JPS6318368B2 - - Google Patents

Info

Publication number
JPS6318368B2
JPS6318368B2 JP54109568A JP10956879A JPS6318368B2 JP S6318368 B2 JPS6318368 B2 JP S6318368B2 JP 54109568 A JP54109568 A JP 54109568A JP 10956879 A JP10956879 A JP 10956879A JP S6318368 B2 JPS6318368 B2 JP S6318368B2
Authority
JP
Japan
Prior art keywords
output
multiplication
delay
cascade
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109568A
Other languages
Japanese (ja)
Other versions
JPS5632818A (en
Inventor
Kenji Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10956879A priority Critical patent/JPS5632818A/en
Publication of JPS5632818A publication Critical patent/JPS5632818A/en
Publication of JPS6318368B2 publication Critical patent/JPS6318368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Description

【発明の詳細な説明】 この発明は標本化された信号が入力される位相
非線形な非巡回型デイジタルフイルタに関し、特
にそのフイルタ特性を可変できる可変型フイルタ
に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase nonlinear acyclic digital filter to which a sampled signal is input, and particularly to a variable filter whose filter characteristics can be varied.

デイジタルフイルタはその乗算器の係数を変更
することによりフイルタ特性を変えることができ
る。従つてあらかじめ実現したい特性に対応する
係数を全て読出し専用メモリ(ROM)に格納し
そのうちの必要な係数をフイルタの乗算器に供給
することによりフイルタの可変機能は容易に実現
できる。しかしフイルタの乗算器係数の数及び実
現したい特性の種類が多い場合にはROMのメモ
リサイズが大きくなり実現性が乏しくなる。例え
ばフイルタのタツプ=100、可変ステツプ=50、
係数語長=12ビツトとすると60KBitのメモリが
必要である。これに対して従来から位相線形な非
巡回型デイジタルフイルタ(FIRフイルタ)にお
いて可変係数の種類を大幅に低減する方法が例え
ば特願昭52−143648号「非巡回形可変フイルタ」
で提案されている。しかし位相非線形な場合には
有効な方法が提案されていない。
The filter characteristics of a digital filter can be changed by changing the coefficients of its multiplier. Therefore, the variable function of the filter can be easily realized by storing all the coefficients corresponding to the desired characteristics in advance in a read-only memory (ROM) and supplying the necessary coefficients to the multiplier of the filter. However, if the number of multiplier coefficients of the filter and the types of characteristics desired to be realized are large, the memory size of the ROM becomes large and the realization becomes difficult. For example, filter tap = 100, variable step = 50,
If the coefficient word length is 12 bits, 60KBit of memory is required. On the other hand, there is a conventional method for significantly reducing the number of variable coefficients in a phase-linear acyclic digital filter (FIR filter), for example, in Japanese Patent Application No. 52-143648 ``Acyclic Variable Filter''.
is proposed. However, no effective method has been proposed in the case of phase nonlinearity.

この発明は位相非線形な非巡回型フイルタにお
いて可変係数の種類を大幅に低減する可変フイル
タの回路構成の提案するものである。
This invention proposes a circuit configuration of a variable filter that greatly reduces the number of types of variable coefficients in a phase nonlinear acyclic filter.

P=jω(j=√−1,ω=2πf)とした時P平
面における全零点の伝達関数H(P)は(1)式で与
えられる。
When P=jω (j=√−1, ω=2πf), the transfer function H(P) of all zero points in the P plane is given by equation (1).

H(P)=N-1i=0 aiPi ……(1) aは定数である。伝達関数H(P)をZ(=
ejT)平面に変換することによりデイジタルフイ
ルタの伝達関数が得られるが、この発明において
はこの変換に次の(2)式を用いる。
H(P)= N-1i=0 a i P i ...(1) a is a constant. Transfer function H(P) is expressed as Z(=
e jT ) The transfer function of the digital filter can be obtained by converting to the plane, and in this invention, the following equation (2) is used for this conversion.

