JPS60127448A - Cod measuring method and apparatus therefor - Google Patents

Cod measuring method and apparatus therefor

Info

Publication number
JPS60127448A
JPS60127448A JP58235893A JP23589383A JPS60127448A JP S60127448 A JPS60127448 A JP S60127448A JP 58235893 A JP58235893 A JP 58235893A JP 23589383 A JP23589383 A JP 23589383A JP S60127448 A JPS60127448 A JP S60127448A
Authority
JP
Japan
Prior art keywords
solution
cod
reaction
measured
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235893A
Other languages
Japanese (ja)
Inventor
Isao Hosoda
細田 功
Takaomi Amitani
網谷 孝臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58235893A priority Critical patent/JPS60127448A/en
Publication of JPS60127448A publication Critical patent/JPS60127448A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To make it possible to detect COD in a solution rapidly and continuously, by mixing a solution to be measured, an oxidizing agent solution and a liquid rising in its temp. upon the mixing with water to react the same and measuring the redox potential of the reacted solution. CONSTITUTION:A solution to be measured (e.g., waste water), an oxidizing agent (KMnO4) solution and a liquid rising in its temp. upon the mixing with water (e.g., concn. sulfuric acid) are respectively supplied to the upper reaction tube of a heat insulating container in a reactor 1 through supply tubes 41, 42, 43 and mixed to raise the temp. of the resulting mixture. Subsequently, the reaction mixture is sent to a reaction promotion pipe and passed through a cooler 5 from the outtake port thereof to be sent to a detection container 6 where the redox potential of the reacted solution is detected by using an electrode 6a of a temp. and redox potential detector (recorder) 7 and converted to COD which is, in turn, recorded. When the COD value is equal to or more than a set value, an alarm is issued from an alarm 8. The detector 7 is constituted so as to also detect the temp. of the reaction tube. By this method, even a solution containing a hardly oxidized org. component, for example, glycol can be subjected to the measurement of COD rapidly, continuously and precisely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶液中に含有されたCODを測定する方法及び
その実施に使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring COD contained in a solution and an apparatus used for carrying out the method.

〔従来技術〕[Prior art]

水質総量規制の適用を受ける指定地域内の特定事業場は
汚濁負荷量の測定・記録の義務が課せられており、その
測定方法としてはJIS K 0102工場排水試験方
法17項の「100℃における過マンガン酸カリウムに
よる酸素消費量(COD)」が指定されている。この指
定されたCOD測定法はその試験操作上、排水及び硫酸
、過マンガン酸カリウム溶液を入れたフラスコを沸騰水
浴中で30分間加熱してυ1水と過マンガン酸カリウム
を反応させる必要があり、測定に約40分間装する。こ
のため1旨定測定法により測定・記録する以外に迅速に
連続測定可能なモニター管理することが水質管理土留ま
れる。
Specified workplaces in designated areas subject to total water quality regulations are required to measure and record pollution loads, and the measurement method is based on JIS K 0102 Factory Effluent Test Methods, Section 17, Oxygen consumption (COD) by potassium manganate is specified. This specified COD measurement method requires that a flask containing waste water, sulfuric acid, and potassium permanganate solution be heated in a boiling water bath for 30 minutes to cause the υ1 water and potassium permanganate to react. Allow approximately 40 minutes for measurement. For this reason, in addition to measuring and recording water quality using a single-point quantitative measurement method, it is important to monitor water quality so that it can be rapidly and continuously measured.

そして水質をモニター管理する場合、例えば水に極めて
よく解け、その状態が無色透明であって目視或いは円1
B1により確認できずしかもCOOが高い水〜グリコー
ル系水溶性作動液等をモニター管理する場合には次の問
題がある。
When monitoring and managing water quality, for example, if it dissolves in water extremely well and its state is colorless and transparent, it can be visually inspected or
When monitoring and managing water, glycol-based water-soluble hydraulic fluids, etc. that cannot be confirmed by B1 and have a high COO, the following problems arise.

r!11ち、酸化しやすい物質の代表としてしゅう酸す
トリウムを添加したCOD : 97ppmの排水と、
グリコールを添加したCOD : 89ppmの排水と
を用い、これを直火して排水沸騰後の加熱時間を変えて
COO値を測定すると第1図が得られる。
r! 11th, COD: 97 ppm wastewater with added thorium oxalate as a representative of easily oxidized substances,
Figure 1 is obtained by using waste water containing glycol added with COD: 89 ppm and directly heating it and measuring the COO value by varying the heating time after boiling the waste water.

