JPS63182257A - Novel manufacture of silicon carbide sintered body - Google Patents

Novel manufacture of silicon carbide sintered body

Info

Publication number
JPS63182257A
JPS63182257A JP62008985A JP898587A JPS63182257A JP S63182257 A JPS63182257 A JP S63182257A JP 62008985 A JP62008985 A JP 62008985A JP 898587 A JP898587 A JP 898587A JP S63182257 A JPS63182257 A JP S63182257A
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
powder
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62008985A
Other languages
Japanese (ja)
Other versions
JPH0534307B2 (en
Inventor
紀博 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62008985A priority Critical patent/JPS63182257A/en
Publication of JPS63182257A publication Critical patent/JPS63182257A/en
Publication of JPH0534307B2 publication Critical patent/JPH0534307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は微細組織の優れた炭化ケイ素焼結体の新規な製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a novel method for producing a silicon carbide sintered body having an excellent microstructure.

(背景技術) 炭化ケイ素の微粉末を焼結して得られるセラミ7り焼結
体は、高温構造材料として用途の拡大が期待されている
(Background Art) Ceramic sintered bodies obtained by sintering fine powder of silicon carbide are expected to find expanded use as high-temperature structural materials.

炭化ケイ素焼結体の保有する注目すべき長所として、高
温下での高い強度、優れた耐蝕性、高い熱伝導率、低い
熱膨張率などが挙げられる。従って、これらの長所を持
っている炭化ケイ素焼結体は自動車用ガスタービン部材
及びエンジン部材、高温用熱交換器、ベアリング、燃焼
炉用バーナーなどの用途への研究開発が積極的に進めら
れている。
Notable advantages of silicon carbide sintered bodies include high strength at high temperatures, excellent corrosion resistance, high thermal conductivity, and low coefficient of thermal expansion. Therefore, silicon carbide sintered bodies with these advantages are being actively researched and developed for use in automobile gas turbine parts and engine parts, high-temperature heat exchangers, bearings, burners for combustion furnaces, etc. There is.

複雑形状のセラミック焼結体を工業的に製造するに適す
る方法は無加圧焼結法である。
A pressureless sintering method is suitable for industrially producing ceramic sintered bodies with complex shapes.

しかしながら、炭化ケイ素粉末は代表的な難焼結物質で
あるので、無加圧焼結を可能にするには特別の工夫が必
要である。従来、炭化ケイ素の焼結方法については、特
許を含めいくつかの方法が提案されており、その代表的
な方法としては、ホウ素及び炭素を焼結助剤として使用
する下記2つの米国特許及びこれに対する日本特許が挙
げられる。すなわち: (1)米国特許4,004,934号公報、(特公昭5
7−32035号公報) (2)米国特許4,321,954号公報、(特公昭5
9−34147号公報) (1)の方法はβ晶炭化ケイ素粉末に対し、0.3〜3
.0重世%の単体ホウ素に相当する量のホウ素化合物と
0.1〜1.0重量%の単体炭素に相当する量の炭素源
とを添加混合した後、この混合物を成形し、不活性な雰
囲気下において無加圧で1900〜2100℃の高温に
加熱して炭化ケイ素焼結体を得る方法である。
However, since silicon carbide powder is a typical material that is difficult to sinter, special measures are required to enable pressureless sintering. Conventionally, several methods including patents have been proposed for sintering silicon carbide, and representative methods include the following two U.S. patents that use boron and carbon as sintering aids; There is a Japanese patent for this. Namely: (1) U.S. Patent No. 4,004,934,
(2) U.S. Patent No. 4,321,954, (Japanese Patent Publication No. 7-32035)
9-34147) Method (1) uses 0.3 to 3
.. After adding and mixing a boron compound in an amount equivalent to 0 weight percent elemental boron and a carbon source in an amount equivalent to 0.1 to 1.0 weight percent elemental carbon, this mixture is molded and This is a method of obtaining a silicon carbide sintered body by heating to a high temperature of 1900 to 2100° C. in an atmosphere without pressure.

(2)の方法は5重量%以上のα晶を含む炭化ケイ素粉
末に対し、0.15〜3.0重量%の単体ホウ素に相当
する量のホウ素化合物と0.5〜5.0重量%の単体炭
素に相当する量の炭素化合物とを加えて高温に加熱し、
炭化ケイ素の粉末と焼結体とが実質的に結晶形態の変化
を生しることなく、すなわち、出発原料である炭化ケイ
素粉末中の炭化ケイ素の結晶形態が最終的な焼結体中の
結晶形態とぶ本質的に同じ割合になるようにして、炭化
ケイ素焼結体を得る方法である。
Method (2) is based on silicon carbide powder containing 5% by weight or more of α crystals, and a boron compound in an amount equivalent to 0.15% to 3.0% by weight of elemental boron and 0.5% to 5.0% by weight. of carbon compound in an amount equivalent to the elemental carbon and heated to high temperature,
The silicon carbide powder and the sintered body do not substantially change in crystal form, that is, the crystal form of silicon carbide in the starting material silicon carbide powder changes to the crystal form in the final sintered body. This is a method of obtaining a silicon carbide sintered body by making the shape jump essentially the same ratio.

これらの方法で得られる炭化ケイ素焼結体は、炭化ケイ
素の理論密度の95%以上に達する緻密な焼結体である
。しかしながらこれらの方法で得られた炭化ケイ素焼結
体は、自動車用ガスタービンなどの機械的負荷の大きい
用途に対しては、機械的強度が低くかつ強度のバラツキ
が大きすぎるという問題があって工業的実用化の障害と
なっている。
The silicon carbide sintered body obtained by these methods is a dense sintered body that reaches 95% or more of the theoretical density of silicon carbide. However, the silicon carbide sintered bodies obtained by these methods have low mechanical strength and too large variations in strength for applications that require large mechanical loads such as gas turbines for automobiles, so they are not suitable for industrial use. This is an obstacle to practical application.

一般にセラミンク焼結体の機械的物性と焼結体の微細組
織とは関連が強いことが知られており、強度が高い焼結
体であるためには、その微細組繊が下記する(a)〜(
c)の3つの条件を満足することが好ましいとされてい
る。ここで焼結体の微細組織とは、焼結体を構成する粒
子及び欠陥(空隙)の三次元的構造をいう。
It is generally known that there is a strong relationship between the mechanical properties of a ceramic sintered body and the microstructure of the sintered body, and for a sintered body to have high strength, its microstructure must meet the following conditions (a). ~(
It is said that it is preferable to satisfy the three conditions c). Here, the microstructure of a sintered body refers to a three-dimensional structure of particles and defects (voids) that constitute the sintered body.

(a)焼結体に含まれる欠陥が少なくかつ小さいこと。(a) The defects contained in the sintered body are few and small.

(b)焼結体を構成する単一粒子の粒子径が小さいこと
(b) The particle size of the single particles constituting the sintered body is small.

(c)焼結体中には50μを越すような特異的に成長し
た粗大粒子が存在しないこと。
(c) There are no specifically grown coarse particles exceeding 50μ in the sintered body.

また、更に最近定説になりつつあるが次の(d)の条件
を満足することである。
Furthermore, the following condition (d), which has recently become an established theory, must be satisfied.

(d)焼結体を構成する粒子の形状に異方性があること
(d) The shape of the particles constituting the sintered body has anisotropy.

