JPS63182569A - Temperature controller for flow type analyzer - Google Patents

Temperature controller for flow type analyzer

Info

Publication number
JPS63182569A
JPS63182569A JP1543487A JP1543487A JPS63182569A JP S63182569 A JPS63182569 A JP S63182569A JP 1543487 A JP1543487 A JP 1543487A JP 1543487 A JP1543487 A JP 1543487A JP S63182569 A JPS63182569 A JP S63182569A
Authority
JP
Japan
Prior art keywords
temperature
analyzer
piping
detection section
detection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1543487A
Other languages
Japanese (ja)
Inventor
Taizo Shinohara
篠原 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1543487A priority Critical patent/JPS63182569A/en
Publication of JPS63182569A publication Critical patent/JPS63182569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the temp. of a test liquid to a constant temp. with high accuracy and to improve the accuracy of an analysis by providing a thermostatic chamber for a piping just before supply of the test liquid to a detection part in a thermostatic chamber as well. CONSTITUTION:Water 11, standard phosphoric acid soln. 12, electrolyte 13, etc., of a measurement part 25 are supplied through a mixing pipe by metering pumps 17, 18 to the detection part 21 in the thermostatic chamber 22 for the detection part, by which a flow analysis is executed. The thermostatic chamber for the piping including the pipe 19 just before said chamber 22 is also provided. The temp. of the test liquid is controlled to the constant temp. with the higher accuracy than in the case in which said chamber is not provided. The accuracy of the analysis is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、検液が分析計の検出部の中を連続的に流れ
るフロー型分析計の温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control device for a flow type analyzer in which a test liquid continuously flows through a detection section of the analyzer.

〔従来の技術〕[Conventional technology]

分析計が温度の影響を受けてその出力を変化する場合、
正しい測定値を得るには検出した出力に対して温度の影
響を考慮した換算式によって温度補正を行うか、もしく
は検出部などの温度の影響を受ける部分を一定温度に制
御する必要がある。
If the analyzer changes its output under the influence of temperature,
To obtain correct measured values, it is necessary to perform temperature correction on the detected output using a conversion formula that takes into account the influence of temperature, or to control the temperature of parts affected by temperature, such as the detection section, to a constant temperature.

しかし、温度補正は分析計での温度の影響が換算式とし
て表わせる場合は利用できるが、例えば化学反応と電極
反応が複合し、ある一定温度以上から反応速度が大きく
なるような原理を用いている分析計の場合には換算式に
よる補正は困難であり、このような場合には、分析計の
温度制御を行う必要がある。
However, temperature correction can be used when the effect of temperature on the analyzer can be expressed as a conversion formula, but it can be used, for example, when chemical reactions and electrode reactions are combined and the reaction rate increases above a certain temperature. It is difficult to correct using a conversion formula in the case of an analyzer in which the temperature of the analyzer is the same, and in such a case, it is necessary to control the temperature of the analyzer.

この発明はこの温度制御に関するものであり、・フロー
型の分析計では、検出部の中を連続的に検液が流れるた
め、正確な測定をするためには、検出部の周囲の温度を
一定にするとともに、検液の温度を一定にする必要があ
る。この温度制御は、分析計を屋内に設置する場合は温
度変化が小さいため容易であるが、温度変化の激しい屋
外で使用する場合には困難が生じる。従来は第3図のよ
うに検出部のみを空気を熱媒体とする恒温槽に入れて使
用するか、検出部と検出部につながる配管を液体を熱媒
体とする恒温槽に入れて使用するか。
This invention relates to this temperature control. - In a flow type analyzer, the test liquid continuously flows through the detection section, so in order to make accurate measurements, it is necessary to keep the temperature around the detection section constant. At the same time, it is necessary to keep the temperature of the test solution constant. This temperature control is easy when the analyzer is installed indoors because the temperature changes are small, but it becomes difficult when the analyzer is used outdoors where the temperature changes rapidly. Conventionally, as shown in Figure 3, only the detection part is placed in a constant temperature bath with air as the heat medium, or the detection part and the piping connected to the detection part are placed in a constant temperature bath with liquid as the heat medium. .

