JPH0149004B2 - - Google Patents

Info

Publication number
JPH0149004B2
JPH0149004B2 JP10290084A JP10290084A JPH0149004B2 JP H0149004 B2 JPH0149004 B2 JP H0149004B2 JP 10290084 A JP10290084 A JP 10290084A JP 10290084 A JP10290084 A JP 10290084A JP H0149004 B2 JPH0149004 B2 JP H0149004B2
Authority
JP
Japan
Prior art keywords
light
reaction
reaction chamber
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10290084A
Other languages
Japanese (ja)
Other versions
JPS60245217A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP10290084A priority Critical patent/JPS60245217A/en
Publication of JPS60245217A publication Critical patent/JPS60245217A/en
Publication of JPH0149004B2 publication Critical patent/JPH0149004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 『発明の利用分野』 本発明は光励起化学気相反応により薄膜形成を
行う装置であつて、大面積の被形成面に均一に量
産性の優れた被膜を光照射室にオイル等をコート
することなく形成するCVD(気相反応)装置に関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is an apparatus for forming a thin film by a photo-excited chemical vapor phase reaction, and the present invention is an apparatus for forming a thin film by photoexcited chemical vapor phase reaction. This invention relates to a CVD (vapor phase reaction) device that forms materials without coating them with oil or the like.

『従来技術』 気相反応による薄膜形成技術として光エネルギ
により反応性気体を活性にさせる光CVD法が知
られている。この方法は従来の熱CVD法または
プラズマCVD法に比べ低温での被膜形成が可能
であるに加えて、被形成面に損傷を与えないとい
う点で優れたものである。
``Prior Art'' A known technique for forming thin films through gas-phase reactions is the optical CVD method, which activates reactive gases using light energy. This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a lower temperature and does not damage the surface on which it is formed.

しかしかかる光CVD法を実施するに際し、そ
の一例を第1図に示すが、反応室2内に保持され
た基板1、その基板の加熱手段3、さらに基板に
照射する低圧水銀灯9とを有している。ドーピン
グ系7には反応性気体の励起用の水銀バブラ21
および排気系8にはロータリーポンプを具備して
いる。ドーピング系よりの反応性気体例えばジシ
ランが反応室2に導入され、アモルフアス珪素を
基板(基板温度250℃)上に形成するに際し、反
応室の紫外光透光用の石英窓にも同時に多量に珪
素膜が形成されてしまう。このためこの窓への被
膜形成を防ぐため、この窓にフオンブリンオイル
20を薄くコートしている。
However, when implementing such an optical CVD method, an example of which is shown in FIG. ing. The doping system 7 includes a mercury bubbler 21 for excitation of the reactive gas.
And the exhaust system 8 is equipped with a rotary pump. When a reactive gas such as disilane from the doping system is introduced into the reaction chamber 2 and amorphous silicon is formed on the substrate (substrate temperature 250°C), a large amount of silicon is also introduced into the quartz window for transmitting ultraviolet light in the reaction chamber. A film will be formed. Therefore, in order to prevent film formation on this window, this window is thinly coated with Fombrin oil 20.

しかしこのオイルは窓への被膜形成を防ぐ作用
を有しつつも、同時にオイルの被膜内への混入の
可能性を有する。オイルのコートの程度がきわめ
て定性的である。
However, while this oil has the effect of preventing the formation of a film on the window, it also has the possibility of being mixed into the film. The degree of oil coating is very qualitative.

低圧水銀灯が大気圧に保持されているため、こ
の水銀灯と石英室との間の大気により紫外光特に
185nmの短紫外光が吸収されてしまう。
Since the low-pressure mercury lamp is maintained at atmospheric pressure, the atmosphere between the mercury lamp and the quartz chamber prevents ultraviolet light, especially
Short ultraviolet light of 185 nm is absorbed.

大面積の基板の形成に対し大きな窓とするとそ
の室が真空に対し破損しやすい等の欠点を有して
いる。
When a large window is used to form a large-area substrate, the chamber has disadvantages such as being easily damaged by vacuum.