ここで上記(c)の粗大粒子の発生は、従来は焼結時に
おける相転移にその原因があるとの見解があり、相転移
を生しさせない焼結条件の把握に努力が払われてきた0
例えば前記特公昭57−32035号公報には、β晶か
ら7品への相転移が粒子を粗大に成長させる原因になる
として、同公報はその5頁右段に、窒素雰囲気を使用す
るこの防止法を提案している。また特公昭59−341
47号公報の3頁左段には、「出発原料中の炭化ケイ素
の結晶形態が最終的な非加圧焼結体の結晶形態と本質的
に同じ割合になる。」と明確に記載されている。
Here, the generation of coarse particles in (c) above has traditionally been thought to be caused by phase transition during sintering, and efforts have been made to understand sintering conditions that do not cause phase transition. 0
For example, in the above-mentioned Japanese Patent Publication No. 57-32035, it states that the phase transition from β-crystal to 7-crystalline crystals causes the grains to grow coarsely, and on the right side of page 5, the publication states that this problem can be prevented by using a nitrogen atmosphere. proposing a law. Also, special public service 59-341
On the left side of page 3 of Publication No. 47, it is clearly stated that "the crystalline form of silicon carbide in the starting material has essentially the same proportion as the crystalline form of the final non-pressure sintered body." There is.

更に(d)の条件である粒子の形状に異方性のあるとい
うことは、焼結体が破損する際に生じる破断面が増加す
ることであり、従ってこの破断面の増加は焼結体の破壊
に要するエネルギーを増大させるためと推察される。す
なわち焼結体が破壊されにくいということである。ここ
で粒子の形状の異方性とは、板状や棒状のように粒子の
形状に三次元的な異方性があることをいう。なお、言う
までもなく、焼結体全体としては特定方向の粒子の配向
性がないことが必要である。
Furthermore, the condition (d) that the particle shape is anisotropic means that the fracture surface that occurs when the sintered body breaks increases, and therefore, this increase in the fracture surface increases the It is presumed that this is to increase the energy required for destruction. In other words, the sintered body is difficult to break. Here, the anisotropy of particle shape refers to the presence of three-dimensional anisotropy in the shape of particles, such as plate-like or rod-like shape. Needless to say, the sintered body as a whole must have no grain orientation in a specific direction.

従来の技術ではこれら上記(a)〜(d)の条件をいず
れも満足する炭化ケイ素焼結体は得られていない。例え
ば本発明者らの実験によれば、前記(1)の方法(特公
昭57−32035号公報の方法)では、粗大粒子が発
生し易いといった欠点を克服することが出来ず、また(
2)の方法(特公昭59−34147号公報の方法)で
は、焼結体の単一粒子に異方性がなく、強度の高い焼結
体が得られないという問題がある。
Conventional techniques have not produced a silicon carbide sintered body that satisfies all of the above conditions (a) to (d). For example, according to the experiments conducted by the present inventors, the method (1) described above (the method disclosed in Japanese Patent Publication No. 57-32035) cannot overcome the drawback that coarse particles are likely to be generated;
The method 2) (method disclosed in Japanese Patent Publication No. 59-34147) has a problem in that a single particle of the sintered body has no anisotropy and a sintered body with high strength cannot be obtained.

(基本的着想) 本発明者等は、機械的強度が高くかつそのバラツキが小
さい炭化ケイ素焼結体を得ることを目的とし、焼結体を
構成する粒子の微細構造が、その指針として従来より提
言されてきた前記(a)〜(d)の条件をいずれも満足
する焼結体を得ることを目標として鋭意検討を進めた結
果、以下に記す原料粉末を使用し、かつ焼結条件を特定
することにより、上記(a)〜(d)の条件を満足する
微細組織が再現性よく得られることを見出し、更に(a
)〜(d)の条件の微細組織を存する焼結体は事実とし
て機械的強度が高く、かつそのバラツキが小さいことを
6I 1fflし、本発明を完成するに到ったものであ
る。
(Basic idea) The present inventors aimed to obtain a silicon carbide sintered body with high mechanical strength and small variations in mechanical strength, and the microstructure of the particles constituting the sintered body has been used as a guideline for this purpose. As a result of intensive study with the goal of obtaining a sintered body that satisfies all of the proposed conditions (a) to (d) above, we used the raw material powder described below and specified the sintering conditions. It has been found that a microstructure satisfying the conditions (a) to (d) above can be obtained with good reproducibility by
The present invention has been completed based on the fact that a sintered body having a microstructure under the conditions of ) to (d) has high mechanical strength and small variations in mechanical strength.

(発明の詳細な開示) すなわち、本発明に従えば、 炭化ケイ素粉末100重量部に0.05〜0゜3重量部
のホウ素及び0.5〜3.0重量部の炭素を添加混合し
た後、該混合物を成形し、1900〜2050℃にて加
熱焼結させて炭化ケイ素焼結体を得る方法において、 ■核皮化ケイ素粉末の物性は以下に示す(イ)、(ロ)
、(ハ)の条件を満足するものであり=(イ)平均粒子
径ρが0.1〜0.2μであること。
(Detailed disclosure of the invention) That is, according to the present invention, after adding and mixing 0.05 to 0.3 parts by weight of boron and 0.5 to 3.0 parts by weight to 100 parts by weight of silicon carbide powder. In the method of obtaining a silicon carbide sintered body by molding the mixture and heating and sintering it at 1900 to 2050°C, the physical properties of the cored silicon powder are shown below (a) and (b).
, and (c), and (i) the average particle diameter ρ is 0.1 to 0.2 μ.

(ロ)粒子径の標準偏差が0.8×ρ以下であること。(b) The standard deviation of particle diameter is 0.8×ρ or less.

(ハ)結晶形は80重量%以上のβ晶と、20重量%以
下の低温型α晶を含むものであること。
(c) The crystal form must contain 80% by weight or more of β crystals and 20% by weight or less of low-temperature α crystals.

■核部合物成形体を加熱昇温するに際し、r 1750
〜1900℃の温度域では1〜10’C/分の昇温速度
を保持し、 11かつ、この昇温過程においてα晶の含有量が5重量
%以下の中間状態を経由せしめるようにした後、190
0〜2050”Cにて加熱焼結せしめ:■下記する(二
)、(ホ)、(へ)の特性により特徴ずけられる焼結体
を得ることからなる、炭化ケイ素焼結体の新規な製造方
法。
■When heating the core compound molded product, r 1750
In the temperature range of ~1900°C, a heating rate of 1 to 10'C/min is maintained, and in this heating process, the content of α crystals is passed through an intermediate state of 5% by weight or less. , 190
Heat sintering at 0 to 2050"C: ■ A novel method of silicon carbide sintered bodies, which consists of obtaining a sintered body characterized by the following properties (2), (e), and (f). Production method.

(ニ)焼結体密度が3.10g/cc以上であること。(d) The density of the sintered body is 3.10 g/cc or more.

(ホ)微細組織の平均粒子径が3〜15μでアスペクト
比が5〜20であること。
(e) The average particle diameter of the microstructure is 3 to 15 μm and the aspect ratio is 5 to 20.

(へ)結晶形は8I1%以上のβ晶と20重量%以下の
高温型α晶を含むものであること。
(f) The crystal form must contain 1% or more of 8I β crystals and 20% by weight or less of high-temperature α crystals.

が提供される。is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明で使用する原料炭化ケイ素粉末は次の3つ
の要件を満足するものであることが要請される。
First, the raw material silicon carbide powder used in the present invention is required to satisfy the following three requirements.

第1の要件は粉末の平均粒子径ρが0.1〜0.2μで
あることである。その理由は、ρが0.2μをを越える
と得られる炭化ケイ素焼結体の密度が3、LOg/cc
を超えに(いからであり、ρが0.1 μ未満であると
焼結の駆動力が大き過ぎるためか、焼結体に粗大粒子が
発生し易いためであり、何れにしても本発明の目的を達
成することは出来ない。
The first requirement is that the powder has an average particle diameter ρ of 0.1 to 0.2 μ. The reason is that when ρ exceeds 0.2μ, the density of the silicon carbide sintered body obtained is 3, LOg/cc.
If ρ is less than 0.1 μ, this is because the driving force for sintering is too large or coarse particles are likely to be generated in the sintered body. cannot achieve its purpose.