検出部・記録計・ポンプ・薬液タンク等からなる分析計
を恒温槽内に収納して使用していた。
The analyzer, which consists of a detection unit, recorder, pump, chemical tank, etc., was housed in a constant temperature bath.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述の従来技術のうち検出部のみを恒温槽
に入れる場合においては、検液の温度は分析計の庫内温
度と共に変化するため、検出部の周囲の温度が一定でも
検出部の内側の検液の温度は必ずしも一定の温度になら
ず、分析の精度が悪くなるといった欠点がある。また、
検出部と検出部につながる配管を液体を熱媒体とする恒
温槽にいれて使用する場合においては、温度の制御は良
(行えるが、検出部の構造が液体浸漬構造に適さない場
合には使用できず、また浸漬構造が可能な場合でも保守
時には熱媒体の液から取出さねばならず不便であった。
However, in the above-mentioned conventional technology, when only the detection part is placed in a thermostatic chamber, the temperature of the test liquid changes with the temperature inside the analyzer, so even if the temperature around the detection part is constant, the temperature inside the detection part remains constant. The disadvantage is that the temperature of the liquid is not necessarily constant, which reduces the accuracy of analysis. Also,
If the detection part and the piping connected to the detection part are placed in a constant temperature bath using liquid as a heat medium, the temperature can be controlled well, but it may not be possible to use it if the structure of the detection part is not suitable for a liquid immersion structure. In addition, even if an immersion structure was possible, it would be inconvenient to take it out from the heat medium liquid during maintenance.

さらにまた、分析計全体を恒温槽内に収納した場合にお
いては、温度の変動を1’c以内に制御するためには外
界との熱移動を断つ必要から断熱材を充分厚くする必要
があり、分析計全体が非常に大きなものになった。しか
も分析計内部にヒータやランプなどの熱源がある場合に
はI ’C以内に制御することは困難であった。
Furthermore, when the entire analyzer is housed in a thermostatic chamber, in order to control temperature fluctuations within 1'c, it is necessary to cut off heat transfer from the outside world, so the insulation material must be sufficiently thick. The entire analyzer has become very large. Moreover, if there is a heat source such as a heater or a lamp inside the analyzer, it is difficult to control the temperature within I'C.

この発明は上述の点に鑑みてなされたものであ5りその
目的とするところは、検出部に対する熱媒体の整合性と
検出部の保守容易性さらにまた分析計自体の小型化とい
った要求をも満足させると共に、分析計庫内温度が大き
く変化するような場合において、検出部内部の検液の温
度を精度良く一定に制御することにより、高い分析精度
を可能にするようなフロー型分析計の温度制御装置を提
供することにある。
This invention has been made in view of the above-mentioned points, and its purpose is to meet the requirements of consistency of the heat medium with the detection section, ease of maintenance of the detection section, and miniaturization of the analyzer itself. The flow-type analyzer is designed to satisfy the above requirements, and also enables high analysis accuracy by precisely controlling the temperature of the test liquid inside the detection part to a constant value even in cases where the temperature inside the analyzer chamber changes significantly. An object of the present invention is to provide a temperature control device.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的はこの発明によれば、検液が分析計の検出部
21の中を連続的に流れるフロー型の分析計において、
該検出部21を収納すると共に該検出部の温度を所定値
に制御する検出部用の恒温槽22と、該検出部に検液を
送る検出部直前の配管19を収納し、該配管19の内部
を流れる検液の温度を所定値に制御する配管用の恒温槽
20とを備えることにより達成される。
According to the present invention, the above object is achieved in a flow type analyzer in which a test liquid continuously flows through the detection section 21 of the analyzer.
A constant temperature bath 22 for the detection section that houses the detection section 21 and controls the temperature of the detection section to a predetermined value, and a piping 19 just before the detection section that sends a test liquid to the detection section, This is achieved by including a constant temperature bath 20 for piping that controls the temperature of the test liquid flowing therein to a predetermined value.