このためその対策として特開昭59−68923「薄膜
形成技術」にみられるごとく、拡散炉方式があ
る。この形成装置においてはフオンブリンオイル
の代わりに内側より不活性気体を窓内壁に噴射し
たものである。するとこの気体により石英の内壁
への反応生成物の付着を防ぐことができるとして
いる。しかしこの場合、ガスの供給等反応炉内の
圧力の変化によりきわめて微妙であり、かつこの
不活性気体を反応炉中に多量に流さなければなら
ないため、反応性気体が不活性気体により希釈さ
れてしまうという欠点を有する。
Therefore, as a countermeasure to this problem, there is a diffusion furnace method as seen in Japanese Patent Application Laid-Open No. 59-68923 "Thin Film Formation Technology". In this forming device, an inert gas is injected from the inside onto the inner wall of the window instead of fomblin oil. This gas can then prevent reaction products from adhering to the inner walls of the quartz. However, in this case, changes in the pressure inside the reactor due to gas supply etc. are extremely delicate, and a large amount of this inert gas must be flowed into the reactor, so the reactive gas is diluted by the inert gas. It has the disadvantage of being stored away.

『問題を解決するための手段』 本発明はこれらの問題を解決するため、窓に相
当する部分をスリツト(巾1mm以下一般には0.3
±0.05mm長さ5〜50cm)として、このスリツトを
群として多数平行に設けることによつて、窓を穴
(棒状穴即ちスリツト)にしたものである。その
結果、窓への生成物の付着は「窓ガラスがない」
ため本質的に起こり得ないという特長を有する。
``Means for Solving the Problems'' In order to solve these problems, the present invention creates a slit in the portion corresponding to the window (with a width of 1 mm or less, generally 0.3
The windows are made into holes (bar-shaped holes, ie, slits) by providing a large number of these slits in parallel as a group. As a result, the adhesion of products to windows is "no window glass"
Therefore, it has the feature that it is essentially impossible.

さらに低圧水銀灯のある光源室を真空(0.1〜
10torr)とし、ここでの185nmの紫外光の吸収損
失を少なくした。この結果として反応室への供給
を紫外光をレンズで集光し、この集光部にスリツ
トを配設せしめることにより十分行わしめたもの
である。
Furthermore, vacuum the light source room containing the low-pressure mercury lamp (0.1~
10 torr) to reduce absorption loss of 185 nm ultraviolet light. As a result, ultraviolet light was sufficiently supplied to the reaction chamber by condensing the ultraviolet light with a lens and arranging a slit in this condensing portion.

さらにかかる第2図に示す構造の装置において
は反応後において固体生成物を構成しない気体例
えばN2O、NH3、N2H4等を光源室内に供給し、
ここで十分励起し分解した気体をスリツトより反
応室内へ噴射供給することを可能とした。そして
被形成面近くで2種類の気体の混合反応を行うこ
とができるという他の特長を有する。
Furthermore, in the apparatus having the structure shown in FIG. 2, a gas that does not constitute a solid product after the reaction, such as N 2 O, NH 3 , N 2 H 4 , etc., is supplied into the light source chamber,
This made it possible to inject and supply the sufficiently excited and decomposed gas into the reaction chamber through the slit. Another feature is that a mixing reaction of two types of gas can be performed near the surface on which the gas is formed.

『作 用』 これらの特性のため、窓への反応性気体の付着
およびそれに伴う反応室への透過紫外光量の減少
を完全に防ぐことができた。
``Function'' Due to these characteristics, it was possible to completely prevent the adhesion of reactive gases to the window and the associated decrease in the amount of transmitted ultraviolet light into the reaction chamber.

また紫外光源、レンズ、スリツトの対を複数個
をスダレ状に配設することにより、大面積例えば
30cm×30cmの基板上に被膜を何等の支障もなく形
成させることができるようになつた。
In addition, by arranging multiple pairs of ultraviolet light sources, lenses, and slits in a sagging pattern, it is possible to
It is now possible to form a film on a 30cm x 30cm substrate without any problems.