第2の要件は粉末の粒子径の標準偏差が0.8×ρ以下
の粒径分布の狭いものであることである。
The second requirement is that the powder has a narrow particle size distribution with a standard deviation of particle size of 0.8×ρ or less.

けだし、焼結体の微細組繊の粒子径分布が狭く粗大粒子
を発生させないためには、原料粉末の粒径分布が狭いこ
とが不可欠であるという、本発明者等の実験的知見に基
づくものである。なお、粒子径の測定法は後記する〔粒
子径測定法〕に詳述した如く、電子顕微鏡像より求める
方法を採用することが好ましい。
This is based on the experimental findings of the present inventors that in order to prevent the generation of coarse particles, the particle size distribution of the fine fibers of the sintered body is narrow and that it is essential that the particle size distribution of the raw material powder is narrow. It is. As a method for measuring the particle size, it is preferable to employ a method of determining the particle size from an electron microscope image, as detailed in the section [Particle Size Measurement Method] below.

第3の要件は、炭化ケイ素粉末の結晶形が、80%以上
のβ晶と、低温型7品(2H)を含むことである。低温
型α晶(2H)が20%以下であるとは、すなわち焼結
時にその殆どが3品に相転移する結晶形を20%以下含
むことを意味する。その理由は、この第3の要件が満足
される場合についてのみ、焼結体の粒子に異方性(アス
ペクト比で表示される)が生しるという本発明者等の実
験的知見に基づくものである。更に炭化ケイ素粉末に含
まれる高温型α晶(4H,6H,15R)の含有量は、
1%以下の痕跡程度であることが好ましい。
The third requirement is that the crystal form of the silicon carbide powder contains 80% or more of β crystals and 7 low-temperature types (2H). 20% or less of low-temperature α-crystals (2H) means that 20% or less of crystal forms, most of which undergo a phase transition into three products during sintering, are included. The reason for this is based on the experimental findings of the present inventors that anisotropy (represented by aspect ratio) occurs in the particles of the sintered body only when this third requirement is satisfied. It is. Furthermore, the content of high-temperature α crystals (4H, 6H, 15R) contained in silicon carbide powder is
Preferably, the amount is at a trace level of 1% or less.

上記3つの要件を満足する炭化ケイ素粉末は、基本的に
、本発明者等が先に特開昭59−83922号公報にて
提案した方法、すなわち分解性ケイ素化合物と分解性炭
素化合物より一旦化学反応によってケイ素酸化物と単体
炭素とが極めて微細に混合した粉末を製造し次にこの粉
末を0.15g/cc以上の嵩密度に緊縮した後、16
00〜1900℃程度に加熱することにより容易に得る
ことが出来る。
Silicon carbide powder that satisfies the above three requirements is basically produced by the method previously proposed by the present inventors in JP-A No. 59-83922, that is, by chemically processing a decomposable silicon compound and a decomposable carbon compound. After producing a powder containing an extremely fine mixture of silicon oxide and elemental carbon by reaction, and then compressing this powder to a bulk density of 0.15 g/cc or more, 16
It can be easily obtained by heating to about 00 to 1900°C.

なお、β晶を主成分とする炭化ケイ素微粉末の他の製造
法としては、従来、次の2つの方法が代表的な方法とし
て知られている。すなわち、(イ)ケイ素酸化物と炭素
またはシリコンと炭素とを機械的に混合した後、200
0℃以下に加熱し、生成した炭化ケイ素を微粉砕する方
法。
Note that, as other methods for producing fine silicon carbide powder containing β crystals as a main component, the following two methods are conventionally known as representative methods. That is, (a) after mechanically mixing silicon oxide and carbon or silicon and carbon, 200
A method of heating to below 0°C and pulverizing the generated silicon carbide.

(ロ) 5iHa、5i(CHi)4などのケイ素化合
物とCH4゜C2116などの炭素化合物とを、120
0’C以上に加熱されたプラズマ雰囲気中に導入し、水
素の存在下で気相反応せしめて炭化ケイ素を生成させる
方法。
(b) A silicon compound such as 5iHa, 5i(CHi)4 and a carbon compound such as CH4°C2116 are combined at 120
A method of introducing silicon carbide into a plasma atmosphere heated to 0'C or higher and causing a gas phase reaction in the presence of hydrogen to produce silicon carbide.

しかしながら、本発明者等が上記(イ)(ロ)の2つの
方法を追跡実験した結果では、(イ)の方法で得られる
粉末は、0.1μ以下に微粉砕された粒子と数μの粒子
とが共存する粒度分布の広い粉末であり、また、(ロ)
の方法で得られる粉末は、単一粒子は0.1 μ程度の
大きさであるが、粒子と粒子が強固に凝集していて、見
掛は上の粒径が大きく粒径分布の広い粉末である。従っ
て、上記(イ)及び(ロ)の方法で得られる炭化ケイ素
粉末はいずれも本発明の原料としては適当でない。
However, according to the results of follow-up experiments conducted by the present inventors on the two methods (a) and (b) above, the powder obtained by method (a) has two types: particles pulverized to 0.1 μm or less and particles of several μm. It is a powder with a wide particle size distribution that coexists with particles, and (b)
The powder obtained by this method has a single particle size of about 0.1 μ, but the particles are tightly aggregated, giving the appearance of a powder with a large upper particle size and a wide particle size distribution. It is. Therefore, neither of the silicon carbide powders obtained by the above methods (a) and (b) is suitable as a raw material for the present invention.

さて、炭化ケイ素焼結体は炭化ケイ素粉末を所望の形状
に成形した後焼結して得られるが、本発明においては、
成形に先立って炭化ケイ素粉末に、単体ホウ素またはホ
ウ素化合物及び単体炭素を焼結を促進させるための焼結
助剤として少量添加混合して混合物とする。その添加量
は、炭化ケイ素粉末100部に対し、前者は単体ホウ素
換算として0.05〜0.3部、後者は0.5〜3.0
部である。
Now, a silicon carbide sintered body is obtained by molding silicon carbide powder into a desired shape and then sintering it, but in the present invention,
Prior to molding, a small amount of elemental boron or a boron compound and elemental carbon are added and mixed as sintering aids to promote sintering to silicon carbide powder to form a mixture. The amount of the former is 0.05 to 0.3 parts in terms of elemental boron, and the latter is 0.5 to 3.0 parts per 100 parts of silicon carbide powder.
Department.

当然のことであるが、焼結助剤はその目的上、炭化ケイ
素粉末と出来るだけ均一に混合させることが望ましく、
そのためには、これを比表面積で表示した場合、単体ホ
ウ素またはホウ素化合物は比表面積が3n(/g以上、
また単体炭素は比表面積が3On(/g以上の微粉末状
のものが好ましい。
Naturally, for its purpose, it is desirable to mix the sintering aid with the silicon carbide powder as uniformly as possible.
For this purpose, when expressing this in terms of specific surface area, elemental boron or boron compounds must have a specific surface area of 3n (/g or more),
Further, the elemental carbon is preferably in the form of a fine powder with a specific surface area of 3 On (/g or more).

炭化ケイ素粉末と上記焼結助剤の混合はボールミル、振
動ミル等を用いて行われるが、より均一な混合物を得る
ためには、水あるいはメタノール、エタノールなどの有
機溶媒を加えて、湿式でボールミル、振動ミル等を使用
して混合する方法が好ましい、すなわち、単体ホウ素微
粉末またはホウ素化合物微粉末、単体炭素微粉末及び炭
化ケイ素微粉末に、水あるいはメタノール等の有機溶媒
を加えて混合した後、水あるいは有機溶媒を蒸発除去す
る方法である。
The silicon carbide powder and the above-mentioned sintering aid are mixed using a ball mill, vibration mill, etc., but in order to obtain a more homogeneous mixture, water or an organic solvent such as methanol or ethanol is added and a wet ball mill is used. A method of mixing using a vibrating mill or the like is preferable, that is, after adding and mixing water or an organic solvent such as methanol to fine elemental boron powder, fine boron compound powder, fine elemental carbon powder, and fine silicon carbide powder. This is a method of removing water or organic solvent by evaporation.