第1図は横軸に沸騰後の加熱時間(分)1縦軸に直火式
簡易CotJ針指示値(ppm )をとってその測定結
果を示したグラフである。この図より理解される如く酸
化されやずいしゅう酸りトリウムを添加した排水(黒丸
印)は沸騰後1〜2分の加熱によりC0O値が変化セず
一定となるが、グリコールを添加した排水(白丸印)で
は5分程度加熱しても一定とならない。即ら、水−グリ
コール系水溶性作動液を測定する場合は100℃程度の
温度では5分以上の加熱を必要とし迅速測定が出来ない
FIG. 1 is a graph showing the measurement results, with the horizontal axis representing the heating time after boiling (minutes) and the vertical axis representing the direct flame type simple CotJ needle indication value (ppm). As can be understood from this figure, the C0O value of wastewater to which oxidized thorium oxalate was added (black circle) does not change when heated for 1 to 2 minutes after boiling, but remains constant; however, for wastewater to which glycol has been added ( With white circles), the temperature is not constant even after heating for about 5 minutes. That is, when measuring a water-glycol type aqueous working fluid, heating for 5 minutes or more is required at a temperature of about 100°C, making rapid measurement impossible.

このためモニター測定において水−グリコール系水溶性
作動液をも迅速に測定できることが最重要である。
For this reason, it is most important to be able to quickly measure water-glycol-based aqueous working fluids in monitor measurements.

一方、水質計測器としては指定GO[)測定法をそのま
ま自動化したCOO計、この他にも有機性物質に関して
汚染状態を連続して測定できる計器、例えばTOC計、
T0n計、 uvtl、蛍光計等がある。COO計は当
然のことながら指定測定法によるものであり、迅速測定
には適さない。そしてTOC計、 Toil計はCOD
測定の迅速性には優れるが価格的に高価であり、また蛍
光計の応用も考えられるがuvRlと同様に検出物質に
選択性があり用途が限られるところから一般的でない。
On the other hand, water quality measuring instruments include a COO meter, which is an automated version of the specified GO[) measurement method, and other instruments that can continuously measure the contamination status of organic substances, such as a TOC meter.
There are T0n meters, uvtl, fluorometers, etc. Naturally, the COO meter uses a specified measurement method and is not suitable for rapid measurement. And TOC meter, Toil meter is COD
Although it has excellent measurement speed, it is expensive, and although it is possible to use a fluorometer, it is not common because, like uvRl, the detection substance is selective and its uses are limited.

本願発明者等は溶液のCOOを迅速に測定できる方法を
研究している過程で次のような知見を得た。
The inventors of the present application obtained the following knowledge in the process of researching a method for rapidly measuring the COO of a solution.

つまりしゅ・う酸ナトリウムを添加したCODが79p
pmの排水とグリコールを添加したCODか37ppm
の排水の2種類の排水を用い、夫々の排水を温度が95
’c、120℃、130℃、140℃で反応さ−け、反
応液の酸化還元電位(ORP )を測定した。
In other words, the COD with sodium oxalate added is 79p.
COD with pm wastewater and glycol added or 37ppm
Two types of wastewater were used, each with a temperature of 95%.
The reaction was carried out at 120°C, 130°C, and 140°C, and the oxidation-reduction potential (ORP) of the reaction solution was measured.

第2図はその測定結果を、しゆう酸テ1−リウム添加の
場合を上側に、グリコール添加の排水の場合を)側に夫
々系したグラフであり、横軸にOl? II値(V)及
び反応l7jr度(℃)、縦軸に相当する方向には記録
紙送り速度に基づく時間をとっている。
Figure 2 is a graph showing the measurement results, with the case of terium oxalate added on the upper side and the case of glycol added wastewater on the ) side, and the horizontal axis is Ol? II value (V) and reaction l7jr degrees (°C), and the time based on the recording paper feeding speed is taken in the direction corresponding to the vertical axis.

図中実線はOR+”値、一点鎖線は反応温度を夫々系し
ており、図中右下には1時間の記録紙送り速度を示して
いる。
In the figure, the solid line indicates the OR+'' value, the dashed-dotted line indicates the reaction temperature, and the bottom right of the figure indicates the recording paper feeding speed for one hour.

この図より理解される如く反応温度が」−昇するに伴い
しゅう酸ナトリウムを添加しノこ排水のORP値と、グ
リコールを添加した排水のORP値とは近づき、反応温
度が130℃乃至140℃となれば夫々のCOD濃度に
応したレベルとなる。従って反応性の悪いグリコール等
を含む排水を/Ji11定する場合には反応温度を」ニ
げることか迅速な分析には有効であるということが知見
された。
As can be understood from this figure, as the reaction temperature increases, the ORP value of the wastewater from sawdust to which sodium oxalate has been added approaches the ORP value of the wastewater to which glycol has been added, and the reaction temperature is 130°C to 140°C. Then, the level corresponds to each COD concentration. Therefore, it has been found that lowering the reaction temperature is effective for rapid analysis when determining wastewater containing poorly reactive glycols and the like.

〔目 的〕〔the purpose〕

本発明は斯かる知見に基づいてなされたものであり、そ
の目的とするところは従来よりも高温で反応せしめ迅速
に連続測定できるCOO測定方法及びその実施に使用す
る安価なCOO測定装置を提供するにある。
The present invention has been made based on such knowledge, and its purpose is to provide a COO measurement method that allows reaction to occur at a higher temperature than conventional methods and allows rapid continuous measurement, and an inexpensive COO measurement device used for carrying out the method. It is in.

