JPS63183174A - Production of electrically conductivity transparent film - Google Patents

Production of electrically conductivity transparent film

Info

Publication number
JPS63183174A
JPS63183174A JP1290887A JP1290887A JPS63183174A JP S63183174 A JPS63183174 A JP S63183174A JP 1290887 A JP1290887 A JP 1290887A JP 1290887 A JP1290887 A JP 1290887A JP S63183174 A JPS63183174 A JP S63183174A
Authority
JP
Japan
Prior art keywords
base material
tin
gas
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1290887A
Other languages
Japanese (ja)
Inventor
Yuko Toyonaga
豊永 由布子
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1290887A priority Critical patent/JPS63183174A/en
Publication of JPS63183174A publication Critical patent/JPS63183174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To obtain an electrically conductive transparent film made of a homogeneous tin oxide film without thermally damaging the surface of a base material by simultaneously causing the photochemical reaction of reactive gases in a vapor phase and the thremochemical reaction by the heating of the base material. CONSTITUTION:Laser beams 3 from a first laser beam generator 1 and laser beams 4 from a second laser beam generator 2 are radiated on glass as a base material 11 in a chamber 8 through reflecting mirrors 5, condensers 6 and a window 7 so that the radiation positions on the surface of the base material 11 are allowed to nearly coincide with each other. Tetramethyl tin [Sn(CH3)4] used as a tin compd. 15 is bubbled with gaseous Ar 13 and jetted on the base material 11 together with O214 as a mixture 10 of reactive gases contg. tin. from the reactive gas feed nozzle 9. The tetramethyl tin as one of the reactive gases on the base material 11 is optically excited by absorbing the first laser beams having oscillation line within the ultraviolet region. The glass as the base material 11 absorbs the second CO2 laser beams and a thermal reaction is accelerated on the locally heated base material 11 to deposit a tin oxide film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可視光域で透明であり、尚かつ導電性を持ち
、各種ディスプレイや太陽電池等に用いられる透明導電
膜の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a transparent conductive film that is transparent in the visible light range and has conductivity, and is used in various displays, solar cells, etc. .

従来の技術 近年、透明導電膜は、各種ディスプレイの開発に伴い、
その需要は増加の傾向にある。透明導電膜の種類として
は、酸化インジウム、酸化亜鉛、酸化錫等があるが、こ
の中では導電性の点より、錫を不純物として含む酸化イ
ンジウム(1,T、O,)によるものが現在主流となっ
ている。然し乍ら、酸化錫は、低価格、耐寿命性という
点で、見立されてきている。
Conventional technology In recent years, transparent conductive films have been developed with the development of various displays.
The demand is on the rise. Types of transparent conductive films include indium oxide, zinc oxide, and tin oxide, but from the viewpoint of conductivity, indium oxide (1, T, O,) containing tin as an impurity is currently the mainstream. It becomes. However, tin oxide is gaining attention because of its low cost and long life.

まず、酸化錫膜の製法としては、基材自体を加熱するか
、あるいは基材を収めた反応室全体を加熱し、基材周辺
の反応性ガスを熱分解して、熱分解生成物である酸化錫
を基板上に形成する方法があった。しかし、これらは、
基材周辺の空間全体が高温になっているので、反応性ガ
スの熱分解生放物が、二次的さらに三次的に熱分解した
り、あるいは、熱分解生成物が、未分解のガスと反応し
て、形成した薄膜中に大小様々なビットを生じるという
欠点があった。又、基材が強く加熱される為、基材の歪
、そり、縮み等、加熱による寸法精度の狂いや、基材自
体の組織の変質、すでに基材に形成された機能的構造の
変化等、形成薄膜と基材双方に、多(の損傷が発生する
危険があった。
First, the method for producing a tin oxide film is to heat the base material itself or to heat the entire reaction chamber containing the base material to thermally decompose the reactive gas around the base material to generate thermal decomposition products. There was a method of forming tin oxide on a substrate. However, these
Since the entire space around the base material is at a high temperature, the pyrolyzed raw materials of the reactive gas may undergo secondary and tertiary pyrolysis, or the pyrolysis products may mix with undecomposed gas. There was a drawback in that the reaction produced bits of various sizes in the formed thin film. In addition, since the base material is heated strongly, it may cause distortion, warpage, shrinkage, etc. of the base material, loss of dimensional accuracy due to heating, alteration of the structure of the base material itself, change in the functional structure already formed on the base material, etc. However, there was a risk of damage to both the formed thin film and the substrate.

