JPS63182227A - Production of glass film and device therefor - Google Patents

Production of glass film and device therefor

Info

Publication number
JPS63182227A
JPS63182227A JP1037887A JP1037887A JPS63182227A JP S63182227 A JPS63182227 A JP S63182227A JP 1037887 A JP1037887 A JP 1037887A JP 1037887 A JP1037887 A JP 1037887A JP S63182227 A JPS63182227 A JP S63182227A
Authority
JP
Japan
Prior art keywords
flame
exhaust
laminar flow
flow
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1037887A
Other languages
Japanese (ja)
Other versions
JPH0776097B2 (en
Inventor
Fumiaki Hanawa
文明 塙
Mitsuho Yasu
安 光保
Masao Kawachi
河内 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62010378A priority Critical patent/JPH0776097B2/en
Publication of JPS63182227A publication Critical patent/JPS63182227A/en
Publication of JPH0776097B2 publication Critical patent/JPH0776097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1446Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To produce a light guiding film low in propagation loss by feeding gas flow led along the direction of an exhaust pipe to the vicinity of a synthetic torch in a device consisting of both the synthetic torch for fine glass particles and the exhaust pipe of flame laminar flow contg. excess fine glass particles. CONSTITUTION:An air supply pipe 13 wherein an air inlet I and an exhaust port E are integrated for example, to control the flow direction of air is provided so as to cover laminar flow 12 led to the exhaust direction of the flame 12 and the exhaust port E is connected to an exhaust pipe 6. When feeding the laminar flow 12 contg. fine glass particles through a synthetic torch 5, it is introduced into the air supply pipe 13 from a window W1 and directly blown on a base plate 1 via a window W2. After depositing the fine glass particles on the base plate 1, the lamina flow 12 is sucked with an exhaust gas treatment device and exhausted from the exhaust port E through the exhaust pipe 6 and an exhaust control valve 14. At this time, negative pressure is caused in the part of the direction opposite to the exhaust direction of the laminar flow 12 of the air supply pipe 13 and atmospheric gas e.g. air is introduced through the air inlet I and gas flow is generated to the exhaust direction of the laminar flow 12.

Description

【発明の詳細な説明】 (発明の産業上利用分野〕 本発明は、ガラス膜の製造方法およびそのTM造装置に
関するものであり、詳しくは、石英ガラス基板やシリコ
ン基板上にガラス膜、特に光通信用部品分野に広範囲な
応用をもつガラス先導波膜を形成する方法において、ガ
ラス膜の厚さ、およびガラス組成を均一に製造する方法
およびその方法を実施するための装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field of the Invention) The present invention relates to a method for manufacturing a glass film and a TM production apparatus thereof. The present invention relates to a method for forming a glass leading wave film having a wide range of applications in the field of communication components, and to a method for manufacturing a glass film with uniform thickness and glass composition, and an apparatus for carrying out the method.

〔発明の従来技術〕[Prior art to the invention]

石英ガラス基板やシリコン基板上に形成可能な石英系ガ
ラス先導波路は、石英系ファイバとの整合性が良いこと
から実用的な導波形光部品の実現手段として期待されて
いる。前記基板上に高品質な石英系光導波路を形成する
には、■基板上に一様な厚さを有するガラス膜を堆積す
る技術、■ガラス膜の組成ゆらぎを極力抑制する技術、
の2つの要素を満たす石英系先導波膜の製造方法の開発
が必須である。
Silica-based glass guide waveguides that can be formed on silica glass substrates or silicon substrates are expected to be a means of realizing practical waveguide optical components because of their good compatibility with silica-based fibers. In order to form a high-quality quartz-based optical waveguide on the substrate, there are two techniques: (1) a technique for depositing a glass film with a uniform thickness on the substrate; (2) a technique for suppressing compositional fluctuations of the glass film as much as possible;
It is essential to develop a manufacturing method for a silica-based leading wave film that satisfies the following two factors.