〔本発明の構成〕[Configuration of the present invention]

本発明に係るCOD測定方法は被測定/8液と酸化剤溶
液とを昇温しで反応させ、被測定溶液のC01〕を測定
する方法において、被測定溶液および酸化剤溶液と加水
により昇温する液体とを混合せしめ、これにより昇温し
で反応した反応液の酸化還元電位を検出しくこの検出結
果に基づき被測定/8液のCODを測定することを特徴
とする。
The COD measurement method according to the present invention is a method of measuring the C01] of the solution to be measured by reacting the solution to be measured/8 with an oxidizing agent solution by raising the temperature. The method is characterized in that the oxidation-reduction potential of the reacted reaction solution is detected by mixing the reaction solution with a liquid that reacts by increasing the temperature, and the COD of the liquid to be measured/8 is measured based on the detection result.

〔実施例〕 以下本発明を図面に基づき具体的に説明する。〔Example〕 The present invention will be specifically explained below based on the drawings.

第3図は本発明の実施状態を示す模式図であり、図中1
は反応器を示す。反応器1には三本の送給管、即ち排水
用送給管41.過マンガン酸カリウム溶液用送給管42
.濃硫酸用送給管43の先端側が取付けられており、送
給管41,42.43は中途に夫々流量調整ができる排
水用ポンプ31.過マンガン酸カリウム/8液用ポンプ
32. i硫酸用ポンプ33を介在させてあり、その基
端側は夫々三方切換コック21゜22.23を介して各
送給管41,42.43の一力は夫々図示しない排水管
、過マンガン酸カリウム溶液貯留槽11.a硫酸貯留槽
12に、また他方は夫々」:水送給管51,52.53
にて上水貯留槽13に接続されている。
FIG. 3 is a schematic diagram showing the implementation state of the present invention, and in the figure 1
indicates a reactor. The reactor 1 has three feed pipes, namely a waste water feed pipe 41. Feed pipe 42 for potassium permanganate solution
.. A concentrated sulfuric acid feed pipe 43 is attached to the tip side, and a drainage pump 31. Potassium permanganate/8 liquid pump 32. A pump 33 for sulfuric acid is interposed, and the proximal end of the pump 33 is connected to a three-way switching cock 21, 22, 23, and one side of each feed pipe 41, 42, 43 is connected to a drain pipe (not shown), and permanganate. Potassium solution storage tank 11. a to the sulfuric acid storage tank 12, and the other to the water supply pipes 51, 52, and 53, respectively.
It is connected to the clean water storage tank 13 at.

三方切換コック21,22.23の切換とポンプ31,
32.33の駆動により排水、過マンガン酸カリウム/
8液。
Switching of three-way switching cocks 21, 22, 23 and pump 31,
32. Drainage, potassium permanganate/
8 liquid.

濃硫酸と上水とが選択的に反応器1に導がれる。Concentrated sulfuric acid and clean water are selectively introduced into reactor 1.

反応191にuL水、Jマンガン酸カリウム溶液。For reaction 191, uL water, J potassium manganate solution.

濃硫酸が送給されると各液体は混合される。このとき濃
硫酸は水成分により希釈されることになり希釈熱を発止
する。このため他の2種類のυ1水。
The liquids are mixed as concentrated sulfuric acid is fed. At this time, the concentrated sulfuric acid is diluted by the water component and generates heat of dilution. For this reason, the other two types of υ1 water.

過マンガン酸カリウム溶液も昇温され、これが反応熱と
して債jき排水と過マンガン酸カリウムは反応する。反
応/11!度は反応器1に先端を位置せしめられた熱電
対等の温度センサ−16により捉えられ、温度センサ−
16の基端が接続された温度・酸化還元電位検出器7に
より検出される。
The temperature of the potassium permanganate solution is also raised, and this generates reaction heat, causing the wastewater and potassium permanganate to react. Reaction/11! The temperature is detected by a temperature sensor 16 such as a thermocouple whose tip is located in the reactor 1.
16 is detected by the temperature/redox potential detector 7 connected to the base end.

3種類の混合液(以下反応液とい・))の一部はオーバ
ーフローせしめられて冷却器4へ送られ、冷却器4を通
流する間に冷却され、廃液槽14−゛・送られる。
A portion of the three types of mixed liquids (hereinafter referred to as reaction liquids) is overflowed and sent to the cooler 4, cooled while flowing through the cooler 4, and sent to the waste liquid tank 14-1.