なお、本発明で使用し得る上記ホウ素化合物としては、
微粉末状のB4C,BN、 BP 1AIB2などが好
ましいものとして挙げられる。また微粉末状の単体炭素
としてはカーボンワ゛ランク、アセチレンフ゛ランク、
などが好ましいものとして挙げられる。
The boron compounds that can be used in the present invention include:
Preferable examples include fine powder B4C, BN, BP 1AIB2, and the like. In addition, fine powdered elemental carbon includes carbon wine rank, acetylene rank,
etc. are listed as preferred.

かくして得られた焼結助剤を少量含有した炭化ケイ素粉
末からなる混合物は、次にこれを所望する形状に成形し
、次いで真空中もしくはアルゴン、ヘリウムなどの不活
性ガス雰囲気中で無加圧下、すなわち成形体の表面に機
械的な圧力を作用させることなく、1900〜2050
℃に加熱することによって炭化ケイ素焼結体とする。
The thus obtained mixture of silicon carbide powder containing a small amount of sintering aid is then molded into a desired shape, and then molded in vacuum or in an inert gas atmosphere such as argon or helium without pressure. That is, 1900 to 2050 without applying mechanical pressure to the surface of the molded product.
A silicon carbide sintered body is obtained by heating to ℃.

本発明においては、この場合、該1900〜2050℃
の加熱温度迄の昇温過程における昇温速度を1750〜
1900℃の温度域では1〜10’C/分の特定の範囲
に保持することが要請される。けだし、昇温速度があま
り太きく10’C/分を超えると、低温型α晶からβ晶
への相転移よりも低温型α晶から高温型α晶への相転移
の方が生じ易くなり、このため、本発明で規定するα晶
が5%以下の中間状態を経由せしめるようにすることが
困難になり、焼結体の粒子の異方性の確保が不充分とな
る不都合があるからである。逆に昇温速度があまり小さ
く1℃/分未満では、焼結体の粒子が肥大化し易くなり
これまた本発明の目的を達成することが出来ないという
、本発明者らの実験的知見によるものである。なお、こ
の中間状態におけるα晶は低温型と高温型両者の総和を
意味するものとする。
In the present invention, in this case, the 1900 to 2050°C
The heating rate in the heating process up to the heating temperature of 1750~
In the temperature range of 1900°C, it is required to maintain the temperature within a specific range of 1 to 10'C/min. However, if the heating rate is too high and exceeds 10'C/min, the phase transition from low temperature α crystal to high temperature α crystal will occur more easily than the phase transition from low temperature α crystal to β crystal. For this reason, it becomes difficult to pass through an intermediate state in which the α crystal content is 5% or less as specified in the present invention, and there is a disadvantage that the anisotropy of the particles of the sintered body is insufficiently ensured. It is. On the other hand, according to the experimental findings of the present inventors, if the heating rate is too low and less than 1° C./min, the particles of the sintered body tend to enlarge and the object of the present invention cannot be achieved. It is. Note that the α crystal in this intermediate state means the sum of both the low-temperature type and the high-temperature type.

以上詳細に述べた如く本発明の方法に従えば、以下に述
べる3つの特性を併せもつ炭化ケイ素焼結体を得ること
が出来る。すなわち; まず第1に、焼結体の密度が3.10g / cc以上
であり、第2に、微細組繊の平均粒子径が3〜15μで
かつアスペクト比が5〜20であるようなものである。
As described in detail above, by following the method of the present invention, it is possible to obtain a silicon carbide sintered body having the following three characteristics. That is; firstly, the density of the sintered body is 3.10 g / cc or more, and secondly, the average particle size of the fine fibers is 3 to 15μ and the aspect ratio is 5 to 20. It is.

なお、微細!JI織とは先述した如く焼結体を構成する
粒子及び欠陥の三次元的構造をいうが、ここで云う平均
粒子径及びアスペクト比の測定は、焼結体の表面を平滑
にし、これを顕微鏡で拡大して(通常100〜1000
倍)観られる像より求めるものとし、粒子径とはこの像
におけるそれぞれの粒子の最大長(L)と最小長(D)
の平均値とし、平均粒子径とは粒子径の算術平均値とし
、アスペクト比はL/Illの算術平均値としたもので
ある。これらは通常300個以上の粒子について求めれ
ば充分である。
In addition, it is minute! As mentioned above, JI weave refers to the three-dimensional structure of particles and defects that make up a sintered body, but the average particle diameter and aspect ratio are measured by smoothing the surface of the sintered body and using a microscope. (usually 100-1000)
The particle size is determined from the image seen (times), and the particle diameter is the maximum length (L) and minimum length (D) of each particle in this image.
The average particle diameter is the arithmetic mean value of particle diameters, and the aspect ratio is the arithmetic mean value of L/Ill. It is usually sufficient to determine these for 300 or more particles.

さらに、第3に、本発明の焼結体の結晶形は80%以上
の3品と20%以下の高温型α晶を含む焼結体であり、
更に好ましくは高温型α晶が5%以下の焼結体であるよ
うなものである。
Furthermore, thirdly, the crystal form of the sintered body of the present invention is a sintered body containing 80% or more of three types and 20% or less of high-temperature α crystals,
More preferably, the sintered body contains 5% or less of high-temperature α crystals.

本発明者等の実験的知見からすれば、低温型α晶が20
%以下(残りはβ晶)、より好ましくは5〜20%含ま
れる炭化ケイ素粉末を原料として、先述の如き条件で焼
結すれば、高温型α晶が20%以下(残りはβ晶)、よ
り好ましくは5%以下の組成の炭化ケイ素焼結体が極め
て再現性良く得られるのである。この焼結体は本発明で
目的とする優れた微細構造を有していることは勿論であ
る。
According to the experimental findings of the present inventors, the low-temperature α crystal is 20
% (the remainder is β crystals), more preferably 5 to 20%. If silicon carbide powder is used as a raw material and sintered under the conditions described above, high-temperature α crystals will be 20% or less (the remainder is β crystals), More preferably, a silicon carbide sintered body having a composition of 5% or less can be obtained with extremely high reproducibility. It goes without saying that this sintered body has the excellent microstructure that is the object of the present invention.

(発明の作用効果) 本発明は、従来より技術的思想としては、強く望まれな
がらも、現実にはその製造法が確立されていなかった、
優れた微細構造を有する炭化ケイ素焼結体の製造法を、
原料炭化ケイ素粉末の物性及び焼結条件を特定すること
によって確立したものである。
(Actions and Effects of the Invention) Although the present invention has been strongly desired as a technical idea, in reality, a manufacturing method thereof has not been established.
A method for manufacturing silicon carbide sintered bodies with excellent microstructure,
This was established by specifying the physical properties and sintering conditions of the raw material silicon carbide powder.

本発明の方法によって得られた焼結体の機械的強度を測
定した結果は、後記実施例に示すように従来の焼結体よ
りも明らかに強度が高くかつそのバラツキも小さく、ま
た破壊靭性値(K+c)も高いことが確認された。
The results of measuring the mechanical strength of the sintered body obtained by the method of the present invention show that the strength is clearly higher than that of the conventional sintered body and the variation is small, as shown in the examples below, and the fracture toughness value is It was confirmed that (K+c) was also high.

本発明の方法によって得られる炭化ケイ素焼結体は、上
記の如く優れた微細構造を有するが、その理由は次のよ
うに推察される。
The silicon carbide sintered body obtained by the method of the present invention has an excellent microstructure as described above, and the reason for this is presumed to be as follows.