P=jKsinΩT ……(2) ここでT=1/ss:サンプリング周波数)
である。(2)式より ω=KsinΩT ……(3) (3)式の関数が得られこれを第1図に示す。第1図
から判るようにω軸の〔−K,K〕がΩ軸上〔−
π/2T,π/2T〕に写像される。従つてKを可変する ことにより(2)式の変換で得られるZ平面の伝達関
数の振幅特性はΩ軸方向に可変できる。
P=jKsinΩT...(2) Here, T=1/ s ( s : sampling frequency)
It is. From equation (2), ω=KsinΩT...(3) The function of equation (3) is obtained and is shown in Figure 1. As can be seen from Figure 1, the ω-axis [-K, K] is on the Ω-axis [-
π/2T, π/2T]. Therefore, by varying K, the amplitude characteristic of the Z-plane transfer function obtained by the transformation of equation (2) can be varied in the Ω-axis direction.

一方(2)式の右辺はZを用いて次のように表わす
ことができる。
On the other hand, the right side of equation (2) can be expressed using Z as follows.

jsinΩT=1/2 1−Z-2/Z-1 ……(4) 従つて(1)式においてPの代わりにK/2 1−Z-2/Z-1を代入すればZ平面における伝達関数を 得る。これをG(Z)とする。 jsinΩT=1/2 1-Z -2 /Z -1 ...(4) Therefore, if K/2 1-Z -2 /Z -1 is substituted for P in equation (1), the transmission in the Z plane is Get the function. Let this be G(Z).

ただしK*=K/2とする。さらにG(Z)にお
いてZN-1の振幅は1であるからZN-1を1としても
振幅特性は変らないからこれをG*(Z)とすると となる。(6)式を実現する構成例を第2図に示す。
入力端子11はその入力信号のサンプリング周期
T秒の遅延量をもつN−1個の遅延器1N-2〜11
の縦続接続の遅延器1N-2の入力側へ供給される。
また可変係数K*を乗算する可変乗算器12と、
その乗算出力が遅延時間T秒の遅延器13,14
の直列回路を通じたものと通じないものとを加算
する加算器15とよりなるN−1個の演算段2N-
〜20がその乗算器12を入力側とし、加算器1
5の出力側として縦続的に接続される。入力端子
11は係数aN-1の固定乗算器3N-1を通じて演算
段2N-2の入力側に供給され、遅延器1N-2〜10
の各出力はそれぞれ係数aN-2〜a0の固定乗算器3
N−2〜30を通じて演算段2N-2〜20の各加算器1
5に供給される。演算段20の加算器15の出力
は出力端子16へ供給される。
However, K * =K/2. Furthermore, since the amplitude of Z N-1 is 1 in G(Z), the amplitude characteristics do not change even if Z N-1 is set to 1, so if this is G * (Z), becomes. FIG. 2 shows an example of a configuration that realizes equation (6).
The input terminal 11 has N-1 delay devices 1 N-2 to 1 1 each having a delay amount of T seconds at the sampling period of the input signal.
is supplied to the input side of the cascade-connected delay device 1 N-2 .
Also, a variable multiplier 12 that multiplies by a variable coefficient K * ,
Delay devices 13 and 14 whose multiplication output has a delay time of T seconds
N-1 arithmetic stages 2 consisting of an adder 15 that adds up what passes through the series circuit and what doesn't pass through the series circuit 2 N-
2 to 2 0 has its multiplier 12 on the input side, and adder 1
5 are connected in series as the output side of 5. The input terminal 11 is supplied to the input side of the arithmetic stage 2 N- 2 through a fixed multiplier 3 N- 1 with a coefficient a N-1 , and is supplied to the input side of the arithmetic stage 2 N-2 .
Each output is a fixed multiplier 3 with coefficients a N-2 to a 0 , respectively.
Each adder 1 of operation stage 2 N-2 to 20 through N-2 to 30
5. The output of the adder 15 of the arithmetic stage 2 0 is supplied to the output terminal 16 .