本発明者らは、上記目的に沿って検討を進めた結果、■
、■を満足する製造方法として、ガラス先導波膜の製造
方法〔特願昭56−203349号(特開昭58−10
51)1号)〕を提案した。この方法の実施するための
装置の一構成例を第1図に示す。
As a result of conducting studies in line with the above objectives, the present inventors found that:
As a manufacturing method that satisfies the requirements of
51) No. 1)] was proposed. An example of the configuration of an apparatus for carrying out this method is shown in FIG.

この装置で先導波膜を製造するには、まずターンテーブ
ル2の上に基板lを並べ、基板温度を上昇させるととも
に(基板加熱用ヒータはターンテーブル2の下部に設置
されている)、ターンテーブル回転装置3によりターン
テーブル2を回転させる。次ぎに、原料ガス供給装置9
から原料ガス導管10を通して、ガラス微粒子合成トー
チ5 (以下、単にl・−チと称す)に02ガス、I+
 2ガスを供給し、トーチ吹出部に酸水素炎を形成して
基板1に吹きつける。同時にトーチ5は、トーチ移動装
置8によりターンテーブル2の半径方向に平行性1夏運
動せしめる。基板温度が所望の値(600〜800℃)
に達した後、原料ガス供給袋rI19からトーチ5にガ
ラス原料ガスを送ると、火炎中で加水分解反応が生じ、
基板1上にガラス微粒子が堆積する。そして余剰のガス
微粒子は火炎流とともに排気管6より排気ガス処理装置
7に排気される構造になっている。
To manufacture a leading wave film using this device, first arrange the substrates l on the turntable 2, raise the substrate temperature (the heater for heating the substrate is installed at the bottom of the turntable 2), and place the substrate l on the turntable 2. The turntable 2 is rotated by the rotation device 3. Next, the raw material gas supply device 9
02 gas and I+ are passed from the raw material gas conduit 10 to the glass particle synthesis torch 5 (hereinafter simply referred to as l・-chi).
2 gases are supplied to form an oxyhydrogen flame at the blow-off part of the torch, and the flame is blown onto the substrate 1. At the same time, the torch 5 is moved parallel to the turntable 2 in the radial direction by the torch moving device 8. Desired substrate temperature (600-800℃)
When the frit gas is sent from the raw material gas supply bag rI19 to the torch 5, a hydrolysis reaction occurs in the flame.
Glass particles are deposited on the substrate 1. The structure is such that the excess gas particles are exhausted to the exhaust gas treatment device 7 through the exhaust pipe 6 along with the flame flow.

通常、光導波膜の構造は、基板1上にバッファ層、コア
層、保護層の順に多層構造になっているので、トーチ5
に供給するガラス原料ガスの組成を所定のプランに従っ
て変化させガラス微粒子を堆積させる。
Normally, the structure of an optical waveguide film is a multilayer structure in which a buffer layer, a core layer, and a protective layer are arranged on the substrate 1, so the torch 5
The glass particles are deposited by changing the composition of the frit gas supplied to the glass according to a predetermined plan.

第1図に示す方法で、製造される光導波膜の品質に最も
重要な役割を果たすガラス微粒子の堆積部の模式図を第
2図に示す。第2図において基板1の表面がガラス微粒
子を含んだ火炎層流12にさらされつつ、基板l上にガ
ラス微粒子を堆積させることが高品質光導波膜製造のポ
イントである。
FIG. 2 shows a schematic diagram of the deposition area of glass particles, which plays the most important role in the quality of the optical waveguide film produced by the method shown in FIG. 1. In FIG. 2, the key to manufacturing a high-quality optical waveguide film is to deposit glass particles on the substrate 1 while the surface of the substrate 1 is exposed to a flame laminar flow 12 containing the glass particles.