『実施例』 以下本発明を第2図に示した実施例により、そ
の詳細を記す。
``Example'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板1は反
応室2内のヒータ3に近接して設けられている。
反応室2と光源室5は概略同一真空度で排気系8
の真空引きにより保持されている。予備室4には
基板1′を有し、反応室とゲート弁6により仕切
られている。
In FIG. 2, a substrate 1 having a surface to be formed is placed close to a heater 3 in a reaction chamber 2. As shown in FIG.
The reaction chamber 2 and the light source chamber 5 have approximately the same degree of vacuum, and the exhaust system 8
It is held by vacuuming. The preliminary chamber 4 has a substrate 1' and is separated from the reaction chamber by a gate valve 6.

ドーピング系は、31〜33の反応後固体生成
分になる反応性気体が反応室2へ供給され、3
4,35の反応後固体にならない反応性気体また
は不活性気体が光源室5へ供給される。この気体
は反応中スリツトをへて反応室に至り反応し不純
物が排気8される。
In the doping system, a reactive gas that becomes a solid product after the reaction of 31 to 33 is supplied to the reaction chamber 2, and 3
A reactive gas or an inert gas that does not become solid after the reaction in steps 4 and 35 is supplied to the light source chamber 5. During the reaction, this gas passes through the slit and reaches the reaction chamber where it reacts and impurities are exhausted.

光源等は低圧水銀灯9と裏面の放物面の反射鏡
集光用石英レンズ10、このレンズにより集光し
た焦点の位置にスリツトを有するステンレス板1
4を配設させている。
The light sources include a low-pressure mercury lamp 9, a parabolic reflector on the back, a quartz lens 10 for focusing, and a stainless steel plate 1 with a slit at the focal point of the light focused by this lens.
4 are installed.

さらに紫外光は広がり被形成面に隣のスリツト
からの光を互いに重ねあいながら均一の光源が照
射されるようにしている。
Further, the ultraviolet light spreads and the light from adjacent slits are superimposed on each other so that the surface to be formed is irradiated with a uniform light source.

ヒータは反応室の上側に位置して「デイポジツ
シヨン・アツプ」方式とし、フレークが被形成面
に付着してピンホールの原因を作ることを避け
た。
The heater was located above the reaction chamber and was of the "deposition up" type to avoid flakes from adhering to the surface to be formed and causing pinholes.

加えてヒータの熱が水銀灯を加熱し、水銀灯の
昇温による発光波長の長波長化を避けた。排気系
は圧力制御バルブ17、ターボ分子ポンプ18、
ロータリーポンプ19よりなり、オイルの逆流を
ターボ分子ポンプ18により防いでいる。予備室
も同様の機構としている。
In addition, the heat from the heater heated the mercury lamp, thereby avoiding the emitted light wavelength from becoming longer due to increased temperature of the mercury lamp. The exhaust system includes a pressure control valve 17, a turbo molecular pump 18,
It consists of a rotary pump 19, and a turbo molecular pump 18 prevents the backflow of oil. The spare room also has a similar structure.

図面において、さらにスリツトを有するステン
レス板と基板1との間に高周波電源13より同時
に高周波エネルギを保持できるようにしている。
In the drawing, high frequency energy can be simultaneously held between the stainless steel plate having slits and the substrate 1 from a high frequency power source 13.

すると光励起のみならずプラズマCVDまたは
光励起とプラズマ反応とを同時に行うCVD装置
として具備させることができた。
This enabled the device to be equipped as a CVD device that performs not only photoexcitation but also plasma CVD or photoexcitation and plasma reaction simultaneously.

反応室はステンレスであり、光源室を真空引き
をした。その結果、従来例に示される如く、大面
積の照射用に石英室を大きくすると圧力的に耐え
られないという欠点を本発明は有していない。即
ち紫外光源も真空下に保持された光源室と反応室
とを囲んだステンレス容器内に真空に保持されて
いる。このため30cm×30cmの大きさではなく40cm
×120cmの大きさの基板をも何等の工業的な問題
なく作ることができる。
The reaction chamber was made of stainless steel, and the light source chamber was evacuated. As a result, the present invention does not have the drawback of not being able to withstand pressure when the quartz chamber is enlarged for irradiation of a large area, as shown in the conventional example. That is, the ultraviolet light source is also kept under vacuum in a stainless steel container surrounding a light source chamber and a reaction chamber that are kept under vacuum. Therefore, the size is 40cm instead of 30cm x 30cm.
Boards as large as 120 cm can be made without any industrial problems.