この構成においてi=0では端子11の入力信
号はN−1個の遅延器1N-2〜10を通過し乗算器
0でa0倍されたものが出力され、これは(6)式で
a0Z-(N-1)の値と一致とする。遅延器12の出力は
Z-(N-1)+1であり、これが乗算器31でa1倍され
a1Z-(N-1)+1となる。演算段2N-2〜20のそれぞれ
においてはK*(1−Z-2)の演算が行われるから
乗算器31の出力は演算段21の加算器15を通じ
て演算段23の乗算器12でK*倍され
a1Z-(N-1)+1・K*となり、乗算器30からの入力を
除くと加算器15の出力はa1Z-(N-1)+1・K*(1−
Z-2)となり、これは(6)式でi=1とした値であ
る。以下同様にして第2図は(6)式の演算を行うも
のであることがわかる。
In this configuration, when i=0, the input signal at the terminal 11 passes through N-1 delay devices 1N -2 to 10 , and is multiplied by a0 by the multiplier 30 , which is then output as shown in (6). in the ceremony
Match the value of a 0 Z -(N-1) . The output of delay device 1 and 2 is
Z -(N-1)+1 , which is multiplied by a1 in multiplier 31 .
a 1 Z -(N-1)+1 . Since the calculation of K * (1-Z - 2) is performed in each of the calculation stages 2N-2 to 20 , the output of the multiplier 31 is sent to the multiplication of the calculation stage 23 through the adder 15 of the calculation stage 21 . Multiplied by K * in vessel 12
a 1 Z -(N-1)+1・K * , and excluding the input from multiplier 30 , the output of adder 15 is a 1 Z -(N-1)+1・K * (1−
Z -2 ), which is the value when i=1 in equation (6). Similarly, it can be seen that FIG. 2 is for calculating equation (6).

この第2図では可変乗算器12をN−1個用い
るがその可変係数はK*でありすべて同一である。
従つてフイルタ特性の変更をするためにその一つ
の特性について一つのK*の値を記憶ておけばよ
い。
In FIG. 2, N-1 variable multipliers 12 are used, but their variable coefficients are K * and are all the same.
Therefore, in order to change a filter characteristic, it is only necessary to store one value of K * for that one characteristic.

次に伝達関数H(P)を因数分解した場合につ
いて考える。
Next, consider the case where the transfer function H(P) is factorized.

H(P)=Mi=1 (a0i+a1iP+a2iP2) ……(7) G(Z)=M 〓 〓i=1 (a0i+a1i(K/2 1−Z-2/Z-1)+a2i(K/2
1−Z-2/Z-12) =Z2M M 〓 〓i=1 (a0iZ-2+a1iK*Z-1(1−Z-2)+a2iK*2(1−Z-2
2)……(8) G(Z)においてZ2Mの振幅は1であるからこれ
を取り除いてG*(Z)となる。
H (P) = Mi=1 (a 0i + a 1i P + a 2i P 2 ) ...(7) G (Z) = M 〓 〓 i=1 (a 0i + a 1i (K/2 1-Z -2 /Z -1 )+a 2i (K/2
1-Z -2 /Z -1 ) 2 ) =Z 2M M 〓 〓 i=1 (a 0i Z -2 +a 1i K * Z -1 (1-Z -2 )+a 2i K *2 (1-Z -2
) 2 )...(8) Since the amplitude of Z 2M is 1 in G (Z), remove it to get G * (Z).

G*M 〓 〓i=1 (a0iZ-2+a1iK*Z-1(1−Z-2)+a2iK*(1−Z-2
2)……(9) (9)式中のiの一つの値を示す次の(10)式を実現す
る回路を第3図に示す。
G * = M 〓 〓 i=1 (a 0i Z -2 +a 1i K * Z -1 (1-Z -2 ) +a 2i K * (1-Z -2 )
2 )...(9) Figure 3 shows a circuit that realizes the following equation (10), which represents one value of i in equation (9).

