JPS60246299A - Production of lithium tantalate single crystal wafer - Google Patents

Production of lithium tantalate single crystal wafer

Info

Publication number
JPS60246299A
JPS60246299A JP60084417A JP8441785A JPS60246299A JP S60246299 A JPS60246299 A JP S60246299A JP 60084417 A JP60084417 A JP 60084417A JP 8441785 A JP8441785 A JP 8441785A JP S60246299 A JPS60246299 A JP S60246299A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
lithium tantalate
wafer
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60084417A
Other languages
Japanese (ja)
Other versions
JPS6232160B2 (en
Inventor
Tsuguo Fukuda
承生 福田
Hitoshi Hirano
均 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60084417A priority Critical patent/JPS60246299A/en
Publication of JPS60246299A publication Critical patent/JPS60246299A/en
Publication of JPS6232160B2 publication Critical patent/JPS6232160B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled wafer in high yield and efficiency, by scraping off a part of the side of a columnar lithium tantalate single crystal along a specific direction, thereby forming a flat part to the crystal. CONSTITUTION:A columnar lithium tantalate single crystal 20 pulled along the X-axis by a crystal pulling method is cut along the Z-axis, and converted to a single-domain crystal by poling. The part of the crystal perpendicular to the direction <102>+ or -15 deg. is scraped off by grinding with alumina powder having particle size of 400-800 mesh to form a flat band 21 having a ratio W/R of 0.2-0.5 (R is diameter of the single crystal; W is the length of the edge between the flat part 21 and the X plane 22). After forming an orientation flat to the direction different from the scraped direction of the single crystal, the single crystal is sliced to obtain a wafer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタンタル酸リチウム単結晶のウニ・・ーの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing lithium tantalate single crystal sea urchin.

〔発明の技術的背景とその問題点」 酸化物圧電体の単結晶をそのX III K重置な方向
で切断して得られるX板つェ・・−は、カラーテレビジ
ョン受像機用のPIF人面波フィルタ等の基根として有
効である。X板つエ・・一を単結晶から切断するだめの
都合上この単結晶はX軸方向に円柱状に成長された言い
換えればX軸を長さ方向と1。
[Technical Background of the Invention and Problems Therewith] The X plate obtained by cutting a single crystal of an oxide piezoelectric material in the X III K overlapping direction is a PIF for color television receivers. It is effective as a basis for human face wave filters, etc. In order to cut the X plate from the single crystal, this single crystal was grown in a cylindrical shape in the X-axis direction.In other words, the X-axis is the length direction.

だ円柱状のものが一般に製造され、利用されている。こ
のような円柱状の単結晶はチッコラルスキー法等の引き
上げ法又は引き下げ法等により製造される。次に、酸化
物圧電体の円柱状1vL結晶からX板つェハーを製造す
る従来の代表的方法を説明する0 ■最初に、この単結晶のX軸方向をX線ラウェ法等によ
り決定し、このZ軸に乗直な2而で単結晶の(わん曲)
 ill!1面部を第1図(自)に示す如く一部切断す
る。
Ellipsoidal ones are generally manufactured and used. Such a cylindrical single crystal is produced by a pulling method such as the Cikkolarski method or a pulling method. Next, we will explain a typical conventional method for manufacturing an X-plate wafer from a cylindrical 1vL crystal of an oxide piezoelectric material.0 First, the X-axis direction of this single crystal is determined by the X-ray Laue method, etc. Two single crystals that are perpendicular to this Z axis (curved)
ill! A portion of one surface is cut as shown in FIG. 1 (self).

この切断をZ軸切断という。単結晶+11のX面(2)
と形成されたZ而(3)とが交叉する稜の長さはもとの
円柱の半径以上が必要である。この両Z面間に5〜10
V/ の電圧をかけてポーリングを行なう。
This cutting is called Z-axis cutting. X-plane of single crystal +11 (2)
The length of the edge where the formed Z and (3) intersect needs to be longer than the radius of the original cylinder. 5 to 10 between these Z planes
Polling is performed by applying a voltage of V/.

