JPS631830B2 - - Google Patents

Info

Publication number
JPS631830B2
JPS631830B2 JP55151058A JP15105880A JPS631830B2 JP S631830 B2 JPS631830 B2 JP S631830B2 JP 55151058 A JP55151058 A JP 55151058A JP 15105880 A JP15105880 A JP 15105880A JP S631830 B2 JPS631830 B2 JP S631830B2
Authority
JP
Japan
Prior art keywords
output
windings
transformer
winding
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55151058A
Other languages
Japanese (ja)
Other versions
JPS5775571A (en
Inventor
Katsuhiko Yamamoto
Toshuki Sugiura
Atsuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55151058A priority Critical patent/JPS5775571A/en
Publication of JPS5775571A publication Critical patent/JPS5775571A/en
Publication of JPS631830B2 publication Critical patent/JPS631830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は、多出力定電流コンバータ、特に独立
した定電流出力を得る多出力定電流コンバータの
構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-output constant current converter, and more particularly to the configuration of a multi-output constant current converter that obtains independent constant current outputs.

従来用いられていた多出力定電流コンバータの
構成例を第1図に示す。以下、例として2出力の
場合について述べるが、3出力以上であつても同
様である。図において1は直流−交流変換回路、
2は2次巻線が複数であるトランス、3は整流回
路、4は平滑回路、5は出力電流検出回路、6は
パルス幅制御回路、A,Bは出力端子である。
FIG. 1 shows an example of the configuration of a conventionally used multi-output constant current converter. The case of two outputs will be described below as an example, but the same applies to three or more outputs. In the figure, 1 is a DC-AC conversion circuit;
2 is a transformer having a plurality of secondary windings, 3 is a rectifier circuit, 4 is a smoothing circuit, 5 is an output current detection circuit, 6 is a pulse width control circuit, and A and B are output terminals.

このように構成された多出力定電流コンバータ
では、帰還ループが構成されていてパルス幅制御
を行つている側の即ち一方の側の出力(A出力)
は高精度に安定化されるが、他の出力(B出力)
は、例えばA出力側に負荷変動が生じてこれによ
りパルス幅が制御されるとトランス2の1次巻線
に印加される電圧の平均値が変化してその変化分
がそのまま出力電流変動となるため高精度を得る
ことはできない。
In a multi-output constant current converter configured in this way, a feedback loop is configured and the output (A output) on the side that performs pulse width control, that is, on one side.
is stabilized with high precision, but other outputs (B output)
For example, when a load fluctuation occurs on the A output side and the pulse width is controlled by this, the average value of the voltage applied to the primary winding of transformer 2 changes, and that change becomes the output current fluctuation. Therefore, high accuracy cannot be obtained.

第2図および第3図は上記欠点を除くようにし
た他の回路構成を示す。同図において第1図と共
通している部分には同一符号をつけてあり、以下
の図面においても同様とする。第2図において7
はシリーズドロツパ回路、8はシリーズドロツパ
制御回路、第3図において9はスイツチング回
路、10はスイツチング回路制御回路である。
FIGS. 2 and 3 show other circuit configurations which eliminate the above-mentioned drawbacks. In this figure, parts common to those in FIG. 1 are given the same reference numerals, and the same applies to the following drawings. 7 in Figure 2
8 is a series dropper circuit, 8 is a series dropper control circuit, 9 is a switching circuit in FIG. 3, and 10 is a switching circuit control circuit.