〔作用〕[Effect]

配管用の恒温槽19を検出部用の恒温槽22に加えて設
けたので庫内温度が大きく変化しても検液の温度は配管
用の恒温槽19で一定温度に制御されてその影響がなく
なる。また検出部用の恒温槽22と配管用の恒温槽20
とがそれぞれ独立しているため、検出部用の恒温槽22
の熱媒体は検出部に最適のものを使用することができ、
検出部の保守も容易になる。さらにそれぞれの恒温槽に
保温材を設ければよいので分析計全体が小型になる。
A constant temperature bath 19 for the piping is provided in addition to the constant temperature bath 22 for the detection part, so even if the temperature inside the chamber changes greatly, the temperature of the test liquid is controlled to a constant temperature by the constant temperature bath 19 for the piping, so that the influence of the temperature change is reduced. It disappears. Also, a constant temperature bath 22 for the detection part and a constant temperature bath 20 for piping.
Since these are independent, there is a constant temperature bath 22 for the detection part.
The heat medium that is most suitable for the detection part can be used.
Maintenance of the detection unit also becomes easier. Furthermore, since it is only necessary to provide a heat insulator for each thermostatic chamber, the entire analyzer can be made smaller.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基づいて説明する。フロ
ー型の分析計を全リン分析計を例にして説明する。全リ
ン分析計は排液中のリン化合物を酸化分解処理してリン
酸に変化させる酸化処理部(図示せず)と、酸化分解処
理液中の妨害化合物を還元してノイズを低減させる還元
処理部(図示せず)と、リン酸をモリブデンを含む電解
液と反応させてリンモリブデン錯体となし、これを検出
部21である電解セルに導き、電気化学的に上記錯体を
還元してその際の還元電流の大きさによりリンの定量を
行う測定部(第1図参照)とからなる。
Next, embodiments of the present invention will be described based on the drawings. A flow type analyzer will be explained using a total phosphorus analyzer as an example. The total phosphorus analyzer includes an oxidation processing section (not shown) that oxidizes and decomposes phosphorus compounds in the wastewater and converts them into phosphoric acid, and a reduction section that reduces noise by reducing interfering compounds in the oxidation and decomposition processing solution. (not shown), phosphoric acid is reacted with an electrolytic solution containing molybdenum to form a phosphorous molybdenum complex, which is led to an electrolytic cell which is the detection section 21, and the complex is electrochemically reduced. It consists of a measuring section (see Fig. 1) that determines the amount of phosphorus based on the magnitude of the reduction current.

排液中のリン化合物の酸化分解処理は、排液をPH3以
下の酸性となし、80℃以上の温度に加熱しながらオゾ
ンを通気処理することによって行われる。この酸化分解
処理でリン化合物はオゾンによリオルトリン酸に酸化さ
れる。
The oxidative decomposition treatment of the phosphorus compounds in the waste liquid is carried out by making the waste liquid acidic with a pH of 3 or less, and heating it to a temperature of 80° C. or more while aerating ozone. In this oxidative decomposition treatment, phosphorus compounds are oxidized to lyorthophosphoric acid by ozone.

このとき水中に含まれている塩素イオンもCIO。At this time, the chlorine ions contained in the water are also CIO.

に酸化され測定部25の検出部である電解セルにおいて
還元され妨害電流を与えるので、還元処理部においてC
IO,のみ還元させる。この還元は亜硫酸ナトリウムの
還元剤を用いて行うことができる。
It is oxidized to C and reduced in the electrolytic cell which is the detection part of the measuring part 25 to give a disturbing current.
Only IO, is returned. This reduction can be carried out using a reducing agent of sodium sulfite.

排水中のリン化合物を全てリン酸に変化させ、妨害作用
を営むCIO,を還元除去した排液は第1図に示すよう
に分析計の測定部25に供給される。
The effluent, in which all the phosphorus compounds in the waste water have been converted into phosphoric acid and the interfering CIO has been reduced and removed, is supplied to the measuring section 25 of the analyzer as shown in FIG.