副 ポーリングは結晶成長のマルチドメインの単結晶をシン
グルドメインの単結晶に変える。
Secondary poling transforms the multi-domain single crystal of crystal growth into a single-domain single crystal.

0次に、X線ラウェ法等で決定した+112.2°Y方
向に平行な面で側面部を切断して第1図(B)の如くオ
リエンテーションフラット(4)を形成する。
Next, the side surface is cut along a plane parallel to the Y direction of +112.2° determined by the X-ray Laue method or the like to form an orientation flat (4) as shown in FIG. 1(B).

■最後に、この単結晶をX111に垂直な方向に切断シ
、オリエンテーションフラット(4)の入った第1図(
qの如くX板つニ・・(5)を得る。
■Finally, cut this single crystal in the direction perpendicular to
As in q, we obtain X plate one...(5).

従来の方法によれば、2軸切断、オリエンテーションフ
ラットを形成するだめの切断及びウエノ・−を得るだめ
の切断によってそれぞれ単結晶にクラックが発生するこ
とが多かった。
According to the conventional method, cracks often occur in the single crystal due to biaxial cutting, cutting to form an orientation flat, and cutting to obtain a wafer.

特に、大口径の単結晶を2軸切断する時にクラックが入
ることが多かった。
In particular, cracks often appeared when biaxially cutting large-diameter single crystals.

円柱状の成長した単結晶は内部に歪が蓄積しているため
で、歪が集中している(102)面にクランクの発生が
多いことが知られている。このような切断時におけるク
ラックの発生はウェハーの製造歩留りを著しく低下させ
、得られるウェハーの製造コストを大巾に引き上げる結
果となっていた。
This is because strain is accumulated inside a cylindrical grown single crystal, and it is known that cranks often occur on the (102) plane where strain is concentrated. The occurrence of cracks during cutting significantly reduces the yield of wafers, resulting in a significant increase in the manufacturing cost of the resulting wafers.

また、上記した従来方法で製造されたX板つェ・・−の
表面積は円柱状の成長した単結晶のX面の表面積の約8
5%であり、不経済であった。
In addition, the surface area of the X plate produced by the conventional method described above is approximately 8 of the surface area of the X plane of the cylindrical grown single crystal.
5%, which was uneconomical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記点に鑑みなされたもので、菱面体晶
系のタンタル酸リチウム単結晶から高歩留りでかつ効率
よくウェハーを製造する方法を提供することである。
An object of the present invention has been made in view of the above points, and is to provide a method for efficiently manufacturing wafers from a rhombohedral lithium tantalate single crystal at a high yield.

本発明の他の目的は円柱状の上dCタンタル酸リチウム
単結晶を切断するときにクラックが発生することを防止
することである。
Another object of the present invention is to prevent cracks from occurring when cutting a cylindrical upper dC lithium tantalate single crystal.

〔発明の概要〕[Summary of the invention]

本発明のウェハーの製造方法は長さ方向をX軸方向とし
た円柱状の菱面体のタンタル酸リチウム単結晶からX板
つェハーを製造する方法で、成長した円柱状のタンタル
酸リチウム単結晶の(わん曲)側面部分で該単結晶の特
定方向にある部分を長さ方向に沿ってカットでなく例え
ば帯状にすり落してフラットな部分を形成することを特
徴とする。すり落すべき上記の特定な方向とは、タンタ
ル酸リチウム単結晶の場曾、<102>に垂直な方向±
15°の方向である。なお、長さ方向がX軸である円柱
状の単結晶の製造は引き上げ法、例えばチョクラルスキ
ー(CzochralrAi )法、又は引き下げ法に
より従来と同様に実施する。これらの方法により製造さ
れた円柱状の単結晶は内部に非常に多くの歪を鳴してい
る。
The wafer manufacturing method of the present invention is a method of manufacturing an X-plate wafer from a cylindrical rhombohedral lithium tantalate single crystal with the length direction as the X-axis direction. The (curved) side surface portion is characterized in that a portion of the single crystal in a specific direction is not cut along the length but is rubbed off, for example, in a band shape to form a flat portion. The above specific direction to be rubbed off is the direction perpendicular to <102> of the lithium tantalate single crystal ±
The direction is 15°. The production of a cylindrical single crystal whose length direction is the X axis is carried out in the same manner as in the past by a pulling method, such as the Czochralski method, or a pulling method. Cylindrical single crystals produced by these methods have a large amount of internal strain.