これらに対して、次のような製造方法が考案された。即
ち、大気中、又は減圧中で、所用の基材の表面に接して
、錫化合物ガスと酸素ガスを主成分とするガス状気流を
送り、単一レーザビームで前記基材面を照射加熱するこ
とにより、前記ガス状気流を瞬時に熱分解し、基材面に
酸化錫膜を形成するものである。(特開昭59−140
366号公報)この方法は、反応を起す範囲をレーザ照
射部である基材の極表面層のみに限定するため、前者の
製法で問題となった2次生成物によるビット発生や、基
材のそり、歪による基材精度誤差の発生を防ぐことがで
きるといわれていた。
In response to these, the following manufacturing method has been devised. That is, in the atmosphere or under reduced pressure, a gaseous air stream containing tin compound gas and oxygen gas as main components is sent in contact with the surface of the desired base material, and the surface of the base material is irradiated and heated with a single laser beam. By doing so, the gaseous air stream is instantly thermally decomposed and a tin oxide film is formed on the surface of the substrate. (Unexamined Japanese Patent Publication No. 59-140
(No. 366 Publication) This method limits the reaction range to only the extreme surface layer of the base material, which is the laser irradiation area, so it prevents bit generation due to secondary products, which was a problem with the former manufacturing method, and the problem of the base material. It was said that it is possible to prevent errors in base material accuracy due to warpage and distortion.

発明が解決しようとする問題点 然し乍ら実際には、従来法の後者においても、局部的に
は、レーザの単一ビーム掃引による急激な加熱を受ける
為、ビーム照射部と非照射部との顕著な温度差により、
熱膨張歪や、残留応力による基材の部分破壊がしばしば
発生した。また、成膜過程における急激な温度変化によ
って膜組成が安定しないといった問題も有していた。
Problems to be Solved by the Invention However, in reality, even in the latter method of the conventional method, local areas are rapidly heated by the single beam sweep of the laser, so there is a noticeable difference between the beam irradiated area and the non-irradiated area. Due to temperature difference,
Partial fracture of the base material due to thermal expansion strain and residual stress often occurred. Additionally, there was a problem in that the film composition was unstable due to rapid temperature changes during the film formation process.

本発明は、上記問題に鑑がみ、基材面に熱損傷を与えず
、均質な酸化錫膜よりなる透明導電膜を提供するもので
ある。
In view of the above problems, the present invention provides a transparent conductive film made of a homogeneous tin oxide film that does not cause thermal damage to the substrate surface.

問題点を解決するための手段 上記問題点を解決するために、本発明の透明導電膜の製
造方法は、所用の基材の表面に接して、錫化合物ガスと
酸素ガスを主成分とするガス状気流を送り、前記錫化合
物ガスの吸収帯域に発振波長を持つ紫外域の第1レーザ
ビームを前記基材表面領域に照射すると同時に、前記基
材の吸収帯域に発振波長を持つ可視あるいは赤外域の第
2レーザビームにて基材表面を照射加熱することにより
、前記基材表面に酸化錫膜を形成する構成を備えたもの
である。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a transparent conductive film of the present invention provides a method for producing a transparent conductive film in which a gas containing a tin compound gas and an oxygen gas as main components is brought into contact with the surface of a desired base material. At the same time, a first laser beam in the ultraviolet range having an oscillation wavelength in the absorption band of the tin compound gas is irradiated onto the surface area of the base material, and at the same time, a first laser beam in the visible or infrared range having an oscillation wavelength in the absorption band of the base material is applied. The present invention has a structure in which a tin oxide film is formed on the surface of the substrate by irradiating and heating the surface of the substrate with the second laser beam.

作用 本発明は、上記した構成によって、紫外レーザと赤外レ
ーザを併用し、気相中での反応ガスの光化学反応、及び
基材加熱による熱化学反応を同時に起すことでより効率
的に反応を促進するとともに、レーザによる局部的高温
加熱をおさえることが可能となり、基材損傷を避けるこ
とができる。
Effect The present invention uses an ultraviolet laser and an infrared laser in combination with the above-described configuration to simultaneously cause a photochemical reaction of a reaction gas in the gas phase and a thermochemical reaction by heating the base material, thereby achieving a more efficient reaction. At the same time, it is possible to suppress local high-temperature heating by the laser, thereby avoiding damage to the base material.