一力、昇温しで反応した反応液は反応器Jを通過する間
に反応が促進され、然る後に反応液冷却器5へ送られて
ここで冷却され、更に流量調整ができるポンプ34によ
り吸引されて酸化還元電位検出容器6へ送られる。検出
容器6へ送られた反応液はオーバーフローせしめられて
前記廃液槽14へ送られる。検出容器6内の反応液には
酸化還元電極6aの先端部が浸漬されており、電極6a
の基端が接続されている温度・酸化還元電位検出器7に
より反応液の8化還元電位は検出される。検出された酸
化還元電位(ORP )をCODに換算することにより
排水のCODがまる。
The reaction of the reaction liquid that has reacted by raising the temperature is accelerated while passing through the reactor J, and is then sent to the reaction liquid cooler 5 where it is cooled, and is further cooled by a pump 34 that can adjust the flow rate. It is sucked and sent to the oxidation-reduction potential detection container 6. The reaction liquid sent to the detection container 6 is caused to overflow and sent to the waste liquid tank 14. The tip of the redox electrode 6a is immersed in the reaction solution in the detection container 6, and the electrode 6a
The 8-oxidation reduction potential of the reaction solution is detected by a temperature/oxidation-reduction potential detector 7 to which the base end of the reaction solution is connected. The COD of wastewater is reduced by converting the detected oxidation-reduction potential (ORP) into COD.

検出器7は記録機能をも具備しており、反応温度及び反
応液の酸化還元電位を記録すると共に、酸化還元電位の
値が設定値を下廻る場合には界雷として警報器8にて警
報を発せしめる。
The detector 7 also has a recording function, recording the reaction temperature and the redox potential of the reaction liquid, and if the value of the redox potential falls below the set value, an alarm 8 will be issued as field lightning. to emit.

そして三方切換コック2]、、22.23を切換えるこ
とにより反応器1に上水が送給され、これにより反応器
11反応液冷却器5.検出容器6及び各配管41.42
.43等は洗浄される。
Then, by switching the three-way switching cocks 2], 22, and 23, clean water is supplied to the reactor 1, thereby reactor 11 reaction liquid cooler 5. Detection container 6 and each piping 41.42
.. 43 etc. are cleaned.

次に本発明に好適な反応器1について説明する。Next, the reactor 1 suitable for the present invention will be explained.

第4図は反応器1の構造を拡大して示ず箱1tli面図
、第5図は第4図のV−V線による横111面図である
4 is an enlarged view of the structure of the reactor 1, and FIG. 5 is a horizontal 111 view taken along the line V--V in FIG. 4.

反応器1は略全体に亘りホウケイ酸ガラス等の耐熱ガラ
スにより作成されており、断:;ハ容器100は」ニ、
下端部に設ジノた空気放出穴ill、 112を除き1
J止された円筒であり、その周面ば固定部100aが上
端から115程度の位置に環状に突出して成形されてお
り、固定部100 aにより反応器1は図示しない固定
台に載架される。
The reactor 1 is almost entirely made of heat-resistant glass such as borosilicate glass;
The air release hole installed at the bottom end is 1 except 112.
It is a J-stopped cylinder, and a fixing part 100a is formed on the circumferential surface of the reactor 1 so as to protrude in an annular shape at a position of about 115 mm from the upper end, and the reactor 1 is mounted on a fixing stand (not shown) by the fixing part 100a. .

断熱容器100の上面には試験竹状の反応管101がそ
の下側過半部を断熱容器100に、上端部を…1熱容器
100の上方に突出した状態で設りられている。反応管
+01の周面上下方向の略中央部には反応液の−・gl
(をオーバーフローさせるためのオーバーフロー管10
4か1tli 熱容器100の固定部100aのすく上
から外側に突出されており、オーバーフロー管104は
突出部の中途にて下方に折曲り、その先端にばオーバー
フロー管104よりも大径で半球状の取出口105が形
成され、この取出口105は冷却器4の入側に接合され
ている。反応管101の下端にはコイル状に巻かれた反
応促進管102が連通連結されており、反応促進管10
2の出側は断熱容器100の周面下端部から外側に突出
し、その出口端には反応促進管102よりも大径で半球
状の取出口103が形成され、この取出口103は反応
液冷却器5の入側に接合されている。反応管101の」
ユ端部はその僅か下方位置で縮径されており、1tit
径部にはやはり耐熱ガラスによる共通摺合−1に加工さ
れた栓体106が嵌入、係止されている。
A test bamboo-shaped reaction tube 101 is installed on the upper surface of the heat insulating container 100 with its lower half extending toward the heat insulating container 100 and its upper end protruding above the thermal container 100. Approximately at the center of the circumferential surface of the reaction tube +01 in the vertical direction, there is -.gl of the reaction liquid.
(Overflow pipe 10 for overflowing
4 or 1tli The overflow pipe 104 is protruded outward from above the fixed part 100a of the heat container 100, and the overflow pipe 104 is bent downward in the middle of the protrusion, and has a hemispherical shape with a larger diameter than the overflow pipe 104 at the tip. An outlet 105 is formed, and this outlet 105 is joined to the inlet side of the cooler 4. A coiled reaction promoting tube 102 is connected to the lower end of the reaction tube 101.
The outlet side of the tube 2 protrudes outward from the lower end of the circumferential surface of the heat insulating container 100, and a hemispherical outlet 103 with a diameter larger than that of the reaction promoting tube 102 is formed at the outlet end, and this outlet 103 is used for cooling the reaction liquid. It is joined to the inlet side of the vessel 5. of reaction tube 101.”
The diameter of the end of the unit is reduced slightly below it, and the diameter is reduced by 1tit.
A plug body 106 made of heat-resistant glass and processed into a common sliding fit-1 is fitted and locked into the diameter portion.