本発明者等はこの円柱状のLiTa0.単結晶の(10
2>に垂直な方向にある側面部分を長さ方向に沿ってす
り落すことにより歪が除かれ、後の切断時にも単結晶に
クラックが発生しないことを見い出した。単結晶のX軸
に垂直な方位のステレオ投影図である第2図において、
(102)と垂直々方向即ち(012)方向にある側面
部分す及びb′のうちの少なくとも一個所を長さ方向に
沿ってすり落す。また、これらの方向から±15°の範
囲内の側面部分であればほぼ同様の効果があることがわ
かった。方向の決定はX線ラウェ法、X線回折法等によ
る。このすり落しによって第3図に示すように、円柱状
の単結晶四の長さ方向に沿って帯状のフラットな部分い
)が形成される。フラットな部分体)とX面(@とが交
叉する稜の長さく以下、すり落し巾という)Wは単結晶
の直径几に依存する。W/几が0.2以上でX板つェハ
ーの製造歩留りが著しく向上する。しかし、W/几が0
.5 よりも大きくなると、得られるX板つェハーの表
面積が極めて小さくなると共にすり落しに時間がかかり
不経済である0 従ッテ、W/几d 0.2〜0.575(好マシく、0
.3〜0.4が更に好ましいW/Rとオリエンテーシ■
ンフラット加工工程での良品率との実験結果を第4図に
示した。
The present inventors discovered this cylindrical LiTa0. Single crystal (10
It has been found that strain is removed by scraping off the side portion in the direction perpendicular to 2> along the length, and no cracks occur in the single crystal even during subsequent cutting. In FIG. 2, which is a stereo projection diagram in the direction perpendicular to the X-axis of the single crystal,
At least one portion of the side surface portions S and b' in the direction perpendicular to (102), that is, in the (012) direction, is rubbed off along the length direction. Further, it was found that almost the same effect can be obtained on side portions within a range of ±15° from these directions. The direction is determined by the X-ray Laue method, the X-ray diffraction method, etc. As a result of this scraping, as shown in FIG. 3, a band-shaped flat portion (1) is formed along the length of the cylindrical single crystal. (flat partial body) and the X plane (the length of the edge where @ intersects, hereinafter referred to as the scraping width) W depend on the diameter of the single crystal. When W/liter is 0.2 or more, the production yield of X-plate wafers is significantly improved. However, W/几 is 0
.. If it is larger than 5, the surface area of the obtained X-plate wafer becomes extremely small, and it takes time to scrape off, making it uneconomical. 0
.. W/R and orientation are more preferably 3 to 0.4■
Figure 4 shows the experimental results regarding the yield rate in the flat processing process.

本発明方法により、円柱状の単結晶の側面部分の特定個
所をすり落す方法としては研磨又は研削が最も簡単で且
つ能率的である。
According to the method of the present invention, polishing or grinding is the simplest and most efficient method for grinding down a specific part of the side surface of a cylindrical single crystal.

通常約400〜800メソシユのアルミナ粉末を用いて
研磨又は研削する。
Polishing or grinding is usually performed using alumina powder of about 400 to 800 mesos.

上記すり落しの代りにダイヤモンドホイール等による切
断を利用することはできない。切断では墜結晶の歪を十
分除くことができないからである。
Cutting with a diamond wheel or the like cannot be used in place of the above-mentioned scraping. This is because cutting cannot sufficiently remove the distortion of the fallen crystal.

円柱状の単結晶の(102)に垂直な方向にある側面部
分をV几=0.3 で切断及びすり落した場合、その後
のオリエンテーションフラット加工工程でクラックが発
生する割合は切断した単結晶では約43にであり、本方
法によりすり落した単結晶ではOXであった。更に、側
面部分を一部分すり落した単結晶をその後約1000℃
以上の温度でアニールすると歪が一層完全に除かれる。
When the side surface of a cylindrical single crystal in the direction perpendicular to (102) is cut and rubbed off at V = 0.3, the rate at which cracks occur during the subsequent orientation flat processing process is as follows: 43, and the single crystal scraped off by this method was OX. Furthermore, the single crystal with the side surface partially rubbed off was then heated to approximately 1000°C.
Annealing at a temperature higher than that eliminates strain even more completely.