(イ)原料粉末が易焼結性であるので、焼結助剤である
ホウ素の添加量が0.05〜0.3重量部と従来技術よ
りも少ない量で焼結が可能であり、このため焼結体中の
粗大粒子の発生が抑えられる。
(a) Since the raw material powder is easily sinterable, sintering can be carried out with the addition of boron, which is a sintering aid, in an amount of 0.05 to 0.3 parts by weight, which is smaller than in the conventional technology. Therefore, generation of coarse particles in the sintered body is suppressed.

(ロ)易焼結性の原料粉末を用いるので、焼結温度が1
900〜2050’Cと従来よりも低くすることが可能
であり、このため焼結体粒子の肥大化が抑えられる。
(b) Since an easily sinterable raw material powder is used, the sintering temperature is 1
It is possible to lower the temperature to 900 to 2050'C, which is lower than the conventional temperature, and therefore the enlargement of the sintered particles can be suppressed.

(ハ)焼結過程においてα晶が5%以下の中間状態を経
るため、焼結体粒子に異方性が生じる。
(c) During the sintering process, the sintered particles undergo an intermediate state in which the α crystal content is 5% or less, so anisotropy occurs in the sintered particles.

(実施例及び比較例) 以下、本発明のより具体的な実施の形態を実施例により
説明する。
(Examples and Comparative Examples) Hereinafter, more specific embodiments of the present invention will be described with reference to Examples.

災±欠土工■未 実施例及び比較例には表−1に示す品質の炭化ケイ素粉
末を使用した。
Disaster ± Missing Earth Work■ Silicon carbide powder of the quality shown in Table 1 was used for unexamined examples and comparative examples.

表−1における粉末1〜3は、本発明者等が先に特開昭
59−83922号公報において提案した方法、すなわ
ち水素を空気で燃焼させて得た火炎の中に、ケイ素化合
物として5iCI4を、炭素化合物としてC9留分を同
時に注入して得た、33.6%のSiO□と66.3%
単体炭素を含むスス状の極めて微細な混合物を、一旦0
.5 g/ccの嵩密度に緊縮した後、それぞれ170
0’C21800℃11900℃に加熱し、下記(1)
式に示す反応式により炭化ケイ素を生成せしめた後余剰
の炭素を燃焼除去して得たものである。
Powders 1 to 3 in Table 1 are prepared using the method previously proposed by the present inventors in JP-A-59-83922, in which 5iCI4 is added as a silicon compound into a flame obtained by burning hydrogen with air. , 33.6% SiO□ and 66.3% obtained by simultaneously injecting C9 fraction as carbon compounds.
A very fine soot-like mixture containing elemental carbon is once heated to zero.
.. 170 respectively after tightening to a bulk density of 5 g/cc.
Heat to 0'C21800℃11900℃ and perform the following (1)
It is obtained by burning off excess carbon after producing silicon carbide according to the reaction formula shown in the formula.

5iOz÷3C−+SiC+2CO・・−・・−・・・
−(1)粉末4は、5iHa、CHa及びH2とを直接
気相で反一応させて得たもので、従来公知の方法〔例え
ば、日本化学会誌、」、188−193(1980) 
)に準じて1400’Cの反応温度で生成させたもので
ある。
5iOz÷3C-+SiC+2CO・・・・・・・・・
-(1) Powder 4 is obtained by directly reacting 5iHa, CHa, and H2 in the gas phase, using a conventionally known method [e.g., Journal of the Chemical Society of Japan,'' 188-193 (1980).
) at a reaction temperature of 1400'C.

粉末5及び6は市販品であり、その顕微鏡像から、二酸
化ケイ素もしくはシリコンと単体炭素とを混合し、加熱
して得られた炭化ケイ素の粗粒を振動ミル等で長時間粉
砕して微粉化したものと推定された。
Powders 5 and 6 are commercially available products, and their microscopic images indicate that they are made by mixing silicon dioxide or silicon with elemental carbon, heating the resulting coarse particles of silicon carbide, and grinding them for a long time using a vibrating mill or the like. It is assumed that the

表−1の数値が示す通り、粉末1〜3は本発明の原料と
しての物性条件(イ)、(ロ)、(ハ)をすべて満足し
ている。これに比べ粉末4〜6は平均粒子径ρおよびそ
の標準偏差が本発明の規定値よりいずれも大きい。粉末
6は結晶形がβ晶を含まずしかも高温形のα晶のみであ
る。このように粉末4〜6は本発明で規定する原料とし
ての物性条件をいずれも満足していない。
As shown by the values in Table 1, Powders 1 to 3 satisfy all physical property conditions (a), (b), and (c) as raw materials of the present invention. In comparison, powders 4 to 6 have an average particle diameter ρ and a standard deviation thereof each larger than the specified values of the present invention. Powder 6 does not contain any β-crystals and is only high-temperature α-crystals. As described above, powders 4 to 6 do not satisfy any of the physical property conditions as raw materials specified in the present invention.

表−1に示した平均粒子径ρ及び粒子径の標準偏差の測
定法は後記分析法の総括の項で述べる〔粒子径測定法〕
に、同じく結晶形の割1合は〔結晶形定量法〕によって
求めた。
The method for measuring the average particle diameter ρ and the standard deviation of particle diameter shown in Table 1 will be described in the summary of analysis methods below [Particle diameter measurement method]
Similarly, the percentage of crystal form was determined by [crystal form determination method].

粉末1.4.5の透過型電子顕微鏡像をそれぞれ図−1
,2,3、に、粉末1の粉末X線回折像を図−4に示し
た。
Transmission electron microscope images of powders 1, 4, and 5 are shown in Figure 1.
, 2, 3, and the powder X-ray diffraction image of Powder 1 is shown in Figure 4.

スl」[Lユ1 表−1に示した粉末1〜3のそれぞれ100gに、ホウ
素源として比表面積が10.4m”/gの84G粉末0
.25gと、単体炭素源として比表面積が120.5m
”/gのカーボンブランク2gと、更にエタノールを5
0cc加えて、これらを樹脂製のボールミルで20時間
混合した。得られた混合物を加熱してエタノールを蒸発
除去して得た粉末の50gを、円筒容器に入れ0.57
/cfflの荷重で1軸圧縮した後、2T/CIIIの
静水圧でラバープレスし成形した。得られたそれぞれの
粉末成形体の密度を表−2に示した。
84G powder with a specific surface area of 10.4 m''/g as a boron source was added to 100 g of each of powders 1 to 3 shown in Table 1.
.. 25g and a specific surface area of 120.5m as a single carbon source.
”/g carbon blank and 5 ethanol.
0 cc was added and mixed in a resin ball mill for 20 hours. The obtained mixture was heated to remove ethanol by evaporation, and 50 g of the powder was placed in a cylindrical container and the amount of 0.57
After being uniaxially compressed under a load of /cffl, it was rubber pressed and molded under a hydrostatic pressure of 2T/CIII. Table 2 shows the density of each powder compact obtained.

次にこれらの粉末成形体を高周波加熱炉を用い10− 
’ 〜ITorrの真空下窒素雰囲気中で1950℃の
温度にて30分間加熱し、炭化ケイ素焼結体を得た。
Next, these powder compacts were heated in a high-frequency heating furnace for 10-
'~ITorr under vacuum in a nitrogen atmosphere at a temperature of 1950° C. for 30 minutes to obtain a silicon carbide sintered body.

昇温速度は、室温より1750’Cまでは50’C/分
、1750’Cより1900℃までは5℃/分とした。
The heating rate was 50'C/min from room temperature to 1750'C, and 5°C/min from 1750'C to 1900'C.

後さらに1950℃に昇温しで30分焼結した。得られ
た焼結体の密度、微細組繊の平均粒子径アスペクト比及
び結晶形を表−2に示した。
After that, the temperature was further raised to 1950°C and sintered for 30 minutes. The density of the obtained sintered body, the average particle diameter aspect ratio of the fine fibers, and the crystal form are shown in Table 2.