Hi(Z)=a0iZ-2+a1iK*Z-1(1−Z-2)+a2iK*(1−
Z-22……(10) 入力端子17iよりの信号は遅延時間Tの4つ
の遅延器21〜24の縦続接続に入力される。そ
の遅延器22の出力は固定乗算器25で係数a0i
が乗算されて(10)式の右辺第1項a0iZ-2が得られ、
これが加算器26へ供給される。遅延器21の出
力はZ-1であり遅延器23の出力はZ-3であり、こ
れ等は加算器27で加算されZ-1(1−Z-2)が得
られ、これは固定乗算器28でa1iが乗算されそ
の乗算出力は加算器29を通じて可変乗算器31
に供給されてK*が乗算されa1iK*Z-1(1−Z-2
が得られ、その出力は加算器26へ供給される。
このようにして(10)式の右辺第2項が得られる。遅
延器22の出力が固定乗算器32で−2倍されて
−2Z-2とされ、これと遅延器24よりのZ-4と端
子17iよりの1とが加算器33で加算されて
(1−Z-22が得られその出力が固定乗算器34で
a2iが乗算され、更に可変乗算器35でK*が乗算
されa2iK*(1−Z-22が得られ、これが加算器2
9を通じて可変乗算器31へ供給されて更にK*
倍され(10)式の第3項が得られる。加算器26の出
力は出力端子18iへ供給される。
H i (Z)=a 0i Z -2 +a 1i K * Z -1 (1-Z -2 )+a 2i K * (1-
Z -2 ) 2 ... (10) A signal from the input terminal 17i is input to a cascade connection of four delay devices 21 to 24 having a delay time T. The output of the delay device 22 is a fixed multiplier 25 with a coefficient a 0i
is multiplied to obtain the first term a 0i Z -2 on the right side of equation (10),
This is supplied to adder 26. The output of the delay device 21 is Z -1 and the output of the delay device 23 is Z -3 , and these are added in the adder 27 to obtain Z -1 (1-Z -2 ), which is a fixed multiplication. The multiplier 28 multiplies a 1i and the multiplication output is sent to the variable multiplier 31 via the adder 29.
is supplied to K * and multiplied by a 1i K * Z -1 (1−Z -2 )
is obtained, and its output is supplied to the adder 26.
In this way, the second term on the right side of equation (10) is obtained. The output of the delay device 22 is multiplied by -2 by the fixed multiplier 32 to become -2Z -2 , and this, Z -4 from the delay device 24 and 1 from the terminal 17i are added by the adder 33 (1 −Z -2 ) 2 is obtained and its output is output by the fixed multiplier 34.
a 2i is multiplied and further multiplied by K * in the variable multiplier 35 to obtain a 2i K * (1−Z -2 ) 2 , which is added to the adder 2.
9 to the variable multiplier 31 and further K *
By multiplying, the third term of equation (10) is obtained. The output of adder 26 is provided to output terminal 18i.

伝達関数H(Z)の回路はHi(Z)の回路をi
=0〜i=MとそれぞれしたM個の回路の縦続接
続により構成される。
The circuit with transfer function H(Z) is the circuit with Hi(Z)
It is constructed by cascading M circuits, each with =0 to i=M.

以上述べたように第2図、第3図に示した回路
においては可変係数の種類はK*1種類のみであ
りフイルタ特性を変更に必要とする可変係数K*
を記憶するためのメモリサイズを大幅に低減する
ことができる。
As mentioned above, in the circuits shown in Figures 2 and 3, there is only one type of variable coefficient K * and the variable coefficient K * required to change the filter characteristics.
The memory size for storing can be significantly reduced.