測定部25への排液の供給は定量ポンプ17を用い吸引
して行う。排液はフィルタ14で排液中の浮遊固体が除
去される。定量ポンプ18は定量ポンプ17で吸引した
排液と電解液13の所定量とを吸引する。
The drainage liquid is supplied to the measuring section 25 by suction using the metering pump 17. The waste liquid is passed through a filter 14 to remove suspended solids therein. The metering pump 18 sucks the waste liquid sucked by the metering pump 17 and a predetermined amount of the electrolyte 13.

電解液13は酸性モリブデン酸液であり、モリブデン酸
ナトリウムと硫酸とエタノールの混合試薬でありPH1
以下に調整されている。排液と電解液の酸性モリブデン
酸液とは混合管19においてよく混合されて検液となる
。このときリン酸とモリブデン酸とが反応してリンモリ
ブデン錯体[PM。(Vl)、204゜コ3−が形成さ
れる。混合管19は、ステンレス管か薄肉のテフロン管
のコイルである。配管用の恒温槽20はこの混合管19
を収納しており、混合管19の内部を流れる検液の温度
を所定値に制御する。熱媒体としては水またはシリコン
油が用いられ、マグネチックスターラでよく攪拌される
The electrolytic solution 13 is an acidic molybdic acid solution, which is a mixed reagent of sodium molybdate, sulfuric acid, and ethanol, and has a pH of 1.
Adjusted below. The drained liquid and the acidic molybdic acid liquid as the electrolyte are thoroughly mixed in the mixing tube 19 to form a test liquid. At this time, phosphoric acid and molybdic acid react to form a phosphomolybdenum complex [PM. (Vl), 204°Co3- is formed. The mixing tube 19 is a coil of stainless steel tube or thin-walled Teflon tube. The constant temperature bath 20 for piping is this mixing pipe 19
The temperature of the test liquid flowing inside the mixing tube 19 is controlled to a predetermined value. Water or silicone oil is used as the heat medium and is thoroughly stirred with a magnetic stirrer.

リンモリブデン錯体を含み所定温度に制御された検液は
検出部21である電解セルに送られる。検出部21は第
4図に示すような電解セルである。検液は流路38を通
って電解セルに到達する。電解セルは隔膜円筒32の内
部に炭素繊維が作用電極33として詰められており、隔
膜円筒32の外部は螺旋状の白金線が対極34として配
置されている。また隔膜円筒32の外部に同心円状に配
置されたガラス外筒36には銀−塩化銀参照電極35が
取付けられる。
A test solution containing a phosphomolybdenum complex and controlled at a predetermined temperature is sent to an electrolytic cell, which is a detection section 21. The detection section 21 is an electrolytic cell as shown in FIG. The test liquid passes through the flow path 38 and reaches the electrolytic cell. In the electrolytic cell, carbon fibers are packed inside a diaphragm cylinder 32 as a working electrode 33, and a spiral platinum wire is arranged as a counter electrode 34 outside the diaphragm cylinder 32. Further, a silver-silver chloride reference electrode 35 is attached to a glass outer cylinder 36 arranged concentrically outside the diaphragm cylinder 32.

隔膜円筒32とガラス外筒36の間には電解液13が満
たされる。リード用炭素棒37が炭素繊維からなる作用
電極33と接続してこれに電圧を印加する。検液が隔膜
円筒32の内部を流れ、定電位電解される。
The space between the diaphragm cylinder 32 and the glass outer cylinder 36 is filled with the electrolytic solution 13. A lead carbon rod 37 is connected to a working electrode 33 made of carbon fiber and a voltage is applied thereto. The test solution flows inside the diaphragm cylinder 32 and is subjected to constant potential electrolysis.

炭素繊維からなる作用電極33は銀−塩化銀参照電極3
5に対し+300++Vの定電位に設定され、このとき
作用電極33と対極34の間に流れる電解還元電流が記
録される。定電位電解の操作はポテンショスタンド23
により行われ、還元電流は電圧変換され記録計24に入
力される。作用電極33におけるリンモリブデン錯体の
還元反応(1)式による。
The working electrode 33 made of carbon fiber is the silver-silver chloride reference electrode 3
5, and the electrolytic reduction current flowing between the working electrode 33 and the counter electrode 34 is recorded. Potentiometer stand 23 is used to operate constant potential electrolysis.
The reduction current is converted into voltage and input to the recorder 24. The reduction reaction of the phosphomolybdenum complex at the working electrode 33 is based on equation (1).