これらの構成は、トランス2の2次側において
各出力を制御することにより、A,B出力共高い
精度が得られるが、第2図の構成では、シリーズ
ドロツパ回路7の損失が大きく高効率が実現でき
ず、また、第3図の構成ではスイツチング回路
9、制御回路10が複雑となり、さらに平滑回路
4も増加し、小形、高効率、低価格な多出力コン
バータを得ることはできないという欠点があつ
た。また、定電流コンバータであるため、A出力
の負荷が小さいとき、直流−交流変換部1のパル
ス幅が非常に狭くなり、B出力の出力パワーが低
下するという欠点があつた。
In these configurations, by controlling each output on the secondary side of the transformer 2, high accuracy can be obtained for both the A and B outputs, but in the configuration shown in FIG. 2, the loss of the series dropper circuit 7 is large and high efficiency is Moreover, in the configuration shown in FIG. 3, the switching circuit 9 and the control circuit 10 are complicated, and the number of smoothing circuits 4 is also increased, making it impossible to obtain a compact, highly efficient, and low-cost multi-output converter. It was hot. Moreover, since it is a constant current converter, when the load of the A output is small, the pulse width of the DC-AC converter 1 becomes very narrow, and the output power of the B output decreases.

これらの欠点を除くために第4図に示す構成が
とられている。第4図も従来の多出力定電流コン
バータの構成例である。第4図において11はト
ランス、12は直流電源、13は180度導通スイ
ツチング駆動源、14,15はスイツチングトラ
ンジスタ、16,17は帰還ダイオード、18は
トランス11の1次巻線、19,20はトランス
11の2次巻線、21,22は可飽和リアクト
ル、23,25は拘束チヨーク、24,26は制
御用直流電流源、27〜34は出力ダイオード、
35,36は平滑コンデンサ、A,Bは出力端子
である。本構成では一方の負荷の状態にかかわら
ず他方の出力が得られるが各出力に対し独立した
制御回路構成23,24,25,26を持つた
め、制御に必要なパワーが増大すると共に部品数
が増加し、小形、高効率、低価格な多出力定電流
コンバータを得ることはできないという欠点があ
つた。
In order to eliminate these drawbacks, the configuration shown in FIG. 4 is adopted. FIG. 4 also shows a configuration example of a conventional multi-output constant current converter. In FIG. 4, 11 is a transformer, 12 is a DC power supply, 13 is a 180 degree conduction switching drive source, 14 and 15 are switching transistors, 16 and 17 are feedback diodes, 18 is the primary winding of the transformer 11, 19 and 20 is the secondary winding of the transformer 11, 21 and 22 are saturable reactors, 23 and 25 are restraint chokes, 24 and 26 are DC current sources for control, 27 to 34 are output diodes,
35 and 36 are smoothing capacitors, and A and B are output terminals. In this configuration, the output of one load can be obtained regardless of the state of the other load, but since each output has an independent control circuit configuration 23, 24, 25, 26, the power required for control increases and the number of components increases. However, the disadvantage is that it is not possible to obtain a small, highly efficient, and low-cost multi-output constant current converter.

本発明は、多出力定電流コンバータにおいてこ
れらの欠点を除去するために、出力安定化の手段
として絶縁トランスを介して負荷と直列に直列形
可飽和リアクトルを接続し、前記可飽和リアクト
ルを共通回路により制御することを特徴とし、そ
の目的とする点は、高効率でかつ小形、簡易、低
価格な多出力定電流コンバータを得ることにあ
る。以下、図面により詳細に説明する。
In order to eliminate these drawbacks in a multi-output constant current converter, the present invention connects a series type saturable reactor in series with the load via an isolation transformer as a means of output stabilization, and connects the saturable reactor to a common circuit. The objective is to obtain a multi-output constant current converter that is highly efficient, compact, simple, and inexpensive. A detailed explanation will be given below with reference to the drawings.

第5図は本発明の一実施例を示す。第5図にお
いて12〜36は第4図と対応しており、37
は、出力電流リツプルを共通に減少させる拘束チ
ヨークである。38は共通制御用直流定電流源で
ある。ISRは可飽和リアクトル制御電流、IAは定電
流制御された出力Aの出力電流、IBは定電流制御
された出力Bの出力電流である。
FIG. 5 shows an embodiment of the invention. In Figure 5, 12 to 36 correspond to Figure 4, and 37
are restraining chokes that commonly reduce the output current ripple. 38 is a DC constant current source for common control. I SR is the saturable reactor control current, I A is the constant current controlled output current of output A, and I B is the constant current controlled output current of output B.