ガラス微粒子を含んだ火炎流の層流状態を実現するには
、gi通なトーチの配置と、基板面に堆積されない余剰
ガラス微粒子の排気方法とが必須条件であり、このよう
な層流状態の実現が先に提案した光導波膜の製造方法の
主眼である。すなわち、第2図において基板面に対して
l・−チ5を所望の角度θ傾けて設置し、トーチ5の先
端に形成されるガラス微粒子を含んだ火炎層流12の吹
出方向と基板1の移動方向を一致させ、かつ基板1面に
堆積されない余剰ガラス微粒子をすみやかに排気する排
気管6を火炎層流12の下流側に設けることにより、火
炎層流を保ちながら基板面にガラス微粒子を堆積する方
法である。なお、符合1)は基板上の温度を測定するた
めの光高温計である。
In order to achieve a laminar flame flow containing glass particles, it is essential to have a gi-performing torch arrangement and a method for exhausting excess glass particles that are not deposited on the substrate surface. Realization is the main focus of the optical waveguide film manufacturing method proposed earlier. That is, in FIG. 2, the torch 5 is installed at a desired angle θ with respect to the substrate surface, and the blowing direction of the flame laminar flow 12 containing fine glass particles formed at the tip of the torch 5 and the substrate 1 are adjusted. Glass particles can be deposited on the substrate surface while maintaining flame laminar flow 12 by providing an exhaust pipe 6 on the downstream side of the flame laminar flow 12 that matches the moving direction and quickly exhausts excess glass particles that are not deposited on the substrate surface. This is the way to do it. Note that reference numeral 1) is an optical pyrometer for measuring the temperature on the substrate.

〔発明の解決すべき問題点〕[Problems to be solved by the invention]

この従来の製造方法について、実験を繰り返し検討した
結果以下の問題点が明らかになった。
As a result of repeated experiments regarding this conventional manufacturing method, the following problems were found.

1) 第2図において矢印Aから見た装置配置と空気の
流れの模式図を第3図に示す。なお、トーチは省略しで
ある。第3図において火炎流12は層流状態を保ちなが
ら基板1面をさらし、基板1面上でわずかに広がりなが
ら排気管6に排気される。
1) Figure 3 shows a schematic diagram of the equipment arrangement and air flow seen from arrow A in Figure 2. Note that the torch is omitted. In FIG. 3, the flame flow 12 exposes the substrate 1 surface while maintaining a laminar flow state, and is exhausted to the exhaust pipe 6 while spreading slightly on the substrate 1 surface.

この工程中、空気の流れは図中破線矢印で示すように、
排気口の周囲から排気口に向かって流れる。
During this process, the air flow is as shown by the dashed arrow in the figure.
Flows from around the exhaust port toward the exhaust port.

このように火炎流12は一方向の流れであるのに対して
、空気の流れはあらゆる方向から排気口に向かって流れ
るために、なんらかの外乱が生じると空気の流れに変化
が生じ、このため火炎流は層流状態を保ちなう(ら、あ
るいは瞬間的に乱流となって火炎全体がゆらいでしまう
という問題がある。
In this way, the flame flow 12 is a unidirectional flow, whereas the air flow flows toward the exhaust port from all directions, so when some kind of disturbance occurs, the air flow changes, and this causes the flame to flow in one direction. The problem is that the flow does not maintain a laminar flow, or it becomes momentarily turbulent, causing the entire flame to waver.

これによって基板面に形成されるガラス膜に層状の脈理
が発生してしまい先導波膜の光学特性が劣化する。
This causes layered striae to occur in the glass film formed on the substrate surface, deteriorating the optical properties of the leading wave film.