単結晶の特定方向にある側面部分をすり落した単結晶は
その後従来と同様に、Z軸切断オリエンテーシ菅ンフラ
ットを入れるための切断を経てX板つェハーに切断され
てもよい。
The single crystal whose side surface portion in a particular direction has been ground off may then be cut into an X-plate wafer by cutting to insert a Z-axis cutting orientation tube flat in the same manner as in the prior art.

〔発明の効果〕〔Effect of the invention〕

本方法によれば、各切断工程で単結晶にクラックがほと
んど入らない。同Z軸切断をせずに円柱状のままポーリ
ングすることができるので好都合である。
According to this method, almost no cracks occur in the single crystal during each cutting process. This is advantageous because it is possible to poll the columnar shape without cutting it along the Z-axis.

次に、本発明を実施例により更に詳しく説明する0 〔発明の実施例〕 実施例1 チ旨りラルスキー(CzochralzAi )法によ
りルツボ例えば20〜40%のithを含むPtルツボ
を用いて直径60圏、長さ40mのメンタル酸リチウム
の円柱状単結晶を製造した。この円柱状単結晶r、i、
 kさ方向がX軸となるように成長させた。この円柱状
単結晶の(102)に垂直な方向X線ラウェ法によ妙決
定した。
Next, the present invention will be explained in more detail with reference to Examples.0 [Examples of the Invention] Example 1 A crucible of 60 mm in diameter was prepared using a crucible, for example, a Pt crucible containing 20 to 40% ith, by the CzochralzAi method. , a cylindrical single crystal of lithium mental oxide with a length of 40 m was produced. This cylindrical single crystal r, i,
It was grown so that the k-th direction was the x-axis. It was determined by the X-ray Laue method in the direction perpendicular to (102) of this cylindrical single crystal.

この円柱状単結晶を治具に取り付け、(102ンに垂直
な方向の側面部分をすり落し巾15鴫ですり落した。こ
のすり落しはダイヤモンド又はアルミナ粉で形成したヤ
スリですり落す。
This cylindrical single crystal was attached to a jig, and the side surface in the direction perpendicular to 102 mm was ground down with a sanding width of 15 mm. This sanding was done with a file made of diamond or alumina powder.

その後、単結晶を2軸切断し、ポーリングして単分域化
した。次に、+112.2°Y方向に沿ってオリエンテ
ーションフラットを形成した。最後に、単結晶をX軸に
垂直な方向に切断して厚さ0.5mmのX板つェハーを
製造した。1個の単結晶からX板つェハー40枚がクラ
ックが発生することなく製造できた。
Thereafter, the single crystal was biaxially cut and polled to form a single domain. Next, an orientation flat was formed along the +112.2° Y direction. Finally, the single crystal was cut in a direction perpendicular to the X-axis to produce an X-plate wafer having a thickness of 0.5 mm. Forty X-plate wafers were manufactured from one single crystal without any cracks.

従来の方法によりX板つェハーを製造した場合上記と同
じ大きさの円柱状単結晶から平均25枚のX板つェハー
が得られた。従って、本方法によれば従来方法よりもウ
ェハー製造歩留りが1.6倍となった。
When X-plate wafers were manufactured by the conventional method, an average of 25 X-plate wafers were obtained from a cylindrical single crystal of the same size as above. Therefore, according to this method, the wafer manufacturing yield was 1.6 times higher than that of the conventional method.