反応管101の周面下端部及び栓体106には2対のハ
ネ係止部LO1a、 l01a及びl06a、l06a
が形成されており、2対のハネ係止部101a、 10
1a及び106a。
Two pairs of spring locking parts LO1a, 101a and 106a, 106a are provided at the lower end of the circumferential surface of the reaction tube 101 and the stopper 106.
are formed, and two pairs of spring locking parts 101a, 10
1a and 106a.

106aには夫々ハネ120 ’+ 120が栓体10
6を反応管101に引圧弾止すべく張設されている。
106a each has a spring 120'+120 attached to the stopper 10.
6 is stretched over the reaction tube 101 so as to be elastically retained therein.

栓体106の軸心部にば測温管取付部117及びその周
囲に3等配されて注入管取付部1部118a、 118
11.118にが、また注入管取付部118b、118
cに挾まれて范気放出管取付部119が設けられている
。注入管取イヌ」部118a、 ll8b、 ll8c
には先端Qiが錠状に曲viシてあり、基端部が先端部
曲折方向と反対側に僅かに曲げられた注入管108a、
 ]08b、 l08cが先I/i!t+開口部を反応
管I01の軸心を向くように夫々取(−1のられており
、注入管108a、 108b、 108cには夫々前
記送給管41゜42、43が接続されている。従って排
水、過マンガン酸カリウム溶液、濃硫酸は反応管101
の軸心を向いて噴出され、混合される。測温管取(=J
部117には先端が閉口した測/I!!管107がその
先端を注入管108a、 108b、 108cの先端
近傍に位置せしめられて取付りられており、測温管10
7には熱電対等の温度センサ−16が挿入されている。
At the axial center of the stopper 106, there are a thermometer tube attachment portion 117 and three injection tube attachment portions 118a and 118 equally spaced around the temperature measurement tube attachment portion 117.
11. In 118, there are also injection pipe attachment parts 118b, 118.
An air discharge pipe attachment portion 119 is provided between the portions c. Injection tube receptacle section 118a, ll8b, ll8c
an injection tube 108a whose distal end Qi is bent into a lock-shape, and whose proximal end is slightly bent in the direction opposite to the bending direction of the distal end;
]08b, l08c first I/i! The t+ openings are each taken so as to face the axis of the reaction tube I01 (marked with -1), and the feed tubes 41, 42, and 43 are connected to the injection tubes 108a, 108b, and 108c, respectively. Waste water, potassium permanganate solution, and concentrated sulfuric acid are in the reaction tube 101.
It is ejected towards the axis of the machine and mixed. Temperature measuring tube (=J
Part 117 has a closed tip/I! ! A tube 107 is attached with its tip positioned near the tips of the injection tubes 108a, 108b, and 108c, and the temperature measuring tube 10
A temperature sensor 16 such as a thermocouple is inserted in 7.

范気放出管取イ」部119には蒸気放出管109がその
先端を栓体106の下面に略一致させて取付りられてお
り、従って希釈熱により昇温されて蒸発した蒸気は蒸気
放出管109より放出され、反応管101内の圧力を大
気圧と同一にしてポンプ31,32,33の流は相互干
渉を防いでいる。
A steam release pipe 109 is attached to the steam release pipe section 119 with its tip substantially aligned with the bottom surface of the stopper 106, so that the steam heated and evaporated by the heat of dilution is discharged from the steam release pipe. 109, the pressure inside the reaction tube 101 is made equal to atmospheric pressure, and the flows of the pumps 31, 32, and 33 are prevented from interfering with each other.

なお前記断熱容器100と反応管1011反応促進管1
02とにより形成された空気断熱部1aの空気は反応に
伴って昇温されて膨張し、膨張した空気は空気放出穴1
1L 112より放出され、これと共に反応管101及
び反応促進管102を外気の温度から断熱し保温する。
Note that the heat insulating container 100 and the reaction tube 1011 reaction promoting tube 1
The air in the air insulation part 1a formed by 02 is heated and expanded as a result of the reaction.
It is discharged from 1L 112, and together with this, the reaction tube 101 and the reaction promoting tube 102 are insulated from the outside air temperature and kept warm.

そしてこのような反応器を使用する場合には3種の液体
を混合させるのみで反応させることができるので構造を
簡潔にできる。
When such a reactor is used, the structure can be simplified because the reaction can be carried out by simply mixing three types of liquids.