なお、上記のそれぞれの粉末成形体と同一の粉末成形体
を、上記と同一の昇温速度で加熱し、1900℃に達し
た段階で加熱を停止し、放冷させて炭化ケイ素焼結中間
体を得た。得られた焼結中間体の結晶形を表−2に示し
た。この焼結中間体の結晶形が、上記1950’Cで3
0分間加熱して得た炭化表−2 ケイ素焼結体の1つの中間状態を示すものと推察した。
The same powder compact as each of the above powder compacts was heated at the same temperature increase rate as above, and when the temperature reached 1900°C, the heating was stopped and allowed to cool to form a silicon carbide sintered intermediate. I got it. The crystal form of the obtained sintered intermediate is shown in Table 2. The crystal form of this sintered intermediate was changed to 3 at 1950'C.
Carbonization Table 2 obtained by heating for 0 minutes It was assumed that this shows one intermediate state of the silicon sintered body.

得られたそれぞれの炭化ケイ素焼結体より各20片の試
験片を切り出し、JIS R−1601の方法に従って
曲げ強度を測定した。また同様に各20片の試験片より
、ビンカーズ圧痕法によって破壊靭性値(K+c)を測
定した。これらの測定値を表−2に示した。
Twenty test pieces were cut out from each of the obtained silicon carbide sintered bodies, and the bending strength was measured according to the method of JIS R-1601. Similarly, the fracture toughness value (K+c) was measured using the Binkers indentation method for each of the 20 test pieces. These measured values are shown in Table-2.

表−2の数値が示す様に、本発明の条件を満たす物性の
原料粉末を使用し、本発明が特定する条件で焼結させた
炭化ケイ素焼結体は、いずれも本発明の目的を満足する
特性を持ったものであった。
As shown by the values in Table 2, any silicon carbide sintered body produced by using raw material powder with physical properties that meet the conditions of the present invention and sintered under the conditions specified by the present invention satisfies the purpose of the present invention. It had the characteristics of

几玉且上二主 実施例3で用いたと同じ粉末の成形体を、高周波加熱炉
を用いて加熱するにおいて、1750’Cより1900
’Cまでの昇温速度を表−2に示した値とする以外は、
実施例3と全く同様にして炭化ケイ素焼結体を得た。得
られた焼結体の密度、微細組織の平均粒子径等を表−2
に示した。
In heating the same powder compact as used in Example 3 above, using a high-frequency heating furnace, the temperature was lowered from 1750'C to 1900'C.
Except that the heating rate up to 'C is the value shown in Table 2,
A silicon carbide sintered body was obtained in exactly the same manner as in Example 3. Table 2 shows the density of the obtained sintered body, the average particle size of the microstructure, etc.
It was shown to.

なお、実施例3と同様にして、1900℃に達した段階
での焼結中間体の結晶形を推定し、更に焼結体の曲げ強
度及びKICを測定した。これらの測定値を表−2に示
した。
In addition, in the same manner as in Example 3, the crystal form of the sintered intermediate was estimated at the stage when the temperature reached 1900° C., and the bending strength and KIC of the sintered body were also measured. These measured values are shown in Table-2.

表−2の数値が示す様に、1750’C〜1900’C
までの昇温速度が本発明で規定するより速い比較例1の
場合は、焼結中間体中のα晶の含有量が高く、また焼結
体を構成する粒子のアスペクト比が低くて、このためか
得られた炭化ケイ素焼結体は曲げ強度が低くかつ標準偏
差も大きかった。逆に上記昇温速度が本発明で規定する
よりも遅い比較例2の場合は、焼結体を構成する粒子の
平均粒子径が大きく、そのためか得られた炭化ケイ素焼
結体は、比較例1より更に曲げ強度が低く、かつその標
準偏差も大きなものであった。
As shown in Table 2, 1750'C to 1900'C
In the case of Comparative Example 1, in which the rate of temperature increase to The resulting silicon carbide sintered body had low bending strength and a large standard deviation. On the other hand, in the case of Comparative Example 2, where the temperature increase rate is slower than specified in the present invention, the average particle diameter of the particles constituting the sintered body is large, and the resulting silicon carbide sintered body is The bending strength was even lower than that of No. 1, and its standard deviation was also large.

止較炭主二1 表−1に示す、本発明で規定する条件を満たさない粉末
4,5.6を用い、実施例と同一方法、同一条件にて炭
化ケイ素焼結体を得た。得られた焼結体についてその密
度を測定した結果は、表−3に示す通り何れも本発明の
目標値3.10g/cc以上を大きく下廻っている。
Comparison Charcoal Main 21 A silicon carbide sintered body was obtained using the powders 4 and 5.6 shown in Table 1, which do not meet the conditions specified in the present invention, in the same manner and under the same conditions as in the examples. The density of the obtained sintered bodies was measured, and as shown in Table 3, all of the densities were significantly below the target value of 3.10 g/cc or more of the present invention.

表−3 表−1に示す、本発明で規定する条件を満たさない粉末
4,5.6を用い、焼結体密度を上げるべく焼結条件等
を探索し、表−4に示す条件に変更して(表−3に記載
の条件以外は実施例と同一条件)炭化ケイ素焼結体を得
た。得えられた焼結体の密度は表−3に記載の通り、粉
末4については(比較例6) 、B、Cの添加量を増加
させることで上昇可能であり、粉末5.6については(
比較例7〜10)、加熱温度を高くすると上昇可能であ
ることが認められた。
Table-3 Using powders 4 and 5.6 shown in Table-1 that do not meet the conditions stipulated by the present invention, sintering conditions etc. were searched to increase the density of the sintered compact, and the conditions were changed to the conditions shown in Table-4. A silicon carbide sintered body was obtained (under the same conditions as in the example except for the conditions listed in Table 3). As shown in Table 3, the density of the obtained sintered body can be increased by increasing the amount of B and C added for powder 4 (comparative example 6), and for powder 5.6. (
Comparative Examples 7 to 10), it was recognized that the heating temperature could be increased by increasing the heating temperature.

表−4 そこで、焼結体密度が3.10g/cc以上に達した比
較例6,8.10で得た焼結体について、実施例と全く
同様な方法で微細m織の平均粒子径、結晶形、曲げ強度
等を測定し、それらを表−5に示した。
Table 4 Therefore, for the sintered bodies obtained in Comparative Examples 6 and 8.10 in which the sintered body density reached 3.10 g/cc or more, the average particle diameter of the fine m-weave was determined in exactly the same manner as in the example. The crystal shape, bending strength, etc. were measured and are shown in Table 5.

その結果は、焼結体密度が増加し、(ニ)の要件を充足
することは出来たのであるが、比較例6.8では平均粒
子径が規定値より高く、また、比較例10ではアスペク
ト比が規定値より低く、何れも、本発明の目的を達成す
る焼結体は得られないことが認められた。さらに実施例
1〜3と比較して、曲げ強度の平均も低く、標準偏差も
大であり、ざらにKleも低い。
As a result, the sintered body density increased and the requirement (d) was satisfied, but in Comparative Example 6.8, the average particle diameter was higher than the specified value, and in Comparative Example 10, the aspect ratio was It was found that the ratio was lower than the specified value, and a sintered body that achieved the object of the present invention could not be obtained in either case. Furthermore, compared to Examples 1 to 3, the average bending strength is low, the standard deviation is large, and Kle is also roughly low.

表−5 平均粒子径ρ及びα晶の含有率が同等な粉末2と粉末5
を各種の割合で混合し、粒度分布の異なる粉末を用意し
た。それらの粉末に実施例と全く同様にしてB、Cとカ
ーボンブラックを添加し成形した後、実施例と全く同様
にして高周波加熱炉を用いて加熱し焼結させた。(粒子
径の標準偏差)/ρと得られた炭化ケイ素焼結体の微細
組織の平均粒子径との関係を図−9に示した。図−9よ
り両者は正の相関があることが分かる。
Table-5 Powder 2 and Powder 5 with the same average particle diameter ρ and α crystal content
were mixed in various ratios to prepare powders with different particle size distributions. B, C and carbon black were added to these powders in exactly the same manner as in the examples, and then molded, and then heated and sintered using a high frequency heating furnace in the same manner as in the examples. The relationship between (standard deviation of particle diameter)/ρ and the average particle diameter of the microstructure of the obtained silicon carbide sintered body is shown in FIG. From Figure 9, it can be seen that there is a positive correlation between the two.