実施例2 実施例1と同じ方法により同じ大きさの円柱状単結晶を
用意した。この単結晶を円柱状の結晶のまま単分域化し
た。その後、X線ラウェ法により(102)に垂直な方
向から+15°傾いた方向をめ、この方向の側面部分を
実施例1と同様にしてすり落し巾15mですり落した。
Example 2 Cylindrical single crystals of the same size were prepared by the same method as in Example 1. This single crystal was made into a single domain while still being a cylindrical crystal. Thereafter, a direction tilted by +15° from the direction perpendicular to (102) was determined using the X-ray Laue method, and the side surface portion in this direction was rubbed off in the same manner as in Example 1 with a width of 15 m.

次K、112.2°Y方向に沿ってオリエンテーション
フラットを形成した。
Next, an orientation flat was formed along the 112.2° Y direction.

この時の切断でクランクは発生しなかった。その後単結
晶から厚さ0.5mmのX板つェハーを切断した。
No cranking occurred during the cutting at this time. Thereafter, an X-plate wafer having a thickness of 0.5 mm was cut from the single crystal.

全くクラックが入らずに40枚のウェハーが得られた。Forty wafers were obtained without any cracks.

各ウェハーから2.7m X 10+m のチップ基板
が25枚製造できた。従って、1個の円柱状単結晶から
1000のチップ基板が得られた。
Twenty-five chip substrates of 2.7 m x 10+m could be produced from each wafer. Therefore, 1000 chip substrates were obtained from one cylindrical single crystal.

これに対して、すり落し工程を除いて上記と111]様
にしてX板つェハーを製造した場合、クラックの発生の
ため同じ大きさの単結晶から25枚のX板つェハーしか
製造できなかった。このX板つェハー1枚から上記寸法
の基板が25枚製造できた。従って、1個の円柱状単結
晶から625枚のチップ基板しか製造できなかった。
On the other hand, when X-plate wafers were manufactured as described above and in [111] except for the grinding process, only 25 X-plate wafers could be manufactured from a single crystal of the same size due to the occurrence of cracks. Ta. 25 substrates having the above dimensions could be manufactured from one X-plate wafer. Therefore, only 625 chip substrates could be manufactured from one cylindrical single crystal.

更に、従来方法に従ってポーリングのためにZ細切断を
行なった場合には、X板つェハーの表面積が小さいので
上記寸法のチップ基板がX板つェハー1枚から18枚し
か製造できない。従って、1個の円柱状単結晶から45
0枚以下のチップ基板しか製造できない。
Furthermore, when Z-cutting is performed for poling according to the conventional method, only 18 chip substrates of the above dimensions can be manufactured from one X-plate wafer because the surface area of the X-plate wafer is small. Therefore, from one cylindrical single crystal, 45
Only 0 or fewer chip substrates can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)は従来方法を説明するための図、第2図は
本発明方法の実施例を説明するためのすり落しの方向を
説、明するための、単結晶のX軸に乗直な方位のステレ
オ投影図、第3図は本発明方法の実施例を説明するため
の側面部分の一部をすり落して帯状のフラットな部分を
形成して単結晶の斜視図、第4図は本発明方法による単
結晶の直径Rに対するすり落し巾Wの比、W/Rとすり
落し後のオリエンテーションフラット加工工程での良品
率との関係を示すグラフである。 20・・・単結晶21・・・フラット部分22・・・X
面代理人弁理1: 則近憲佑(ほか1名)A勺≠計カ=
=哨耽畦 ′−−−□−
FIG. 1 (4) is a diagram for explaining the conventional method, and FIG. FIG. 3 is a stereo projection view in a straight direction; FIG. 4 is a perspective view of a single crystal formed by scraping off a part of the side surface to form a band-shaped flat part; FIG. is a graph showing the relationship between the ratio of the scraping width W to the diameter R of a single crystal, W/R, and the non-defective product rate in the orientation flat processing step after scraping, according to the method of the present invention. 20...Single crystal 21...Flat part 22...X
Attorney 1: Kensuke Norichika (and 1 other person)
=Palace ′−−−□−

Claims (2)