2) 基板1而に形成される先導波膜の品質は、第2図
に示した基板1面とトーチ5とのなす角度θ(厳密には
基板面と火炎層流とのなす角度)に依存し、角度θが小
さい場合はガラス微粒子の付着効率が著しく劣化し、角
度θが大きい場合、例えば第4図に示すように角度θ−
90”の場合には火炎層流12は基板面上で一様に広が
り、図中に示した部分aで乱流となると同時に排気管6
側の火炎だけしか排気されなくなる問題がある。また、
綿状のガラス微粒子が堆積する部分があり、これがため
に堆積される多孔質ガラス膜にクラックが生じる問題が
ある。本発明者らの検討によれば、角度θは65°〜7
5°が最適でこの範囲以外では上記問題が生じてくる。
2) The quality of the leading wave film formed on the substrate 1 depends on the angle θ formed between the substrate 1 surface and the torch 5 (strictly speaking, the angle formed between the substrate surface and the flame laminar flow) shown in Fig. 2. However, if the angle θ is small, the adhesion efficiency of glass particles will deteriorate significantly, and if the angle θ is large, for example, as shown in FIG.
In the case of 90'', the flame laminar flow 12 spreads uniformly on the substrate surface, becomes turbulent at part a shown in the figure, and at the same time
There is a problem that only the side flame is exhausted. Also,
There are parts where flocculent glass particles are deposited, and this causes a problem in that cracks occur in the deposited porous glass film. According to the inventors' study, the angle θ is 65° to 7
5° is optimal, and outside this range the above problem will occur.

3) 従来技術では、基板移動方向と火炎層流12の入
射方向を一致させることで層流状態を保っていた。製造
装置の設計小型化を考慮すれば火炎層流12の入射方向
に対する基板移動が正方向と逆方向を繰り返しても局部
的な乱流が住じることなく高品質先導波膜が製造できる
ことが望ましい。本発明者らの検討によれば従来技術に
おいてもトーチ角度θ、排気流沿、基板面とトーチ先端
との距離及び排気管の設置位置等の条件を最適化するこ
とにより基板移動が逆方向でも火炎層流の局部的な乱流
が生じることなく高品質先導?tL膜が製造できること
を確認したが、乱流を生じせしめぬようにするための前
記諸条件の最適化が非常に難しいという欠点がある。
3) In the prior art, the laminar flow state was maintained by matching the substrate movement direction and the incident direction of the flame laminar flow 12. Considering the miniaturization of the manufacturing equipment design, it is possible to manufacture a high-quality leading wave film without causing local turbulence even if the substrate movement with respect to the incident direction of the flame laminar flow 12 is repeated in the forward and reverse directions. desirable. According to the studies of the present inventors, even in the conventional technology, by optimizing conditions such as the torch angle θ, the exhaust flow direction, the distance between the substrate surface and the torch tip, and the installation position of the exhaust pipe, the substrate can be moved in the opposite direction. High quality leading without local turbulence of flame laminar flow? Although it has been confirmed that a tL membrane can be produced, it has the drawback that it is very difficult to optimize the conditions described above to prevent turbulence from occurring.

本発明は、第3図において層流状態の火炎流が排気口に
吸い込まれる方向に対して、極力空気の流れを制御する
手段を設け、これにより従来技術の前記諸問題を解決し
て外乱やトーチ設置角度θに関係なく、常に安定した火
炎層流状態を実現し、石英系ガラス膜、特に高品質先導
波膜の製造方法およびその方法を実施するための装置を
提供するものである。
The present invention provides means for controlling the air flow as much as possible in the direction in which the laminar flame flow is sucked into the exhaust port in FIG. 3, thereby solving the problems of the prior art and reducing disturbance. The present invention provides a method of manufacturing a silica-based glass film, particularly a high-quality leading wave film, and an apparatus for carrying out the method, which always realizes a stable flame laminar flow state regardless of the torch installation angle θ.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、従来技術の問題点を明確にした上で、そ
の解決手段を種々検討したところ、従来技術の問題であ
る火炎層流のゆらぎ及び局部的な乱流を防止するには、
排気口に排気される火炎層流の流れと空気の流れを極力
同一方向とすることにより解決できることを見出し、本
発明に至ったものである。すなわち、本発明によるガラ
ス膜の製造方法はトーチとトーチの先端に形成される火
炎層流と火炎層流の下方向に火炎層流をすみやかに排気
する排気口を具備した光導波膜の製造方法において、空
気の流れ方向を制御する手段もしくは外部から制御され
たガス流を火炎の流れ方向に沿って流す手段を用いたこ
とにある。
The inventors of the present invention clarified the problems of the prior art and studied various means for solving the problems.The inventors found that in order to prevent the fluctuations of flame laminar flow and local turbulence, which are problems of the prior art,
We have discovered that this problem can be solved by making the flame laminar flow and the air flow exhausted to the exhaust port in the same direction as much as possible, leading to the present invention. That is, the method for manufacturing a glass film according to the present invention is a method for manufacturing an optical waveguide film that includes a torch, a flame laminar flow formed at the tip of the torch, and an exhaust port for quickly exhausting the flame laminar flow downwardly. In this method, means for controlling the direction of air flow or means for causing an externally controlled gas flow to flow along the direction of flame flow is used.