日 のα3A  のU 粉末1と粉末6を各種の割合で混合し、結晶形の異なる
粉末を用意した。それらの粉末に実施例と全く同様にし
て84Cとカーボンブラックを添加し成形した後、実施
例と全く同様にして高周波加熱炉を用いて焼結させた。
α3A U Powder 1 and Powder 6 were mixed at various ratios to prepare powders with different crystal forms. 84C and carbon black were added to these powders and molded in exactly the same manner as in the examples, and then sintered using a high frequency heating furnace in the same manner as in the examples.

また、実施例と全く同様にして、それぞれの粉末成形体
が1900℃に達した段階で加熱を停止し、得られた焼
結中間体の結晶形を測定した。
Further, in exactly the same manner as in Examples, heating was stopped when each powder compact reached 1900° C., and the crystal form of the obtained sintered intermediate was measured.

これら混合粉末より得られた焼結中間体のα晶含有量と
、焼結体微細組織のアスペクト比との関係を図−10に
示した。図−10より焼結中間体のα晶含有量が5%を
超えると、焼結体微細構造のアスペクト比が5以上にな
りにくいことが分かる。
The relationship between the α-crystal content of the sintered intermediate obtained from these mixed powders and the aspect ratio of the sintered body microstructure is shown in Figure 10. From Figure 10, it can be seen that when the α-crystal content of the sintered intermediate exceeds 5%, the aspect ratio of the sintered body microstructure is difficult to become 5 or more.

(分析法の総括) 以下、本発明で使用する分析法を纏めて示す。(Summary of analytical methods) The analysis methods used in the present invention are summarized below.

(粒子径測定〕 本発明における粒子径の測定法は、粒子を直接観察する
唯一の方法である顕微鏡像により求める方法とし、顕微
鏡は透過型電子顕微鏡を用いる。
(Particle Size Measurement) In the present invention, the particle size is measured using a microscope image, which is the only method for directly observing particles, and a transmission electron microscope is used as the microscope.

衆知の如く、粉末の粒子を電子顕微鏡の試料支持台に担
持する際には、粒子の凝集や偏析が生じ易く、粉末の全
体を代表する試料を作成することはかなり困難である。
As is well known, when powder particles are supported on a sample support of an electron microscope, agglomeration and segregation of particles tend to occur, making it quite difficult to prepare a sample that represents the entire powder.

この問題を防ぐために従来より検討が重ねられている(
例えば粉体工学研究会編「粉体粒度測定法」 (養賢堂
発行、昭和42年)の第4章に種々の方法が記載されて
いる)。
In order to prevent this problem, many studies have been carried out in the past (
For example, various methods are described in Chapter 4 of ``Powder Particle Size Measurement Methods'' (published by Yokendo, 1962), edited by the Powder Technology Study Group).

本発明者等はこれら種々の方法を鋭意検討した結果、コ
ロジオンを支持膜としたシートメツシュに、粉末粒子を
分散させたスラリーをネブライザーを用いて噴霧し、粉
末粒子をコロジオン膜に担持させて得た試料が最も良好
な結果が得られることを確認した。
As a result of intensive studies on these various methods, the present inventors sprayed a slurry in which powder particles were dispersed onto a sheet mesh using collodion as a support film using a nebulizer, and the powder particles were supported on the collodion film. It was confirmed that the sample gave the best results.

本発明においては、粉末の粒子径の測定はこの噴霧法に
よって得られた試料の電子顕微鏡像より求めるものとす
る。スラリーはイソブタノールを分散媒とすることが好
ましく、粉末のスラリー濃度は0.3〜0.7%の範囲
が好ましい。ここで粉末を分散させる際には超音波細胞
破砕器の様な強力な超音波分散器を用い数分間作用させ
て行う方法が好ましい。
In the present invention, the particle size of the powder is determined from an electron microscope image of a sample obtained by this spraying method. The slurry preferably uses isobutanol as a dispersion medium, and the powder slurry concentration is preferably in the range of 0.3 to 0.7%. When dispersing the powder, it is preferable to use a powerful ultrasonic dispersion device such as an ultrasonic cell disrupter and allow it to act for several minutes.

粉末の粒子径は、この様にして得られた試料の顕微鏡像
より求めるが、ここでは粒子径は円相当径とする。この
円相当径とは、粒子像の面積を測定して、その像と等し
い面積の円を仮定し、その円の直径で表した値である。
The particle size of the powder is determined from the microscopic image of the sample obtained in this way, and here the particle size is defined as the equivalent circle diameter. The equivalent circle diameter is a value expressed by measuring the area of a particle image, assuming a circle with the same area as the image, and expressing the diameter of the circle.

ここで本発明においてはある影像を単一の粒子とみなす
か、複数の粒子とみなすかに任意性が入る余地をなくす
ために、例えば瓢箪状の影像の様に一部でも接続したも
のは、全て単一の粒子とみなすものとする。なお、支持
膜に担持された粉末の量が増加すると、複数の粒子が見
掛は正接続して単一の粒子に見える確率が増すため、本
発明における粒子径は、影像全体に占める粒子像の面積
が5〜15%の範囲にある様に作成された試料より求め
るものとする。
Here, in the present invention, in order to eliminate the possibility of arbitrariness as to whether a certain image is regarded as a single particle or a plurality of particles, for example, when an image is partially connected, such as a gourd-shaped image, All shall be considered as a single particle. Note that as the amount of powder supported on the support film increases, the probability that multiple particles will apparently connect in a positive direction and appear as a single particle increases. It shall be determined from a sample prepared such that the area is in the range of 5 to 15%.

なお、平均粒子径は円相当径の算術平均値とする。Note that the average particle diameter is the arithmetic mean value of equivalent circle diameters.

〔結晶形定量法〕[Crystal form determination method]

炭化ケイ素粉末及び焼結体に含まれる低温型α晶(2H
) 、3品(3C) 、高温型α晶(4H,6B、 x
sR)の定量は、Cuf!α線を光源としモノクロメー
タ−を受光側に入れた粉末X線回折法で得られる図形よ
り求める0図形の各ピーク高さより各成分を算出する方
法は、窯業協会誌、鉦、 576−582 (1979
))に記載の方法に従うものとする。なお、焼結体を粉
末X線回折法で測定する際には、焼結体を100メツシ
ユ以下に粉砕して測定する。
Low-temperature α crystal (2H) contained in silicon carbide powder and sintered body
), 3 products (3C), high temperature α crystal (4H, 6B, x
sR) is determined by Cuf! The method of calculating each component from the peak height of the 0 figure obtained from the figure obtained by powder X-ray diffraction using α-rays as a light source and a monochromator on the receiving side is described in Ceramics Association Journal, Gong, 576-582 ( 1979
)) shall be followed. In addition, when measuring a sintered compact by powder X-ray diffraction method, the sintered compact is crushed into 100 meshes or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は、本発明の実施例及び比較例で用いたそれ
ぞれ粉末1,4.5の、透過形電子顕微鏡で1最影した
粒子状態を示す拡大写真である0倍率はいずれも800
0倍である。第421は、粉末1の粉末X線回折図を示
す、第5図〜7121は、それぞれ実施例1.比較例6
.10で得た焼結体の表面を、光学顕微鏡で陽形した表
面組織を示す拡大写真である、倍率はいずれも500倍
である。 第8図は、実施例1で得た焼結体の粉末X線回折図を示
す、第9図は、(粒子径の標準偏差/ρ)と微細組織の
平均粒子径との関係を示すグラフである。第10回は、
焼結中間体のα凸金fiと微細組織のアスペクト比との
関係を示す図である。 特許出願人 三井東圧化学株式会社 第1図 第2図 第31!] 第 5トコ 第6図 第 7i:ソ1 第4図 〜 第8図 ■ Zel(”ノ
Figures 1 to 3 are enlarged photographs of powders 1 and 4.5 used in the Examples and Comparative Examples of the present invention, respectively, showing the state of the particles in the highest shadow under a transmission electron microscope.
It is 0 times. 421 shows the powder X-ray diffraction pattern of Powder 1, and FIGS. 5 to 7121 show the powder X-ray diffraction pattern of Example 1. Comparative example 6
.. This is an enlarged photograph showing the surface structure of the surface of the sintered body obtained in step 10, taken with an optical microscope, and the magnification is 500 times. FIG. 8 shows a powder X-ray diffraction pattern of the sintered body obtained in Example 1. FIG. 9 is a graph showing the relationship between (standard deviation of particle size/ρ) and the average particle size of the microstructure. It is. The 10th is
FIG. 3 is a diagram showing the relationship between the α-convex gold fi of the sintered intermediate and the aspect ratio of the microstructure. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Figure 1 Figure 2 Figure 31! ] Figure 5 Figure 6 Figure 7i: So 1 Figures 4 to 8■ Zel ("ノ