【特許請求の範囲】[Claims] (1)引上げ法によりX軸方向にタンタル酸リチウム単
結晶を引上げる工程と、該工程で引上げられたメンタル
酸リチウム手結晶をポーリングする工程と、該ポーリン
グしたタンタル酸リチウム単結晶の(102)±15°
方向に直交した方向をすり落し研磨加工する工程と、該
工程後にすり落し研磨加工した方向と異なる方向にオリ
エンテーシ日ンフラットを形成する工程と、該工程後に
前記タンタル酸リチウムを切断してウェハーにする工程
とを具備したことを特徴とするタンタル酸リチウム単結
晶ウェハーの製造方法。
(1) A step of pulling a lithium tantalate single crystal in the X-axis direction by a pulling method, a step of poling the lithium tantalate hand crystal pulled up in the step, and a step (102) of the polled lithium tantalate single crystal. ±15°
A step of grinding and polishing in a direction perpendicular to the direction, a step of forming an orientation sun flat in a direction different from the direction of grinding and polishing after this step, and cutting the lithium tantalate after this step to form a wafer. A method for producing a lithium tantalate single crystal wafer, comprising the steps of:
(2)すり落すのは帯状であることを特徴とする特許 ム単結晶ウェハーの製造方法。(2) A patent characterized in that what is rubbed off is band-shaped. A method for manufacturing single-crystal wafers.
JP60084417A 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer Granted JPS60246299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084417A JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084417A JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51119417A Division JPS6051280B2 (en) 1976-10-06 1976-10-06 Method for manufacturing lithium tantalate single crystal wafer

Publications (2)

Publication Number Publication Date
JPS60246299A true JPS60246299A (en) 1985-12-05
JPS6232160B2 JPS6232160B2 (en) 1987-07-13

Family

ID=13830009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084417A Granted JPS60246299A (en) 1985-04-22 1985-04-22 Production of lithium tantalate single crystal wafer

Country Status (1)

Country Link
JP (1) JPS60246299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243215A2 (en) * 1986-02-18 1987-10-28 Shin-Etsu Chemical Co., Ltd. A single crystal wafer of lithium tantalate
KR100496526B1 (en) * 2002-09-25 2005-06-22 일진디스플레이(주) Method of producing lithium tantalate substrate for surface acoustic wave element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345187A (en) * 1976-10-06 1978-04-22 Toshiba Corp Wafer production of oxide piezoelectric material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345187A (en) * 1976-10-06 1978-04-22 Toshiba Corp Wafer production of oxide piezoelectric material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243215A2 (en) * 1986-02-18 1987-10-28 Shin-Etsu Chemical Co., Ltd. A single crystal wafer of lithium tantalate
KR100496526B1 (en) * 2002-09-25 2005-06-22 일진디스플레이(주) Method of producing lithium tantalate substrate for surface acoustic wave element

Also Published As

Publication number Publication date
JPS6232160B2 (en) 1987-07-13

Similar Documents

Publication Publication Date Title
CN100405628C (en) Piezoelectric single crystal device and fabrication method thereof
JP2003119097A (en) SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JPH0719737B2 (en) Manufacturing method of S01 substrate
DE2917698A1 (en) PIEZOELECTRIC DEVICE
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
TWI769270B (en) Surface acoustic wave device and method for manufacturing the same
JPH05251771A (en) Artificial grain boundary type josephson junction element and manufacture thereof
JPS61134111A (en) Lithium tantalate single crystal wafer
JPS60246299A (en) Production of lithium tantalate single crystal wafer
TWI282660B (en) Surface acoustic wave device and manufacturing method therefor
JPS6051280B2 (en) Method for manufacturing lithium tantalate single crystal wafer
US4255228A (en) Method of growing quartz
JP2569426B2 (en) Superlattice multilayer film manufacturing method
JP3866887B2 (en) Piezoelectric single crystal wafer
US2412644A (en) Method of manufacturing coated articles
JP2950000B2 (en) How to grow artificial quartz
GB2261385A (en) Directional crystal growth
JPS63295500A (en) Production of wafer of lithium tantalate single crystal
EP0243215B1 (en) A single crystal wafer of lithium tantalate
JP7443808B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
JPH03185905A (en) Crystal processing method
EP0926109A1 (en) SiC COMPOSITE AND METHOD OF PRODUCTION THEREOF
Sloope et al. Epitaxial Au films on low index faces of Ge
JP2003226599A (en) Method of manufacturing single crystal