図面の場合の被形成基板は30cm×30cmであり、
紫外光源は、低圧水銀灯(185nm、2547nmの波
長を発光する発光長40cm、圧力80mW/cm2、ラン
プ電力400W)ランプ数10本である。スリツト巾
0.3mm、長さ350mm、スリツト間隔30mm、計400mm
巾のステンレス基板14を用いた。基板の温度は
室温〜500℃にまでの所定の温度とした。
In the case of the drawing, the substrate to be formed is 30cm x 30cm,
The ultraviolet light source was 10 low-pressure mercury lamps (emitting wavelengths of 185 nm and 2547 nm, emission length 40 cm, pressure 80 mW/cm 2 , lamp power 400 W). Slit width
0.3mm, length 350mm, slit spacing 30mm, total 400mm
A stainless steel substrate 14 with a width of 10 mm was used. The temperature of the substrate was a predetermined temperature ranging from room temperature to 500°C.

実験例 1 シリコン窒化膜の形成例 反応性気体としてアンモニアを35より30c.c./
分、ジシランを33より8c.c./分で供給し、基板
温度250℃とした。基板は30cm×30cmのガラス板
である。反応炉内圧力は1.5torrとした。30分の
反応で1200Åの膜厚が形成された。その被膜形成
速度は40Å/分であつて水銀の蒸着等を用いた励
起を行わず直接光励起である。被膜の5点のばら
つきは±5%以内に入つていた。
Experimental example 1 Formation example of silicon nitride film Ammonia was used as a reactive gas from 35 to 30c.c./
Disilane was supplied from 33 at a rate of 8 c.c./min, and the substrate temperature was set at 250°C. The substrate is a 30cm x 30cm glass plate. The pressure inside the reactor was 1.5 torr. A film thickness of 1200 Å was formed in 30 minutes of reaction. The film formation rate is 40 Å/min, and direct photoexcitation is used without excitation using mercury vapor deposition or the like. The variation of the 5 points of the coating was within ±5%.

実験例 2 アモルフアスシリコン膜の形成例 ジシラン(Si2H6)を33より供給した。34
よりクリプトンを供給した。また35よりヘリユ
ームを供給した。クリプトンは圧力励起等により
被形成面に2000Åの膜厚を60分間のデイポジツシ
ヨンで形成させることができた。
Experimental Example 2 Formation Example of Amorphous Silicon Film Disilane (Si 2 H 6 ) was supplied from 33. 34
More krypton was supplied. Helium was also supplied from 35. Krypton was able to form a film with a thickness of 2000 Å on the formation surface in 60 minutes of deposition using pressure excitation.

基板温度は250℃、圧力1.5torrとした。 The substrate temperature was 250°C and the pressure was 1.5 torr.

実験例 3 酸化珪素膜の形成例 ジシラン(Si2H6)を33より8c.c./分で供給
した。
Experimental Example 3 Formation Example of Silicon Oxide Film Disilane (Si 2 H 6 ) was supplied from 33 at a rate of 8 c.c./min.

35よりN2Oを30c.c./分で供給した。すると、
N2Oは光源室を十分N2と活性酸素とに分解し、
反応室に供給され酸化膜を4000Åの厚さに作るこ
とができた。被膜形成速度は250Å/分を得るこ
とができた。
N 2 O was supplied from No. 35 at a rate of 30 c.c./min. Then,
N 2 O sufficiently decomposes the light source chamber into N 2 and active oxygen,
It was supplied to the reaction chamber and an oxide film with a thickness of 4000 Å was created. A film formation rate of 250 Å/min could be obtained.