[PMO(Vl)12040コ ’−+  2  e 
−[PMo(V)Jo(Vl)+oO4o]  ’−−
−−−−−−−−−−−・−−−−−−−−−−−−(
11(11式の反応による還元電流はリン濃度に比例す
るから、この還元電流の値によりリン酸濃度を定量する
ことができる。検量線の作製は第1図の水11とリン酸
標準液12を用いて行い、三方弁15.16の操作によ
り排液の流入を停める。
[PMO(Vl)12040ko'-+2e
-[PMo(V)Jo(Vl)+oO4o] '--
−−−−−−−−−−−・−−−−−−−−−−−−(
11 (The reduction current due to the reaction of equation 11 is proportional to the phosphorus concentration, so the phosphoric acid concentration can be determined from the value of this reduction current. The calibration curve is created using water 11 and phosphoric acid standard solution 12 in Figure 1. The inflow of waste liquid is stopped by operating the three-way valves 15 and 16.

電解セルにおけるリンモリブデン錯体の還元反応は温度
の影響を受ける。第2図に還元電流の一例を示す。その
ため電解セルは検出部用の恒温槽22を用いて所定温度
に制御することが必要となる。
The reduction reaction of phosphomolybdenum complexes in electrolytic cells is affected by temperature. FIG. 2 shows an example of the reduction current. Therefore, it is necessary to control the electrolytic cell to a predetermined temperature using a constant temperature bath 22 for the detection section.

第4図に示すような電解セルにおいては熱媒体として空
気を用いた検出部用の恒温槽22が用いられる。空気を
熱媒体として用いることにより、対極34、リード用炭
素棒37および銀−塩化銀参照電極35間を短絡させる
ことな(温度制御することができ、さらに保守のための
電解セルの分解を容易に行うことができる。
In an electrolytic cell as shown in FIG. 4, a constant temperature bath 22 for a detection section using air as a heat medium is used. By using air as a heat medium, short circuits between the counter electrode 34, lead carbon rod 37, and silver-silver chloride reference electrode 35 can be prevented (temperature can be controlled, and the electrolytic cell can be easily disassembled for maintenance). can be done.

混合管19を収納する配管用の恒温槽20を設けること
により全リン分析計の庫内温度が大きく変化しても検出
部21における検液の温度を常に所定温度に維持するこ
とができ分析の精度が高まる。特に配管用の恒温槽20
に用いる熱媒体が液体である場合には空気を熱媒体とす
る場合よりも熱交換能が大きいために混合管19の長さ
を短かくすることができるうえ、温度制御の精度が向上
する。配管用の恒温槽20を設けると、庫内温度の変動
を吸収できるばかりでなく、測定部25の前に設けられ
る酸化処理部と還元処理部における排液の高温処理の影
響もなくすことができる。さらにまた恒温槽を上述のよ
うに検出部用と配管用とをそれぞれ設けたので熱媒体と
して検出部用には空気を、配管用には水を選ぶことがで
き、電解セルに対する熱媒体の整合性と検出部の保守容
易性並びに配管内検液の温度制御性の点からそれぞれの
恒温槽に対して最適の熱媒体を選定することが可能とな
る。
By providing a constant temperature bath 20 for the piping that houses the mixing tube 19, the temperature of the test solution in the detection section 21 can be maintained at a predetermined temperature even if the internal temperature of the total phosphorus analyzer changes greatly. Increases accuracy. Constant temperature chamber 20 especially for piping
When the heat medium used is a liquid, the heat exchange capacity is greater than when air is used as the heat medium, so the length of the mixing tube 19 can be shortened, and the accuracy of temperature control is improved. Providing the constant temperature bath 20 for piping not only absorbs fluctuations in the internal temperature, but also eliminates the effects of high-temperature treatment of the waste liquid in the oxidation processing section and reduction processing section provided before the measurement section 25. . Furthermore, as mentioned above, two thermostatic chambers are provided for the detection section and for the piping, so air can be selected as the heating medium for the detection section and water for the piping, allowing for matching of the heating medium to the electrolytic cell. It becomes possible to select the optimal heat medium for each thermostatic chamber in terms of performance, ease of maintenance of the detection part, and temperature controllability of the sample liquid in the piping.