次に動作原理について説明する。図の直流電源
12は、180度導通のスイツチング駆動源13に
より駆動され交互にスイツチングするトランジス
タ14,15によつて方形波状の交流電圧に変換
され、トランス2により、所定の方形波電圧に変
換される。トランス2のA出力2次巻線19から
の方形波電圧は、可飽和リアクトル21でnAISR
の方形波定電流に変換され、ダイオード27〜2
9で整流され、平滑コンデンサ35で平滑され、
A出力にはIA=nAISRの安定な直流定電流が得られ
る。一方、B出力にも同様にIB=nBISRの安定な直
流定電流が得られる。
Next, the operating principle will be explained. The DC power supply 12 in the figure is driven by a switching drive source 13 with 180 degree conduction, and is converted into a square wave AC voltage by transistors 14 and 15 which switch alternately, and is converted into a predetermined square wave voltage by a transformer 2. Ru. The square wave voltage from the A output secondary winding 19 of the transformer 2 is applied to the saturable reactor 21 as n A I SR
is converted into a square wave constant current, and the diode 27~2
9, smoothed by a smoothing capacitor 35,
A stable DC constant current of I A = n A I SR can be obtained from the A output. On the other hand, a stable DC constant current of I B =n B I SR is similarly obtained for the B output.

このように構成された回路においてA出力が変
動したとしても可飽和リアクトル21の制御電流
ISRは、拘束チヨーク37により十分に拘束され
ているため、変動は生じない。また、B出力の出
力電流は、前記のようにIB=nBISRである。したが
つて制御電流が変化しないため、B出力の出力電
流にはA出力の変動は、現われない。さらにA出
力の短絡あるいは開放等の過大な変動に対しても
B出力にはその影響は現われない。また、入力電
圧12の変動に対しては、制御電流ISRが変動し
ないため、A,B出力共に変動は生じない。さら
には可飽和リアクトル21,22を共通に制御す
ることにより、他方の可飽和リアクトルを拘束チ
ヨークとして利用できるため、拘束チヨーク37
のインダクタンスを下げることができ、チヨーク
23の小形化が計れると共に制御用直流定電流源
38の容量が少なくてすみ小形化が計れる。
In a circuit configured in this way, even if the A output fluctuates, the control current of the saturable reactor 21
Since ISR is sufficiently restrained by the restraint chain 37, no fluctuation occurs. Further, the output current of the B output is I B =n B I SR as described above. Therefore, since the control current does not change, fluctuations in the A output do not appear in the output current of the B output. Furthermore, even if the A output is short-circuited or opened, or otherwise excessively fluctuated, the B output will not be affected. Furthermore, since the control current ISR does not vary with respect to variations in the input voltage 12, neither the A nor B outputs vary. Furthermore, by controlling the saturable reactors 21 and 22 in common, the other saturable reactor can be used as a restraint choke.
The inductance can be lowered, the chain yoke 23 can be made smaller, and the capacity of the control DC constant current source 38 can be reduced, making it more compact.

第6図に実施例の実測値を示す。測定には第5
図に示す構成において変換周波数20KHz、入力電
圧30V、A出力電流30mA、B出力電流30mA、
最大出力電圧60Vの多出力定電流コンバータを用
いた。第6図は、A出力をOPEN、あるいは
shortした時の出力Bの定電流特性を示したもの
であり、他出力の極端な異常(変動)に対しても
良好な特性を保持しつづけていることがわかる。
FIG. 6 shows actual measured values of the example. 5th for measurement
In the configuration shown in the figure, the conversion frequency is 20KHz, the input voltage is 30V, the A output current is 30mA, the B output current is 30mA,
A multi-output constant current converter with a maximum output voltage of 60V was used. Figure 6 shows whether A output is OPEN or
This shows the constant current characteristics of output B when short-circuited, and it can be seen that it continues to maintain good characteristics even in the case of extreme abnormalities (fluctuations) in other outputs.