〔効 果〕〔effect〕

次に実施例に基づき本発明の効果につき説明する。指定
計測法により測定したCODが35ppm、 79pp
m。
Next, the effects of the present invention will be explained based on Examples. COD measured by specified measurement method is 35ppm, 79pp
m.

96ppm、 190ppmの5レヘルのグリコールを
添加した排水及び上水を用い、まず測定に際して送給路
をパージしておき、96ppm−190ppm−96p
pm二上水−190ppmとCODレヘルを切換え、次
に79ppm −艷35ppm−上水→35ppm 1
79ppm−=35ppm→35pp5ppmと切換え
夫々の反応温度が130〜140 ’C程度となるよう
な条件にしてORP値及び反応温度を本発明により検出
した。
Using waste water and tap water to which 5 levels of glycol of 96 ppm and 190 ppm were added, the feed line was first purged before measurement, and 96 ppm-190 ppm-96 ppm was added.
Switch between pm Nijosui - 190ppm and COD level, then 79ppm - 35ppm - Josui → 35ppm 1
The ORP value and the reaction temperature were detected according to the present invention under conditions such that the reaction temperature was approximately 130 to 140'C by switching from 79ppm to 35ppm to 35ppm to 5ppm.

第6図、第7図は夫々その検出結果を示したグラフであ
り、横軸にはORP値(V)及び反応温度(℃)、縦軸
には検出器7の記録紙送り速度に基づく時間をとってい
る。図中実線はORP値を、一点鎖線は反応温度を夫々
示しており、左上には1時間当たりの記録紙送り速度を
、また右側には排水及び上水の測定期間を示している。
Figures 6 and 7 are graphs showing the detection results, with the horizontal axis showing the ORP value (V) and reaction temperature (°C), and the vertical axis showing the time based on the recording paper feeding speed of the detector 7. is taking. In the figure, the solid line shows the ORP value, the dashed-dotted line shows the reaction temperature, the upper left shows the recording paper feed rate per hour, and the right shows the measurement period of waste water and clean water.

第6図、第7図は3種液体の混合率を変えた場合の例を
示しており、第6図の条件(流量比及び過マンガン酸カ
リウムの濃度)では図から明らかなように、CODのO
ppm (上水) 、96ppm及び190ppmの識
別が可能である。又ff17図では同様にCODの09
pm+35ppm及び79ppmの識別が可能であるこ
とがわかる。このようGこ本発明はポンプ41,42.
43の流量nTta整により濃硫酸の希釈割合を変え、
反応温度を#IfJ整できる。あるいは排水の混合割合
、更には酸化剤の濃度を変えることによりCODの検出
レヘルを自由に設定できる特徴を持っている。
Figures 6 and 7 show examples when the mixing ratio of the three types of liquids is changed, and as is clear from the figures, under the conditions of Figure 6 (flow rate ratio and concentration of potassium permanganate), the COD O of
ppm (water supply), 96 ppm and 190 ppm can be distinguished. Also, in the ff17 diagram, COD's 09
It can be seen that it is possible to identify pm+35ppm and 79ppm. In this way, the pumps 41, 42.
The dilution ratio of concentrated sulfuric acid is changed by adjusting the flow rate nTta of 43,
The reaction temperature can be adjusted #IfJ. Alternatively, the COD detection level can be freely set by changing the mixing ratio of wastewater and the concentration of the oxidizing agent.

従って本発明Gこより反応温度を100℃以上とするこ
とが可能であるので反応性が悪い水−グリコール系水溶
性作動液の場合であってもGOI+を迅速に測定できる
。また測定値は指定測定法による測定値に自由に合致さ
せることができ、精度良くしかも連続測定が可能なこと
は明白である。
Therefore, since the reaction temperature can be set to 100 DEG C. or higher according to the present invention, GOI+ can be quickly measured even in the case of a water-glycol water-soluble working fluid with poor reactivity. Furthermore, it is clear that the measured values can be freely matched with the measured values by the designated measuring method, and that accurate and continuous measurement is possible.

このため本発明は水質管理用のモニターとして適用でき
る。
Therefore, the present invention can be applied as a monitor for water quality control.

しかし本発明方式の宿命として反応温度は外気温度およ
びa、温の影響を受けるねジノであるが、第7図に示す
ようにこの測定の中途で反応器1近傍の雰囲気温度を上
昇せしめると反応温度は図中Aにて示すように10℃程
度上昇して140℃程度となったが、通雷の室温変化範
囲ではその検出精度に支障はなかった。
However, as a fate of the method of the present invention, the reaction temperature is influenced by the outside temperature and temperature, but as shown in Figure 7, if the atmospheric temperature near the reactor 1 is raised in the middle of this measurement, the reaction will occur. Although the temperature increased by about 10°C to about 140°C as shown by A in the figure, there was no problem with the detection accuracy within the range of room temperature changes caused by lightning strikes.