実施例 以下本発明の透明導電膜の製造方法の一実施例について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, an example of the method for manufacturing a transparent conductive film of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例における透明導電膜の製造
装置の構成図である。第1図において、1は第1レーザ
ビーム、2は第2レーザビーム、3は第ル−ザ発振ビー
ム、4は第2レーザ発振ビーム、5は反射ミラー、6は
集光レンズ、7は窓、8はチャンバー、9は反応ガス供
給ノズル、10は反応ガス、1)は基材、12は基材台
、13はArガス、14はo2ガス、15は錫化合物で
ある0本実施例に於て、第ル−ザ発振器1は、エキシマ
レーザ(193nm)であり、第2レーザ発振器は、C
02レーザ(10,6μm>である、それぞれレーザ発
振ビーム3,4は、反射ミラー5、集光レンズ6、窓7
を通してチャンバー8内の基材1)に照射される。本実
施例では、基材としてガラスを用いており、基材面上で
の2つのレーザビーム照射位置はほぼ一致している。
FIG. 1 is a configuration diagram of a transparent conductive film manufacturing apparatus in an embodiment of the present invention. In FIG. 1, 1 is a first laser beam, 2 is a second laser beam, 3 is a laser oscillation beam, 4 is a second laser oscillation beam, 5 is a reflecting mirror, 6 is a condensing lens, and 7 is a window. , 8 is a chamber, 9 is a reaction gas supply nozzle, 10 is a reaction gas, 1) is a base material, 12 is a base material stand, 13 is Ar gas, 14 is O2 gas, and 15 is a tin compound. In this case, the first laser oscillator 1 is an excimer laser (193 nm), and the second laser oscillator is a C laser oscillator.
02 laser (10.6 μm>, respectively, laser oscillation beams 3 and 4 are transmitted through a reflecting mirror 5, a condensing lens 6, and a window 7.
The substrate 1) in the chamber 8 is irradiated through the beam. In this example, glass is used as the base material, and the two laser beam irradiation positions on the base material surface are substantially coincident.

一方、錫化合物15として、テトラメチル錫     
On the other hand, as tin compound 15, tetramethyltin
.

(Sn (CH,)、)を用いており、Arガス10で
バブリングすることによりo214とともに、反応ガス
供給ノズル9より、錫を含有する反応性ガス10として
基材上に噴出している。
(Sn (CH,),) is used, and by bubbling with Ar gas 10, it is ejected onto the substrate as a reactive gas 10 containing tin from a reactive gas supply nozzle 9 together with o214.

基材上の反応ガスであるテトラメチル錫は、紫外域(1
93nm)に発振波長をもつ第1レーザビームを吸収し
光励起する。一方、基材であるガラスは、CO□レーザ
を吸収し、局部的に加熱され基材上で熱反応を促進し、
酸化錫膜を堆積する。
Tetramethyltin, which is a reactive gas on the substrate, is in the ultraviolet region (1
The first laser beam having an oscillation wavelength of 93 nm) is absorbed and optically excited. On the other hand, the glass base material absorbs the CO□ laser and is locally heated to promote a thermal reaction on the base material.
Deposit a tin oxide film.

基材台12は、XY2次平面に駆動可能であり、この操
作によって、所望のパターンの膜堆積をおこなうことも
できる。
The base material table 12 can be driven in the XY secondary plane, and by this operation, it is also possible to deposit a film in a desired pattern.

第2図は、本実施例に於ける第2レーザ照射による基材
の加熱温度と成膜速度の関係図である。
FIG. 2 is a diagram showing the relationship between the heating temperature of the substrate by the second laser irradiation and the film formation rate in this example.

Aは、第2レーザ照射のみで成膜を行った場合であり、
Bは、第ル−ザ照射および第2レーザ照射を併用した本
実施例の場合である。此の図よりわかるように、両ビー
ムの併用使用により、成膜速度は向上している。即ち、
基材面の加熱温度を従来より、約40℃前後低下させて
も同様の成膜速度を得ることができる。また、第1レー
ザ照射のみの時は、基材表面にパウダー状の堆積が観察
されるのみである。
A is the case where the film was formed only by the second laser irradiation,
B is the case of this embodiment in which both the first laser irradiation and the second laser irradiation are used. As can be seen from this figure, the film formation speed is improved by using both beams together. That is,
A similar film formation rate can be obtained even if the heating temperature of the substrate surface is lowered by about 40° C. compared to the conventional method. Moreover, when only the first laser irradiation is applied, only powder-like deposits are observed on the surface of the base material.

一般に、加熱による気相成長反応で酸化錫を形成する場
合、基板加熱温度は350〜450℃が適当とされる。
Generally, when forming tin oxide through a vapor phase growth reaction by heating, the appropriate substrate heating temperature is 350 to 450°C.