第7図は本発明の他の実施例を示す。本実施例
は、可飽和リアクトル21を出力A、出力Bに共
通に使用した例である。12〜38は第5図と対
応し、39,40は出力A,Bを絶縁して出力電
流IA,IBを設定するトランスである。D1,D2は出
力Aあるいは出力Bが開放された時に他出力に影
響を与えないための出力電圧クランプ用ダイオー
ドである。なお、出力電圧のクランプは第8図図
示のようにトランス39,40に別巻線41,4
2を施し、直流電源43,44との間にブリツジ
状にダイオード45〜52を直列に挿入すること
によつても得られる。
FIG. 7 shows another embodiment of the invention. This embodiment is an example in which the saturable reactor 21 is used in common for output A and output B. 12 to 38 correspond to those in FIG. 5, and 39 and 40 are transformers for insulating the outputs A and B and setting the output currents I A and I B. D 1 and D 2 are diodes for clamping the output voltage so as not to affect other outputs when output A or output B is opened. The output voltage is clamped by separate windings 41 and 4 in the transformers 39 and 40 as shown in FIG.
2 and inserting diodes 45 to 52 in series in the form of a bridge between the DC power supplies 43 and 44.

以上の説明は、スイツチング素子にトランジス
タを用いた2出力の多出力定電流コンバータにつ
いて行つたが他のスイツチング素子であつても、
また、3出力以上であつても同様な効果を得るこ
とができる。また、方形波交流源としてプツシユ
ブル構成について説明したがハーフブリツジ、フ
ルブリツジの他、スイツチング素子の並列接続、
トランスの1次巻線の並列接続・2次巻線の直列
接続等の出力容量を増加させるための回路構成に
ついても適用できることは言うまでもない。さら
に上記説明では負荷として整流回路を持つ負荷を
想定したが負荷としては、ヒータ・ランプ等の一
般の負荷に対しても同様な効果を得ることができ
る。この場合、電圧クランプ回路のクランプ・ダ
イオードは双方向性のものを用いる。さらに整流
回路、平滑回路、負荷が遠方にある場合にも同様
な効果を得ることができる。
The above explanation was about a two-output multi-output constant current converter that uses transistors as switching elements, but even if other switching elements are used,
Furthermore, similar effects can be obtained even with three or more outputs. In addition, we have explained the pushable configuration as a square wave AC source, but in addition to half bridge and full bridge, parallel connection of switching elements,
It goes without saying that the present invention can also be applied to circuit configurations for increasing the output capacity, such as parallel connection of the primary windings and series connection of the secondary windings of the transformer. Further, in the above description, a load having a rectifier circuit is assumed as the load, but the same effect can be obtained with a general load such as a heater lamp. In this case, the clamp diode of the voltage clamp circuit is bidirectional. Furthermore, similar effects can be obtained even when the rectifier circuit, smoothing circuit, and load are located far away.