なお上述では遅延器、乗算器などそれぞれ各別
の回路として構成したが各回路を個別に構成する
ことなくマイクロコンピユータを用いて第2図、
第3図に示した回路による演算を行つてフイルタ
を構成することもできる。
In addition, although the delay device, multiplier, etc. were configured as separate circuits in the above example, they can be configured using a microcomputer without configuring each circuit individually as shown in FIG.
A filter can also be constructed by performing calculations using the circuit shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はP平面からZ平面への変換に伴う周波
数軸の写像関係を示す図、第2図はこの発明によ
る非巡回型可変フイルタの構成例を示す構成図、
第3図はこの発明による非巡回型可変フイルタの
構成例の1演算段を示す図である。 11:入力端子、16:出力端子、10〜1N-
,13,15,21〜24:標本化周期Tの遅
延器、20〜2N-2:演算段、30〜3N-1:固定乗
算器、12,31,35:可変乗算器。
FIG. 1 is a diagram showing the frequency axis mapping relationship associated with conversion from the P plane to the Z plane, and FIG. 2 is a configuration diagram showing an example of the configuration of an acyclic variable filter according to the present invention.
FIG. 3 is a diagram showing one operation stage of a configuration example of the acyclic variable filter according to the present invention. 11: Input terminal, 16: Output terminal, 1 0 ~ 1 N-
2 , 13, 15, 21 to 24: Delay device with sampling period T, 2 0 to 2 N-2 : Arithmetic stage, 3 0 to 3 N-1 : Fixed multiplier, 12, 31, 35: Variable multiplier .

Claims (1)

【特許請求の範囲】 1 入力信号の標本化周期の遅延量を縦続的にN
倍与える第1縦続遅延手段と、可変乗算手段の出
力及びその出力を上記標本化周期の2倍だけ第2
遅延手段で遅延された出力を加算する加算手段よ
りなる第1演算手段の演算をN回縦続的に行う縦
続演算手段と、入力信号を上記第1縦続遅延手段
へ供給すると共に第1固定乗算手段を通して上記
縦続演算手段の初段入力へ供給する手段と、上記
第1縦続遅延手段の各遅延出力が第2乃至第N−
1固定乗算手段をそれぞれ介して上記縦続演算手
段の各対応演算段の加算手段へそれぞれ入力する
手段とを具備し、上記第1固定乗算手段及び上記
第2乃至第N−1固定乗算手段の各乗数は互いに
独立とされ、上記縦続演算手段の最終段の出力と
してフイルタ出力を得ることを特徴とする非巡回
型可変フイルタ。 2 入力信号の標本化周期の遅延量をそれぞれも
ち、縦続的に遅延を行う第1〜第4遅延手段と、
その第1遅延手段の入力信号、第2遅延手段の出
力を第1の固定乗算した出力及び上記第4遅延手
段の出力を加算する第1加算手段と、その第1加
算手段の出力を第2の固定乗算及び可変乗算する
乗算手段と、上記第1遅延手段の出力及び上記第
3遅延手段の出力を加算する第2加算手段と、そ
の加算出力を第3の固定乗算した出力及び上記乗
算手段の出力を加算する第3加算手段と、その加
算出力を可変乗算する可変乗算手段と、その乗算
出力及び上記第2遅延手段の出力と第4の固定乗
算した出力を加算する第4加算手段とよりなり、
上記第2の固定乗算の乗数と上記第4の固定乗算
の乗数とは互いに独立とされた演算手段が、その
第1遅延手段の入力側を入力とし第4加算手段の
出力側を出力として複数段縦続的に演算するよう
に構成されている非巡回型可変フイルタ。
[Claims] 1. The delay amount of the sampling period of the input signal is successively N
a first cascade delay means which doubles the output of the variable multiplication means;
cascade calculation means for performing the calculation of the first calculation means in cascade N times, which includes addition means for adding outputs delayed by the delay means; and first fixed multiplication means for supplying an input signal to the first cascade delay means; means for supplying the first stage input of the cascade calculation means through the cascade calculation means, and means for supplying each delayed output of the first cascade delay means to the second to N-th
1 fixed multiplication means, respectively, to the addition means of each corresponding operation stage of the cascade operation means, each of the first fixed multiplication means and the second to N-1 fixed multiplication means; An acyclic variable filter characterized in that the multipliers are independent of each other and a filter output is obtained as the output of the final stage of the cascaded arithmetic means. 2. first to fourth delay means each having a delay amount corresponding to the sampling period of the input signal and delaying in series;
a first addition means for adding the input signal of the first delay means, the output obtained by multiplying the output of the second delay means by a first fixed value, and the output of the fourth delay means; a multiplication means for fixed multiplication and variable multiplication, a second addition means for adding the output of the first delay means and the output of the third delay means, an output obtained by multiplying the added output by a third fixed multiplication, and the multiplication means a third addition means for adding the output of the second delay means; a variable multiplication means for variably multiplying the added output; and a fourth addition means for adding the multiplication output, the output of the second delay means, and the fourth fixed multiplied output. It becomes more,
The multiplier for the second fixed multiplication and the multiplier for the fourth fixed multiplication are provided in a plurality of arithmetic means which are independent of each other, with the input side of the first delay means as an input and the output side of the fourth addition means as an output. An acyclic variable filter configured to operate in cascade.
JP10956879A 1979-08-27 1979-08-27 Noncyclic variable filter Granted JPS5632818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10956879A JPS5632818A (en) 1979-08-27 1979-08-27 Noncyclic variable filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10956879A JPS5632818A (en) 1979-08-27 1979-08-27 Noncyclic variable filter

