…X
面。
Fig. 1 is a diagram for explaining the conventional method, and Fig. 2 is a stereo projection in the direction perpendicular to the X-axis of the single crystal to explain the direction of scraping to explain the embodiment of the method of the present invention. 3 is a perspective view of a single crystal obtained by scraping off a part of the side surface to form a band-shaped flat part, and FIG. 4 is a perspective view of a single crystal obtained by the method of the present invention. It is a graph showing the relationship between the ratio of the scraping width W to the diameter R of the crystal, W/R, and the non-defective product rate in the orientation flat processing step after scraping. 20...Single crystal, 21...Flat part, 22...X
surface.

Claims (1)

【特許請求の範囲】 1 引上げ法によりX軸方向にタンタル酸リチウ
ム単結晶を引上げる工程と、該工程で引上げられ
たタンタル酸リチウム単結晶をポーリングする工
程と、該ポーリングしたタンタル酸リチウム単結
晶の〈102〉±15゜方向に直交した方向をすり落し
研磨加工する工程と、該工程後にすり落し研磨加
工した方向と異なる方向にオリエンテーシヨンフ
ラツトを形成する工程と、該工程後に前記タンタ
ル酸リチウムを切断してウエハーにする工程とを
具備したことを特徴とするタンタル酸リチウム単
結晶ウエハーの製造方法。 2 すり落すのは帯状であることを特徴とする前
記特許請求の範囲第1項記載のタンタル酸リチウ
ム単結晶ウエハーの製造方法。
[Claims] 1. A step of pulling a lithium tantalate single crystal in the X-axis direction by a pulling method, a step of poling the lithium tantalate single crystal pulled in the step, and a step of poling the lithium tantalate single crystal pulled in the step; A step of grinding and polishing in a direction perpendicular to the <102> ±15° direction of 1. A method for producing a lithium tantalate single crystal wafer, comprising the step of cutting lithium tantalate into a wafer. 2. The method for manufacturing a lithium tantalate single crystal wafer according to claim 1, wherein the material to be rubbed off is in the form of a band.
JP60084417A 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer Granted JPS60246299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084417A JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084417A JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51119417A Division JPS6051280B2 (en) 1976-10-06 1976-10-06 Method for manufacturing lithium tantalate single crystal wafer

Publications (2)

Publication Number Publication Date
JPS60246299A JPS60246299A (en) 1985-12-05
JPS6232160B2 true JPS6232160B2 (en) 1987-07-13

Family

ID=13830009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084417A Granted JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Country Status (1)

Country Link
JP (1) JPS60246299A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191496A (en) * 1986-02-18 1987-08-21 Shin Etsu Chem Co Ltd Single crystal wafer of lithium tantalate
KR100496526B1 (en) * 2002-09-25 2005-06-22 일진디스플레이(주) Method of producing lithium tantalate substrate for surface acoustic wave element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345187A (en) * 1976-10-06 1978-04-22 Toshiba Corp Wafer production of oxide piezoelectric material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345187A (en) * 1976-10-06 1978-04-22 Toshiba Corp Wafer production of oxide piezoelectric material

Also Published As

Publication number Publication date
JPS60246299A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
DE69001411T2 (en) Method of manufacturing a substrate for semiconductor devices.
DE10254611B4 (en) Crystal oscillator and method for its production
Foster The deposition and piezoelectric characteristics of sputtered lithium niobate films
CN100405628C (en) Piezoelectric single crystal device and fabrication method thereof
DE2917698A1 (en) PIEZOELECTRIC DEVICE
DE102018107496B3 (en) Volumetric wave resonator device and method for its production
US4755314A (en) Single crystal wafer of lithium tantalate
JPS6232160B2 (en)
JPS6051280B2 (en) Method for manufacturing lithium tantalate single crystal wafer
DE69211463T2 (en) Surface acoustic wave arrangement
JP2006156976A (en) Peizoelectric single crystal element
US4898641A (en) Single crystal wafer of lithium tantalate
JP3849996B2 (en) Method for manufacturing single crystal optical element
JP3866887B2 (en) Piezoelectric single crystal wafer
CA1128840A (en) Method of growing quartz
JPS63182904A (en) Energy confinement type piezoelectric vibrator component
JP2950000B2 (en) How to grow artificial quartz
JPH03185905A (en) Crystal processing method
JPH04294622A (en) Production of piezoelectric element
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
EP0243215B1 (en) A single crystal wafer of lithium tantalate
JP7019052B2 (en) Substrate for surface acoustic wave element and its manufacturing method
JPS63295500A (en) Production of wafer of lithium tantalate single crystal
JP4578146B2 (en) Manufacturing method of crystal unit
JPH0325966B2 (en)