Claims (2)

【特許請求の範囲】[Claims] (1)炭化ケイ素粉末100重量部に0.05〜0.3
重量部のホウ素及び0.5〜3.0重量部の炭素を添加
混合した後、該混合物を成形し、1900〜2050℃
にて加熱焼結させて炭化ケイ素焼結体を得る方法におい
て、 [1]該炭化ケイ素粉末の物性は以下に示す(イ)、(
ロ)、(ハ)の条件を満足するものであり:(イ)平均
粒子径ρが0.1〜0.2μであること。 (ロ)粒子径の標準偏差が0.8×ρ以下であること。 (ハ)結晶形は80重量%以上のβ晶と、20重量%以
下の低温型α晶を含むものであること。 [2]該混合物成形体を加熱昇温するに際し、i175
0〜1900℃の温度域では1〜10℃/分の昇温速度
を保持し、 iiかつ、この昇温過程においてα晶の含有量が5重量
%以下の中間状態を経由せしめるようにした後、190
0〜2050℃にて加熱焼結せしめ:[3]下記する(
ニ)、(ホ)、(ヘ)の特性により特徴ずけられる焼結
体を得ることからなる、炭化ケイ素焼結体の新規な製造
方法。 (ニ)焼結体密度が3.10g/cc以上であること。 (ホ)微細組織の平均粒子径が3〜15μでアスペクト
比が5〜20であること。 (ヘ)結晶形は80重量%以上のβ晶と20重量%以下
の高温型α晶を含むものであること。
(1) 0.05 to 0.3 per 100 parts by weight of silicon carbide powder
After adding and mixing parts by weight of boron and 0.5 to 3.0 parts by weight of carbon, the mixture is molded and heated at 1900 to 2050°C.
[1] The physical properties of the silicon carbide powder are as shown below (a), (
It satisfies the conditions (b) and (c): (a) the average particle diameter ρ is 0.1 to 0.2 μ; (b) The standard deviation of particle diameter is 0.8×ρ or less. (c) The crystal form must contain 80% by weight or more of β crystals and 20% by weight or less of low-temperature α crystals. [2] When heating the mixture molded product, i175
In the temperature range of 0 to 1900 °C, a heating rate of 1 to 10 °C/min is maintained, ii. and after passing through an intermediate state in which the content of α crystals is 5% by weight or less in this temperature raising process. , 190
Heat sintering at 0 to 2050°C: [3] Following (
A novel method for producing a silicon carbide sintered body, which comprises obtaining a sintered body characterized by the properties of (d), (e), and (f). (d) The density of the sintered body is 3.10 g/cc or more. (e) The average particle diameter of the microstructure is 3 to 15 μm and the aspect ratio is 5 to 20. (f) The crystal form must contain 80% by weight or more of β crystals and 20% by weight or less of high-temperature α crystals.
(2)原料炭化ケイ素粉末中には低温型α晶が5〜20
重量%含まれていて、得られる炭化ケイ素焼結体中には
高温型α晶が5重量%以下含まれていることを特徴とす
る特許請求の範囲第1項記載の方法。
(2) There are 5 to 20 low-temperature α crystals in the raw material silicon carbide powder.
2. The method according to claim 1, wherein the resulting silicon carbide sintered body contains 5% by weight or less of high-temperature α crystals.
JP62008985A 1987-01-20 1987-01-20 Novel manufacture of silicon carbide sintered body Granted JPS63182257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008985A JPS63182257A (en) 1987-01-20 1987-01-20 Novel manufacture of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008985A JPS63182257A (en) 1987-01-20 1987-01-20 Novel manufacture of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS63182257A true JPS63182257A (en) 1988-07-27
JPH0534307B2 JPH0534307B2 (en) 1993-05-21

Family

ID=11707982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008985A Granted JPS63182257A (en) 1987-01-20 1987-01-20 Novel manufacture of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS63182257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201070A (en) * 2000-12-27 2002-07-16 Kyocera Corp Silicon carbide sintered compact and its manufacturing method
JP2015525196A (en) * 2012-06-15 2015-09-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Silicon carbide shielding products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122311A (en) * 1978-03-15 1979-09-21 Hiroshige Suzuki High density silicon carbide sintered body and preparation thereof
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body
JPS5983922A (en) * 1982-11-04 1984-05-15 Mitsui Toatsu Chem Inc Preparation of silicon carbide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122311A (en) * 1978-03-15 1979-09-21 Hiroshige Suzuki High density silicon carbide sintered body and preparation thereof
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body
JPS5983922A (en) * 1982-11-04 1984-05-15 Mitsui Toatsu Chem Inc Preparation of silicon carbide powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201070A (en) * 2000-12-27 2002-07-16 Kyocera Corp Silicon carbide sintered compact and its manufacturing method
JP2015525196A (en) * 2012-06-15 2015-09-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Silicon carbide shielding products

Also Published As

Publication number Publication date
JPH0534307B2 (en) 1993-05-21

Similar Documents

Publication Publication Date Title
US4690909A (en) Silicon carbide-graphite composite material and process for producing same
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
US6783745B1 (en) Fullene based sintered carbon materials
US4469802A (en) Process for producing sintered body of boron nitride
JPH06505225A (en) High-density, self-strengthening silicon nitride ceramic produced by pressureless or low-pressure gas sintering
JP2004131336A (en) Diamond polycrystal and its production method
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
US5773733A (en) Alumina-aluminum nitride-nickel composites
US20150099120A1 (en) Spherical silicon carbide powder and a method for manufacturing same
JPS63182257A (en) Novel manufacture of silicon carbide sintered body
WO2000015548A2 (en) Fullerene based sintered carbon materials
US4350771A (en) Oxidation resistant silicon nitride containing rare earth oxide
US4526834A (en) Nuclear graphite
Chen et al. Oxidation of Ti 3 SiC 2 composites in air
JPS63206353A (en) Novel manufacture of silcion carbide sintered body
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JPH01264969A (en) Beta-silicon carbide molding and production thereof
JP2010261088A (en) Fiber-reinforced al composite material
JPH02271919A (en) Production of fine powder of titanium carbide
JP6288117B2 (en) Boron nitride polycrystals and tools
Pantea et al. Kinetics of the reaction between diamond and silicon at high pressure and temperature
KR102509020B1 (en) SiC Powder For Pressureless Sintering From Wasted Solar Panel And Manufacturing Metholds Thereof
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH055150A (en) Boron carbide-reactive metal cermet
JP2006342035A (en) Method of modifying coal ash