350℃以下では、結晶性が不十分であり、比較的電気
抵抗も高い、又、500℃を超えると結晶の成長過剰が
原因でむしろ抵抗は上がる。これに対し、本発明の透明
導電膜の製造方法では、第ル−ザ照射により、反応ガス
が紫外レーザビームを吸収し光励起による分解、さらに
第2レーザ照射での基材表面加熱による熱分解を通して
酸化錫膜が堆積される。即ち、従来の熱分解プロセスに
光分解プロセスを加えることによって反応を効果的に促
進することができる。よって、基材自身の加熱温度が3
50℃以下でも高い堆積速度で良好な結晶性を有する透
明導電膜を得ることができる。この方法により、基材そ
のものの加熱温度を低温に保ちながら膜堆積速度を下げ
ることなく良好な膜質の酸化錫膜を得ることができる0
以上によって、従来最も問題となっていたレーザ掃引に
よる局部的高温加熱による基材破損等の問題が解決され
た。
If the temperature is below 350°C, the crystallinity will be insufficient and the electrical resistance will be relatively high, and if it exceeds 500°C, the resistance will actually increase due to excessive crystal growth. On the other hand, in the method for manufacturing a transparent conductive film of the present invention, the reaction gas absorbs the ultraviolet laser beam in the first laser irradiation, decomposes due to optical excitation, and undergoes thermal decomposition due to heating of the substrate surface in the second laser irradiation. A tin oxide film is deposited. That is, by adding a photolysis process to the conventional thermal decomposition process, the reaction can be effectively promoted. Therefore, the heating temperature of the base material itself is 3
A transparent conductive film having good crystallinity can be obtained at a high deposition rate even at temperatures below 50°C. By this method, it is possible to obtain a tin oxide film of good quality without reducing the film deposition rate while keeping the heating temperature of the base material itself at a low temperature.
As a result of the above, problems such as damage to the base material due to localized high-temperature heating due to laser sweep, which had been the most problematic in the past, have been solved.

以上の一実施例では、第ル−ザ発振器としてエキシマレ
ーザ、第2レーザ発振器としてCo2レーザを用いてい
るが、他のレーザに置き換えることも可能である。ただ
し、この場合留意すべき点は、第ル−ザ発振器のビーム
波長が反応ガスの吸収帯に適合すること、及び第2レー
ザ発振器のビーム波長が基材の吸収帯に適合することで
ある。
In the above embodiment, an excimer laser is used as the first laser oscillator and a Co2 laser is used as the second laser oscillator, but other lasers may be used instead. However, in this case, it should be noted that the beam wavelength of the first laser oscillator matches the absorption band of the reactant gas, and that the beam wavelength of the second laser oscillator matches the absorption band of the base material.

また、以上の実施例において、錫化合物15としては、
S n (CHB ) 4を用いているが、これ以外に
も、常温或いは、加熱時に、液体または気体であり、不
活性ガス等によるキャリヤガスを用いることで、錫化合
物のガス状気流として、反応域に供給が可能であること
、さらに第ル−ザ発振ビームの照射により、ビームを吸
収して光励起する材料であればよく、有機化合物錫ある
いは、塩化化合物錫等が考えられる。
Furthermore, in the above examples, the tin compound 15 is
Although Sn (CHB) 4 is used, it is also possible to react as a gaseous stream of tin compounds by using a carrier gas such as a liquid or gas, such as an inert gas, at room temperature or when heated. The material may be any material as long as it can be supplied to the area and can be optically excited by absorbing the beam when irradiated with the laser oscillation beam, such as an organic compound tin or a tin chloride compound.

発明の効果 以上のように本発明は、所用の基材の表面に接して、錫
化合物ガスと酸素ガスを主成分とするガス状気流を送り
、前記錫化合物ガスの吸収帯域に発振波長を持つ紫外域
の第2レーザビームを前記基材表面領域に照射すると同
時に、前記基材の吸収帯域に発振波長を持つ可視域ある
いは赤外域の第2レーザビームにて基材表面を照射加熱
することにより、前記基材表面に酸化mMを形成する構
成を備えたものである。この構成により、基材そのもの
の加熱温度を低温に保ちながら膜堆積速度を下げること
なく良好な膜質の酸化錫膜を得ることができ、従来最も
問題となっていたレーザ掃引による局部的な高温加熱に
よる基材破損を防止す。
Effects of the Invention As described above, the present invention sends a gaseous air flow containing tin compound gas and oxygen gas as main components in contact with the surface of a desired base material, and has an oscillation wavelength in the absorption band of the tin compound gas. By irradiating the substrate surface area with a second laser beam in the ultraviolet region and at the same time irradiating and heating the substrate surface with a second laser beam in the visible or infrared region having an oscillation wavelength in the absorption band of the substrate. , which is configured to form oxide mM on the surface of the base material. With this configuration, it is possible to obtain a tin oxide film of good quality without reducing the film deposition rate while keeping the heating temperature of the base material itself low, and it is possible to obtain a tin oxide film of good quality without reducing the film deposition rate. Prevent damage to the base material caused by