Publications (2)

Publication Number Publication Date
JPS5632818A JPS5632818A (en) 1981-04-02
JPS6318368B2 true JPS6318368B2 (en) 1988-04-18

Family

ID=14513534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10956879A Granted JPS5632818A (en) 1979-08-27 1979-08-27 Noncyclic variable filter

Country Status (1)

Country Link
JP (1) JPS5632818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703447A (en) * 1985-04-05 1987-10-27 The Grass Valley Group, Inc. Mixer controlled variable passband finite impulse response filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476048A (en) * 1977-11-30 1979-06-18 Nec Corp Noncyclic variable filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476048A (en) * 1977-11-30 1979-06-18 Nec Corp Noncyclic variable filter

Also Published As

Publication number Publication date
JPS5632818A (en) 1981-04-02

Similar Documents

Publication Publication Date Title
US3665171A (en) Nonrecursive digital filter apparatus employing delayedadd configuration
JPH06188686A (en) Dynamic adaptability equalizer system and method
EP0146963B1 (en) Iir digital filter
JPS6272218A (en) Infinite impulse response filter
US4422156A (en) Digital filter device
JP2779617B2 (en) Finite impulse response filter
JPH02189016A (en) Programmable digital filter
US4809209A (en) Mybrid charge-transfer-device filter structure
JPH082014B2 (en) Multi-stage digital filter
US4020333A (en) Digital filter for filtering complex signals
JPS6318368B2 (en)
EP0608665B1 (en) Method of filtering high resolution digital signals and corresponding architecture of digital filter
JPH0126204B2 (en)
JPH06350399A (en) Method and digital filter architecture for filtering digital signal
JPH10509011A (en) Improved digital filter
WO2005002051A1 (en) Digital filter
JPH0555875A (en) Digital filter
JP2526990B2 (en) Non-cyclic downsampling filter
KR102667990B1 (en) Filter and Method with Multiplication Operation Approximation Capability
JPH0590897A (en) Oversampling filter circuit
JPS6051813B2 (en) Acyclic variable filter
KR0176205B1 (en) Design Method of Highpass IIR Filter and Highpass IIR Filter
JP2590291B2 (en) Switching IIR filter
JPS63103509A (en) Digital filter
JPH0716145B2 (en) Digital transversal filter