このように本発明は反応器1及び検出容器6に3種液体
を連続的に送給するので連続測定が可能である。また本
発明は反応液の酸化還元電位に基づきCODを測定する
ので、tη濁排水或いは有色排水の場合にあっては測定
できる。更に本発明は自己発熱方式であるので、起動が
早く行なえるし、又反応の過熱が酸化剤の種類により限
定されるので過熱の恐れがな(、また100℃以上の反
応が大気圧下で実現でき安全性が高い。そし−C更にポ
ンプ34の流量調整により応答時間を変えることができ
る。
In this way, the present invention continuously supplies the three types of liquids to the reactor 1 and the detection container 6, so continuous measurement is possible. Furthermore, since the present invention measures COD based on the oxidation-reduction potential of the reaction solution, it is possible to measure COD in the case of turbid wastewater or colored wastewater. Furthermore, since the present invention uses a self-heating method, it can be started quickly, and since the overheating of the reaction is limited depending on the type of oxidizing agent, there is no risk of overheating (also, the reaction can be carried out at temperatures of 100°C or higher under atmospheric pressure). This method can be realized and is highly safe.Furthermore, the response time can be changed by adjusting the flow rate of the pump 34.

なお北記説明では加水により昇温する液体として濃硫酸
を用いているが、本発明はこれに限らず加水により発熱
して沸点が上昇(100℃以上に)しυ1水と過マンガ
ン酸カリウム/8液とを反応せしめ、しかもCOD測定
値に誤差が生ぜしめない液体を使用してもよいことは勿
論である。また本発明は被測定熔11だとして排水ζこ
限ろことなく伯の?Ik体であってもCODを測定でき
ることは勿論である。
In addition, in the description given in the North, concentrated sulfuric acid is used as the liquid whose temperature increases when water is added, but the present invention is not limited to this, and when water is added, heat is generated and the boiling point rises (to 100°C or more), and υ1 water and potassium permanganate/ Of course, it is also possible to use a liquid that reacts with the 8 liquid and does not cause an error in the COD measurement value. Furthermore, the present invention is not limited to the wastewater ζ, assuming that the melt to be measured is 11. Of course, COD can be measured even in Ik bodies.

以上詳述した如く本発明に係るCOO測定方法は、被測
定溶液、酸化剤/g液液加加水まり昇温する液体を混合
して反応せしめ、反応液の酸化還元電位に基づきC01
〕を測定するので、3種液体を反応器に連続送給しされ
ずれは迅速に連続測定でき、また外部過熱が不要である
と共に過熱が起らないので安全性が高く、更に汚濁或い
は有色の被測定溶液の場合にも測定できる。そして本発
明を使用するにおいて、その測定操作が簡潔であり、こ
のため安価なモニタリング装置を提供できる等本発明は
優れた効果を奏する。
As described in detail above, the COO measuring method according to the present invention involves mixing and reacting a solution to be measured, an oxidizing agent/g liquid, and a liquid whose temperature increases, and based on the oxidation-reduction potential of the reaction liquid, C01
], the three types of liquids are continuously fed into the reactor, and deviations can be measured rapidly and continuously. Also, external heating is not required and overheating does not occur, making it highly safe. It can also be measured in the case of a solution to be measured. When using the present invention, the measuring operation is simple, and therefore an inexpensive monitoring device can be provided, and the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は物質による酸化反応の違(、sのイタ11を表
わずグラフ、第2図は反応温度と酸イヒ反応喧生の異な
る物質の酸化後のORP値の特性を示したり゛ラフ、第
3図は本発明の実施例を示した枳弐図、第4図1は反応
器の構造を示した縦断面図、第51Z+4よ第4図のy
−v線による横断面図、第6図、第7図(よ本発明によ
る測定結果を示したり゛ラフである。 1・・・反応器 6・・・酸化還元電位検出音2引6a
・・・酸化還元電極 7・・・温度・酸化還元型イ立)
灸11」器 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河 野 登 夫 第 4 図 第 5 図 0 05 l 、0 1.5 ORPイa(V) 0 100 200 ’ICK) 反応温度(°C) 第 G 図 0RP(!(V) 上□□□□−−−」 0 100 2ω ηO 反応恩7!(’C) 第 v 図
Figure 1 is a graph showing the differences in oxidation reactions depending on the substance. , FIG. 3 is a diagram showing an embodiment of the present invention, FIG. 4 1 is a vertical cross-sectional view showing the structure of the reactor, and y of FIG.
-V-line cross-sectional view, Figures 6 and 7 (showing the measurement results according to the present invention are rough) 1... Reactor 6... Redox potential detection sound 2 Draw 6a
...Redox electrode 7...Temperature/Redox type (I)
"Moxibustion 11" Device Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Norio Kono Figure 4 Figure 5 °C) No. G Fig.0RP(!(V) 上□□□□----"0 100 2ω ηO Reaction 7! ('C)

Claims (1)