実験例 4 アモルフアスシリコンを光プラズマ気相法で形
成する方法 実験例3と同一とし、かつ13.56MHzの高周波
エネルギを13より10W/(30cm×30cm)に加え
た。すると同じジシランの供給であるにもかかわ
らず被膜は2500Åと20分で得ることができた。被
膜成長速度として170Å/分を得ることができた。
Experimental Example 4 Method of forming amorphous silicon by optical plasma vapor phase method The method was the same as Experimental Example 3, and high frequency energy of 13.56 MHz was applied from 13 to 10 W/(30 cm x 30 cm). Even though the same disilane was supplied, a film of 2500 Å could be obtained in 20 minutes. A film growth rate of 170 Å/min was achieved.

『効 果』 本発明は以上の説明より明らかなごとく、大面
積の基板上に被膜を形成するにあたり、スリツト
を用いた窓なし装置で形成したものである。この
ため同一反応炉内にフオンブリンオイルを窓にコ
ートする必要もなくなり、またこの結果プラズマ
気相反応を同時に行うことができるようになつ
た。
"Effects" As is clear from the above description, the present invention is directed to forming a film on a large-area substrate using a windowless apparatus using a slit. This eliminates the need to coat the windows with fomblin oil in the same reactor, and as a result, it has become possible to perform plasma gas phase reactions at the same time.

なお本発明は珪素および酸化珪素においてその
実験例を示したが、それ以外にM(CH3o即ちM
としてAl、Ga、In、Bを用いてもよい。また鉄、
ニツケル、コバルトのカルボニル化物を反応性気
体として用い、鉄、ニツケル、コバルトまたはそ
の化合物の被膜を形成することは有効である。
Although the present invention has shown experimental examples using silicon and silicon oxide, M(CH 3 ) o , that is, M
As the material, Al, Ga, In, and B may be used. Also iron,
It is effective to use a carbonylated product of nickel or cobalt as a reactive gas to form a film of iron, nickel, cobalt or a compound thereof.

前記した実験例においてドーバントを同時に添
加できる。また光源として低圧水銀灯ではなくエ
キシマレーザ(波長100〜400nm)、アルゴンレ
ーザ、窒素レーザ等をもちいてもよいことは言う
までもない。
In the experimental examples described above, the dopant can be added at the same time. It goes without saying that an excimer laser (wavelength: 100 to 400 nm), an argon laser, a nitrogen laser, or the like may be used as a light source instead of a low-pressure mercury lamp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光CVD装置の概略を示す。第
2図は本発明による薄膜形成装置の概略を示す。 2……反応室、3……基板加熱部、7……ドー
ピング系、8……排気系、9……光源。
FIG. 1 shows an outline of a conventional optical CVD apparatus. FIG. 2 schematically shows a thin film forming apparatus according to the present invention. 2...Reaction chamber, 3...Substrate heating section, 7...Doping system, 8...Exhaust system, 9...Light source.

Claims (1)

【特許請求の範囲】 1 光励起熱化学反応を用いた薄膜形成装置にお
いて、光源室に配設された棒状発光源と、シリン
ドリカルレンズと、該レンズによつて集光された
位置に設けられたスリツトと、前記集光後反応室
内に分散した光が照射される被形成面を有する加
熱された基板とを有し、前記光源室より前記反応
室に反応後固体が生成されない気体を供給する手
段と、前記反応室に反応後固体が生成される反応
性気体とを供給する手段と、前記反応室より不要
気体の排気手段とを具備することを特徴とする薄
膜形成装置。 2 特許請求の範囲第1項において、棒状光源と
シリンドリカルレンズと、該レンズによつて集光
された位置に設けられたスリツトとが複数個配設
され被形成面に光励起用光が照射されたことを特
徴とする薄膜形成装置。 3 特許請求の範囲第1項において、被形成面は
照射光に対向して配設されたことを特徴とする薄
膜形成装置。
[Claims] 1. A thin film forming apparatus using a photo-excited thermochemical reaction, comprising: a rod-shaped light emitting source disposed in a light source chamber; a cylindrical lens; and a slit provided at a position where light is focused by the lens. and a heated substrate having a surface to be formed which is irradiated with the light dispersed in the reaction chamber after condensing the light, and means for supplying a gas from the light source chamber to the reaction chamber in which no solid is generated after the reaction. 2. A thin film forming apparatus comprising: means for supplying a reactive gas that produces a solid after reaction to the reaction chamber; and means for exhausting unnecessary gas from the reaction chamber. 2. In claim 1, a plurality of rod-shaped light sources, a cylindrical lens, and a plurality of slits provided at positions where the light is focused by the lens are provided, and the surface to be formed is irradiated with optical excitation light. A thin film forming apparatus characterized by: 3. The thin film forming apparatus according to claim 1, wherein the surface to be formed is disposed facing the irradiation light.
JP10290084A 1984-05-21 1984-05-21 Thin film formation equipment Granted JPS60245217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10290084A JPS60245217A (en) 1984-05-21 1984-05-21 Thin film formation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10290084A JPS60245217A (en) 1984-05-21 1984-05-21 Thin film formation equipment