恒温槽を検出部21と混合管19にそれぞれ独立して設
けると保温材が少量で済み、分析計全体を温度制御する
場合に比し分析計全体が小型になるといった効果も得ら
れる。
If constant temperature baths are provided independently in the detection section 21 and the mixing tube 19, only a small amount of heat insulating material is required, and the entire analyzer can be made smaller than in the case where the temperature of the entire analyzer is controlled.

〔発明の効果〕〔Effect of the invention〕

この発明によれば検液が分析計の検出部の中を連続的に
流れるフロー型の分析計において、該検出部を収納する
と共に該検出部の温度を所定値に制御する検出部用の恒
温槽と、該検出部に検液を送る検出部直前の配管を収納
し、該配管の内部を流れる検液の温度を所定値に制御す
る配管用の恒湯槽とによりフロー型分析計の温度制御装
置を構成したので、分析計庫内温度が変化しても配管用
の恒温槽でその影響をなくして検出部内の検液の温度を
所定値に保つことができ、その結果分析精度が向上する
。さらに検出部用の恒温槽と配管用の恒温槽のそれぞれ
に最適の熱媒体を使用することができその結果検出部の
保守が容易になるとか検出部直前の配管を短かくできる
といった効果が得られる。
According to the present invention, in a flow type analyzer in which a test liquid continuously flows through a detection section of the analyzer, a constant temperature for the detection section that houses the detection section and controls the temperature of the detection section to a predetermined value is provided. The temperature of the flow-type analyzer is controlled by a tank and a constant hot water bath for the piping, which houses the piping just before the detection part that sends the test liquid to the detection part, and controls the temperature of the test liquid flowing inside the piping to a predetermined value. Since the device has been configured, even if the temperature inside the analyzer chamber changes, the temperature of the test liquid inside the detection section can be maintained at a predetermined value by eliminating the effect of the change in the thermostat for the piping, and as a result, the accuracy of analysis is improved. . Furthermore, it is possible to use the optimal heat medium for each of the thermostatic chamber for the detection section and the thermostatic chamber for the piping, which has the effect of making it easier to maintain the detection section and shortening the length of piping just in front of the detection section. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る温度制御装置の構成図
、第2図はリンモリブデン錯体の電解還元電流の温度特
性図、第3図は従来の温度制御装置の構成図、第4図は
検出部である電解セルの断面図である。 19:混合管、20:配管用の恒温槽、21:検出部、
22:検出部用の恒温槽。 0    10   20   30’    40湯
 贋   (0C) 第2図 25す則定部
Fig. 1 is a block diagram of a temperature control device according to an embodiment of the present invention, Fig. 2 is a temperature characteristic diagram of electrolytic reduction current of a phosphomolybdenum complex, Fig. 3 is a block diagram of a conventional temperature control device, and Fig. 4 FIG. 2 is a cross-sectional view of an electrolytic cell that is a detection section. 19: Mixing pipe, 20: Constant temperature bath for piping, 21: Detection part,
22: Constant temperature bath for the detection part. 0 10 20 30' 40 hot water counterfeit (0C) Fig. 2 25 regulation section

Claims (1)