【特許請求の範囲】 1、被ij++1定溶液と酸化剤溶液とを昇温して反応
させ、被測定溶液のCODを測定する方法において、被
測定溶液及び酸化剤溶液と加水により胃温する液体とを
混合せしめ、これにより胛温して反応した反応液の酸化
還元電位を検出し、この検出結果に基づき被測定溶液の
CODを測定することを特徴とするCOD測定方法。 2、 被測定溶液と酸化剤溶液とを昇温して反応さ−U
、被測定溶液のCODを測定する装置において、被測定
溶液、酸化剤溶液、加水により9′112111する液
体を送給する送給手段と、送給された前述の液体を混合
して反応ざ−lる反応器と、反応した液体の酸化還元電
位を測定する検出器とを具備し、この検出結果に基づき
被測定溶液のCODを測定すべくなしたことを特徴とす
るCot1測定装置。
[Scope of Claims] 1. In a method of measuring the COD of a solution to be measured by raising the temperature of a constant solution of ij++1 and an oxidizing agent solution to cause a reaction, a liquid that warms the stomach by adding water to the solution to be measured and the oxidizing agent solution A method for measuring COD, which comprises: detecting the oxidation-reduction potential of a reaction solution that has reacted by heating the mixture, and measuring the COD of the solution to be measured based on the detection result. 2. Raise the temperature of the solution to be measured and the oxidizing agent solution to cause a reaction.
In an apparatus for measuring the COD of a solution to be measured, a feeding means for feeding the solution to be measured, an oxidizing agent solution, and a liquid that is dissolved by adding water; 1. A Cot1 measuring device comprising a reactor and a detector for measuring the redox potential of a reacted liquid, and measuring the COD of a solution to be measured based on the detection result.
JP58235893A 1983-12-13 1983-12-13 Cod measuring method and apparatus therefor Pending JPS60127448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235893A JPS60127448A (en) 1983-12-13 1983-12-13 Cod measuring method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235893A JPS60127448A (en) 1983-12-13 1983-12-13 Cod measuring method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS60127448A true JPS60127448A (en) 1985-07-08

Family

ID=16992800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235893A Pending JPS60127448A (en) 1983-12-13 1983-12-13 Cod measuring method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS60127448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466558A (en) * 1987-09-07 1989-03-13 Toa Electronics Oxidizing/reducing potential difference
WO2004025672A3 (en) * 2002-09-11 2004-06-24 Korea Biosystems Corp Composite electrode for electrochemical cod measurement
KR100461965B1 (en) * 2002-03-29 2004-12-17 한국과학기술연구원 Detection kit and method for low cod concentration samples
KR100461964B1 (en) * 2002-03-29 2004-12-17 한국과학기술연구원 Detection kit and method for high cod concentration samples

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466558A (en) * 1987-09-07 1989-03-13 Toa Electronics Oxidizing/reducing potential difference
KR100461965B1 (en) * 2002-03-29 2004-12-17 한국과학기술연구원 Detection kit and method for low cod concentration samples
KR100461964B1 (en) * 2002-03-29 2004-12-17 한국과학기술연구원 Detection kit and method for high cod concentration samples
WO2004025672A3 (en) * 2002-09-11 2004-06-24 Korea Biosystems Corp Composite electrode for electrochemical cod measurement

Similar Documents

Publication Publication Date Title
EP0375326B1 (en) Determining or monitoring parameters in boiler systems
US4049382A (en) Total residual chlorine
JP5622063B1 (en) Chemical oxygen consumption (COD) automatic measuring device
US3948746A (en) Dissolved oxygen probe
CN110346509A (en) A kind of online permanganate index monitor of water quality and detection method
US4822474A (en) Residual analyzer assembly
JPS60127448A (en) Cod measuring method and apparatus therefor
CN105738361A (en) Automatic analyzer for index of permanganate in water and analysis method
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
ITMI961330A1 (en) SYSTEM FOR MONITORING BIOCIDAL TREATMENTS
Kieselbach Continuous recording of concentration of organic matter in waste water
KR100952179B1 (en) Orp reference electrode for using oxidation reduction cod log relative error
RU59832U1 (en) DEVICE FOR MEASURING THERMOPHYSICAL PARAMETERS
JP4516659B2 (en) COD automatic measuring instrument and COD automatic measuring method
US3218242A (en) Measurement of the concentration of dissolved oxygen in liquids
CN103364377B (en) The measuring method of macroscopic mixing time and application in a kind of strong electrolytic solution
JP6559767B2 (en) COD measuring apparatus and COD measuring method
EP0887641A1 (en) Electrochemical sensor for detection of chlorine in phosgene
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
CN219417364U (en) Automatic potentiometric titrator reaction vessel clamp with heating function
Adams Determination of total carbon in soils by the wet oxidation method
JP7498776B2 (en) Carbon Measurements in Aqueous Samples Using Oxidation at High Temperature and Pressure Produced by Resistive Heating
CN201343458Y (en) High-temperature high-pressure micro-reflux water sample digestion instrument for monitors
JPS6248192B2 (en)
CN106290343A (en) Total surplus line oxide real-time detection apparatus and detection method