ることができる。can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における透明導電膜の製造装
置の構成図、第2図は本−実施例に於けるレーザパワー
と成膜速度の関係図である。 l・・・・・・第ル−ザ発振器、2・・・・・・第2レ
ーザ発振器、9・・・・・・反応性ガス供給ノズル、1
)・・・・・・基材、15・・・・・・錫化合物。
FIG. 1 is a block diagram of a transparent conductive film manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between laser power and film formation rate in this embodiment. l... Second laser oscillator, 2... Second laser oscillator, 9... Reactive gas supply nozzle, 1
)... Base material, 15... Tin compound.

Claims (3)

【特許請求の範囲】[Claims] (1)所用の基材の表面に接して、錫化合物ガスと酸素
ガスを主成分とするガス状気流を送り、前記錫化合物ガ
スの吸収帯域に発振波長を持つ第1レーザビームを前記
錫化合物ガスに照射すると同時に、前記基材の吸収帯域
に発振波長を持つ第2レーザビームにて基材表面を照射
加熱することにより、前記基材表面に酸化錫膜を形成す
ることを特徴とする透明導電膜の製造方法。
(1) Send a gaseous air stream containing tin compound gas and oxygen gas as main components in contact with the surface of the desired base material, and direct a first laser beam having an oscillation wavelength in the absorption band of the tin compound gas to the tin compound gas. A transparent method characterized in that a tin oxide film is formed on the surface of the substrate by irradiating the gas and simultaneously heating the surface of the substrate with a second laser beam having an oscillation wavelength in the absorption band of the substrate. Method for manufacturing a conductive film.
(2)第1レーザビームは、紫外域のレーザビームであ
り、第2レーザビームは、可視及び赤外域のレーザビー
ムであることを特徴とする特許請求範囲第(1)項記載
の透明導電膜の製造方法。
(2) The transparent conductive film according to claim (1), wherein the first laser beam is a laser beam in the ultraviolet region, and the second laser beam is a laser beam in the visible and infrared regions. manufacturing method.
(3)錫化合物ガスとして、有機化合物錫ガスあるいは
、塩化化合物錫ガスを用いることを特徴とする特許請求
範囲第(1)項記載の透明導電膜の製造方法。
(3) The method for producing a transparent conductive film according to claim (1), characterized in that an organic compound tin gas or a chloride compound tin gas is used as the tin compound gas.
JP1290887A 1987-01-22 1987-01-22 Production of electrically conductivity transparent film Pending JPS63183174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290887A JPS63183174A (en) 1987-01-22 1987-01-22 Production of electrically conductivity transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290887A JPS63183174A (en) 1987-01-22 1987-01-22 Production of electrically conductivity transparent film

Publications (1)

Publication Number Publication Date
JPS63183174A true JPS63183174A (en) 1988-07-28

Family

ID=11818454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290887A Pending JPS63183174A (en) 1987-01-22 1987-01-22 Production of electrically conductivity transparent film

Country Status (1)

Country Link
JP (1) JPS63183174A (en)

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH01244623A (en) Manufacture of oxide film
KR20060125500A (en) Process for forming zinc oxide film
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
JPS63183174A (en) Production of electrically conductivity transparent film
JPH0149004B2 (en)
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPH0353727B2 (en)
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
JPS63111176A (en) Production of electrically conductive transparent film
JPS6149392B2 (en)
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPH01244609A (en) Production of semiconductor thin film
JPS6391910A (en) Manufacture of transparent conductive film
JPS59208065A (en) Depositing method of metal by laser
GB2185494A (en) Vapour phase deposition process
JPS63147314A (en) Cvd method
JPS6394613A (en) Manufacture of polycrystalline thin film
JPS63179074A (en) Production of electrically conductive film
JP2526769B2 (en) Organic gold complex and method for producing gold thin film using the same
JPS6386127A (en) Production of optical information-recording medium
JPH05251369A (en) Organic metal chemical vapor growth method
JPS6240377A (en) Production of antimony nitride
JPS5940523A (en) Manufacture of semiconductor thin film
JPH05259095A (en) Cvd method for gold film