Publications (2)

Publication Number Publication Date
JPS60245217A JPS60245217A (en) 1985-12-05
JPH0149004B2 true JPH0149004B2 (en) 1989-10-23

Family

ID=14339732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10290084A Granted JPS60245217A (en) 1984-05-21 1984-05-21 Thin film formation equipment

Country Status (1)

Country Link
JP (1) JPS60245217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004210A1 (en) * 1991-08-19 1993-03-04 Tadahiro Ohmi Method for forming oxide film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752718B2 (en) * 1984-11-26 1995-06-05 株式会社半導体エネルギー研究所 Thin film formation method
DE3772659D1 (en) * 1986-06-28 1991-10-10 Ulvac Corp METHOD AND DEVICE FOR COATING USING A CVD COATING TECHNOLOGY.
US5427824A (en) * 1986-09-09 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
KR910003742B1 (en) * 1986-09-09 1991-06-10 세미콘덕터 에너지 라보라터리 캄파니 리미티드 Cvd apparatus
US4919077A (en) * 1986-12-27 1990-04-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor producing apparatus
US4913929A (en) * 1987-04-21 1990-04-03 The Board Of Trustees Of The Leland Stanford Junior University Thermal/microwave remote plasma multiprocessing reactor and method of use
JPS63283122A (en) * 1987-05-15 1988-11-21 Semiconductor Energy Lab Co Ltd Thin film manufacturing device
EP0310347B1 (en) * 1987-09-30 1992-11-25 Sumitomo Metal Industries, Ltd. Thin film forming apparatus
US5215588A (en) * 1992-01-17 1993-06-01 Amtech Systems, Inc. Photo-CVD system
JP4666427B2 (en) * 2000-11-10 2011-04-06 東京エレクトロン株式会社 Quartz window and heat treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004210A1 (en) * 1991-08-19 1993-03-04 Tadahiro Ohmi Method for forming oxide film

Also Published As

Publication number Publication date
JPS60245217A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US6150265A (en) Apparatus for forming materials
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
JPH0752718B2 (en) Thin film formation method
JPH0149004B2 (en)
US20020066720A1 (en) Fabrication method of erbium-doped silicon nano-size dots
EP0054189A1 (en) Improved photochemical vapor deposition method
US6281122B1 (en) Method for forming materials
JPS6118125A (en) Thin film forming apparatus
JPS6118124A (en) Thin film forming apparatus
JPS6118123A (en) Thin film forming apparatus
JPH0689455B2 (en) Thin film formation method
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JPH0128830B2 (en)
JPS6156279A (en) Film forming method
JPS6246515A (en) Thin film forming method
JPS59224118A (en) Photochemical vapor-phase reaction method
JPS6240377A (en) Production of antimony nitride
JPS6156280A (en) Film forming method
JPS6156278A (en) Film forming method
JPH0544818B2 (en)
JPS6052579A (en) Optical nitride film forming device
JPS61196528A (en) Thin film forming apparatus
JPS59209643A (en) Photochemical vapor phase deposition device
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term