以上説明したように、本発明によれば簡易な回
路構成で容易に多出力定電流コンバータの各出力
を高い精度で安定化することができ、また出力の
短絡、開放等の過酷な負荷変動によつても他出力
に影響をおよぼすことがなく、また、共通に制御
ができることから制御回路による損失を低減でき
る。特にコンバータのスイツチング周波数(変換
周波数)を20KHz程度に高めることによつて可飽
和リアクトルや拘束チヨークの形状を小形化する
ことができ、小形高効率な多出力定電流コンバー
タを得ることができる。さらにトランスの巻線を
追加することにより、非常に多くの定電流出力が
容易に得られるから、きわめて広い応用分野をも
つものとすることができる。
As explained above, according to the present invention, each output of a multi-output constant current converter can be easily stabilized with high accuracy with a simple circuit configuration, and it can also withstand severe load fluctuations such as output short circuits and open circuits. Even if the output is distorted, it does not affect other outputs, and since common control is possible, losses caused by the control circuit can be reduced. In particular, by increasing the switching frequency (conversion frequency) of the converter to about 20 KHz, the shape of the saturable reactor and restraint choke can be made smaller, and a small, highly efficient, multi-output constant current converter can be obtained. Furthermore, by adding transformer windings, a very large amount of constant current output can be easily obtained, so that it can be applied in a very wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図は夫々従
来の回路構成、第5図は本発明の一実施例、第6
図は第5図の出力特性、第7図、第8図は夫々本
発明の他の実施例を示す。 2……トランス、12……直流電源、13……
スイツチング駆動源、14,15……スイツチン
グトランジスタ、16,17……帰還ダイオー
ド、18……トランス1次巻線、19,20……
トランス2次巻線、21,22……可飽和リアク
トル、23,25……拘束チヨーク、24,26
……制御用直流電流源、27〜34……ダイオー
ド、35,36……平滑コンデンサ、37……チ
ヨーク、38……共通制御用直流定電流源、3
9,40……トランス、D1,D2……出力電圧ク
ランプ用ダイオード、41,42……別巻線、4
3,44……直流電源、45〜52……ダイオー
ド。
1, 2, 3, and 4 are conventional circuit configurations, FIG. 5 is an embodiment of the present invention, and FIG. 6 is a conventional circuit configuration.
The figure shows the output characteristics of FIG. 5, and FIGS. 7 and 8 show other embodiments of the present invention, respectively. 2...Transformer, 12...DC power supply, 13...
Switching drive source, 14, 15... Switching transistor, 16, 17... Feedback diode, 18... Transformer primary winding, 19, 20...
Transformer secondary winding, 21, 22...Saturable reactor, 23, 25...Restricted chain yoke, 24, 26
...DC current source for control, 27-34...Diode, 35, 36...Smoothing capacitor, 37...Chiyoke, 38...DC constant current source for common control, 3
9, 40...Transformer, D1 , D2 ...Output voltage clamping diode, 41,42...Separate winding, 4
3, 44...DC power supply, 45-52...diode.

Claims (1)

【特許請求の範囲】 1 複数個の出力巻線を有するトランスをそな
え、前記複数個の出力巻線に夫々接続された互に
独立した負荷に対して、単一の交流源から給電す
るコンバータにおいて、前記交流源の出力端子を
複数の出力巻線を有するトランスの1次巻線に接
続し、前記トランスの第1の出力巻線の1端を負
荷の1端に接続すると共に前記トランスの第1の
出力巻線の他端と前記負荷の他端を可飽和リアク
トルの主巻線を介して接続し、他出力巻線も同様
な構成としてなり、前記各出力巻線の他端に挿入
された可飽和リアクトルのそれぞれの制御巻線を
直列に接続し、当該接続した制御巻線に対して制
御された直流電流源の出力をリアクトルを介して
接続し、負荷電流を共通に当該制御直流電流源で
制御することを特徴とする多出力定電流コンバー
タ。 2 複数個の出力巻線を有するトランスをそな
え、前記複数個の出力巻線に夫々接続された互に
独立した負荷に対して、単一の交流源から給電す
るコンバータにおいて、前記交流源の出力の一端
を可飽和リアクトルの主巻線を介してそれぞれの
1次巻線を直列に接続した複数個のトランスの直
列回路の一端に接続し、当該直列回路の他方の端
子を前記交流源の出力の他端に接続し、当該トラ
ンスの複数個の出力端子を各々負荷に接続すると
ともに、前記可飽和リアクトルの制御巻線に対し
て制御された直流電流源の出力をリアクトルを介
して接続してなり、前記トランスの各々の出力巻
線あるいは別巻線に出力電圧をクランプする回路
を前記負荷と等価的に並列に接続したことを特徴
とする多出力定電流コンバータ。
[Claims] 1. A converter that includes a transformer having a plurality of output windings and supplies power from a single alternating current source to mutually independent loads connected to the plurality of output windings, respectively. , an output terminal of the alternating current source is connected to a primary winding of a transformer having a plurality of output windings, one end of the first output winding of the transformer is connected to one end of a load, and The other end of the first output winding and the other end of the load are connected via the main winding of the saturable reactor, and the other output windings have a similar configuration and are inserted into the other end of each of the output windings. The control windings of the saturable reactors are connected in series, and the output of a controlled DC current source is connected to the connected control windings via the reactor, and the load current is commonly connected to the control DC current. A multi-output constant current converter that is controlled by a source. 2. In a converter that is equipped with a transformer having a plurality of output windings and supplies power from a single AC source to mutually independent loads connected to the plurality of output windings, the output of the AC source One end is connected via the main winding of a saturable reactor to one end of a series circuit of a plurality of transformers in which the respective primary windings are connected in series, and the other terminal of the series circuit is connected to the output of the alternating current source. and the plurality of output terminals of the transformer are each connected to a load, and the output of a controlled DC current source is connected to the control winding of the saturable reactor via the reactor. A multi-output constant current converter, characterized in that a circuit for clamping the output voltage is connected to each output winding of the transformer or to a separate winding, equivalently in parallel with the load.
JP55151058A 1980-10-28 1980-10-28 Multioutput constant current converter Granted JPS5775571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55151058A JPS5775571A (en) 1980-10-28 1980-10-28 Multioutput constant current converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55151058A JPS5775571A (en) 1980-10-28 1980-10-28 Multioutput constant current converter