【特許請求の範囲】 1)検液が分析計の検出部の中を連続的に流れるフロー
型の分析計において、該検出部を収納すると共に該検出
部の温度を所定値に制御する検出部用の恒温槽と、該検
出部に検液を送る検出部直前の配管を収納し、該配管の
内部を流れる検液の温度を所定値に制御する配管用の恒
温槽とを備えることを特徴とするフロー型分析計の温度
制御装置。 2)特許請求の範囲第1項記載の温度制御装置において
、検出部用の恒温槽はその熱媒体が気体であり、配管用
の恒温槽はその熱媒体が液体であることを特徴とするフ
ロー型分析計の温度制御装置。
[Scope of Claims] 1) In a flow type analyzer in which a test liquid continuously flows through a detection section of the analyzer, a detection section that houses the detection section and controls the temperature of the detection section to a predetermined value. and a constant temperature bath for the piping that accommodates the piping just before the detection part that sends the test liquid to the detection part and controls the temperature of the test liquid flowing inside the piping to a predetermined value. Temperature control device for flow type analyzers. 2) In the temperature control device according to claim 1, the flowchart is characterized in that the heating medium of the constant temperature bath for the detection section is gas, and the heating medium of the constant temperature bath for piping is liquid. Temperature control device for mold analyzer.
JP1543487A 1987-01-26 1987-01-26 Temperature controller for flow type analyzer Pending JPS63182569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1543487A JPS63182569A (en) 1987-01-26 1987-01-26 Temperature controller for flow type analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1543487A JPS63182569A (en) 1987-01-26 1987-01-26 Temperature controller for flow type analyzer

Publications (1)

Publication Number Publication Date
JPS63182569A true JPS63182569A (en) 1988-07-27

Family

ID=11888691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1543487A Pending JPS63182569A (en) 1987-01-26 1987-01-26 Temperature controller for flow type analyzer

Country Status (1)

Country Link
JP (1) JPS63182569A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118668A (en) * 1980-02-22 1981-09-17 Takashi Inaga Measurement of substance able to be oxidized
JPS62228169A (en) * 1985-12-09 1987-10-07 オットーセンサーズ・コーポレイション Measuring device and tube connection and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118668A (en) * 1980-02-22 1981-09-17 Takashi Inaga Measurement of substance able to be oxidized
JPS62228169A (en) * 1985-12-09 1987-10-07 オットーセンサーズ・コーポレイション Measuring device and tube connection and manufacture thereof

Similar Documents

Publication Publication Date Title
CN100420942C (en) On-line full automatic sodium ion concentration analyzer
KR20150051873A (en) Automatic apparatus for measuring chemical oxygen demand(cod)
US5061631A (en) Method, apparatus and solution for calibration of partial pressure value
US5976465A (en) Apparatus and method for the determination of substances in solution suspension or emulsion by differential pH measurement
RU2326376C1 (en) Method and device of determining activity of sodium
JPS63182569A (en) Temperature controller for flow type analyzer
US3972792A (en) Device for determination of chemicals in a sample flow
BR112014026484B1 (en) METHOD FOR MEASURING AND CONTROLLING THE CONCENTRATION OF AN ELECTROLYTICALLY ACTIVE SPECIES IN AN AQUEOUS OR NON-AQUEOUS SOLUTION
US5070023A (en) Aqueous ferrioxalate compositions useful as calibrants
JPH02118445A (en) Instrument for measuring concentration of phosphoric acid
US5041202A (en) Apparatus for the continuous production of a standard ionic solution
CA1317346C (en) Method, apparatus and solution for calibration of partial pressure value
JP4516659B2 (en) COD automatic measuring instrument and COD automatic measuring method
US3674370A (en) Chemical oxygen demand water analyzer
KR200281690Y1 (en) Apparatus for measuring COD
CN111595306A (en) Profile marine measuring instrument and calibration method thereof
JPS60127448A (en) Cod measuring method and apparatus therefor
RU2139530C1 (en) Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water
SU1032402A1 (en) Mass transfer coefficient measuring method
JPH10314742A (en) Electrolyzed water producing apparatus
JPH03123851A (en) Bod measuring instrument
RU2094788C1 (en) Automatic analyzer of residual active chlorine
JPH0522865B2 (en)
RU4169U1 (en) SYSTEM FOR AUTOMATED QUALITY CONTROL OF NATURAL AND SEWAGE WATERS
CN110187051A (en) A kind of detection device measuring permanganate index