Publications (2)

Publication Number Publication Date
JPS5775571A JPS5775571A (en) 1982-05-12
JPS631830B2 true JPS631830B2 (en) 1988-01-14

Family

ID=15510370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55151058A Granted JPS5775571A (en) 1980-10-28 1980-10-28 Multioutput constant current converter

Country Status (1)

Country Link
JP (1) JPS5775571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006868A1 (en) * 1988-12-15 1990-06-28 Mitsuharu Kaneda Positive shut-off power assisted brakes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2010691A1 (en) * 1989-03-14 1990-09-14 David M.. Lusher Surge eliminator for switching converters
KR19990053576A (en) * 1997-12-24 1999-07-15 조희재 Multi-channel DC-DC converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844203U (en) * 1971-09-23 1973-06-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844203U (en) * 1971-09-23 1973-06-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006868A1 (en) * 1988-12-15 1990-06-28 Mitsuharu Kaneda Positive shut-off power assisted brakes

Also Published As

Publication number Publication date
JPS5775571A (en) 1982-05-12

Similar Documents

Publication Publication Date Title
US4628426A (en) Dual output DC-DC converter with independently controllable output voltages
US5555494A (en) Magnetically integrated full wave DC to DC converter
JPS5884323A (en) Method of and apparatus for stabilizing load voltage of output circuit in multiple output dc-dc converter
JP2019115130A (en) DC converter
JP2001008452A (en) Power supply device
JP2002315331A (en) Power supply equipped with dc-dc converter
JPS631830B2 (en)
JP2979453B2 (en) One-stone forward type multi-output converter
CN111525802B (en) Conversion device
JP3428008B2 (en) Output voltage detection circuit of switching power supply
JPS60197162A (en) Switching power source
JP3508092B2 (en) Average value rectifier circuit and switching power supply circuit
CN209526519U (en) Support the power supply device of Power over Ethernet
JPS6223540B2 (en)
JP2003092880A (en) Multi-output dc-dc converter
JPS6241593Y2 (en)
JPH0549258A (en) Switching power supply
JP2022085571A (en) Power conversion device
JPH06112064A (en) Electric power converting circuit
JPH02228257A (en) Dc-dc converter
CN111564837A (en) Power supply device supporting power over Ethernet
SU1661939A1 (en) Half-bridge dc-to-dc voltage converter
JPH04362714A (en) Current/voltage converter
JPH07337012A (en) Multi-output switching power supply circuit
RU1793520C (en) Adjusting single-cycle direct-to-direct voltage converter