したがって、本発明によるガラス膜の製造装置によれば
、ガラス微粒子を基板に上方より直接吹きつけるよう配
置されたガラス微粒子合成トーチと、基板上に付着しな
かった余剰のガラス微粒子を基板近傍から排気する排気
管とからなるガラス膜製造装置において、合成トーチ近
傍にガス供給部を設けたことを特徴としている。
Therefore, according to the glass film manufacturing apparatus according to the present invention, the glass particle synthesis torch is arranged to directly blow glass particles onto the substrate from above, and the excess glass particles that have not adhered to the substrate are exhausted from the vicinity of the substrate. The glass film manufacturing apparatus is characterized in that a gas supply section is provided near the synthesis torch.

本発明による方法によれば、前述のように火炎層流に沿
ってガス流を流すものであるが、このガス流は前記火炎
層流のうち、排気方向に流れる火炎層流に沿わせて流せ
ばよく、必ずしも合成ト−チ5より排気までの火炎層流
の流れ全体に沿わせて流す必要はない。また、後述のよ
うに、前記火炎層流12に沿わせて流すガス流の発生機
構は、本発明において基本的に限定されるものではなく
、たとえば、ガス吹き出し装置部を設けてガス流を形成
してもよく (第6図、第7図、第8図参照)、また前
記ガス吹き出し装置部を形成せずに、ガラス膜形成雰囲
気の気圧変化によって前記火炎層流12に沿うガス流を
形成するようにしζもよい(第5図参照)。
According to the method of the present invention, the gas flow is caused to flow along the flame laminar flow as described above, and this gas flow is caused to flow along the flame laminar flow flowing in the exhaust direction among the flame laminar flows. It is not necessary to flow along the entire flow of the flame laminar flow from the synthesis torch 5 to the exhaust gas. Furthermore, as will be described later, the mechanism for generating the gas flow along the flame laminar flow 12 is not fundamentally limited in the present invention, and for example, a gas blowing device may be provided to form the gas flow. Alternatively, the gas flow along the flame laminar flow 12 may be formed by changing the atmospheric pressure of the glass film forming atmosphere without forming the gas blowing device section (see FIGS. 6, 7, and 8). (See Figure 5).

第5図〜第8図に本発明の実施形態例の模式図を示す。FIGS. 5 to 8 show schematic diagrams of embodiments of the present invention.

なお、本発明はこれらの実施形態例に限定されるもので
はないことを付記する。第5図、第6図は空気の流れ方
向を制御する例であって、空気の流れを制御するために
給気管13ないし給気管15が設けである。
It should be noted that the present invention is not limited to these embodiments. 5 and 6 show examples of controlling the direction of air flow, and air supply pipes 13 to 15 are provided to control the air flow.

特に第5図に示した方法は、給気口■と排気口Eを一体
化した給気管13であるガス供給部を有している。そし
てこの給気管13を火炎層流12の排気方向に前記火炎
層流12を覆うように設けている。
In particular, the method shown in FIG. 5 has a gas supply section that is an air supply pipe 13 that integrates an air supply port (2) and an exhaust port (E). The air supply pipe 13 is provided in the exhaust direction of the flame laminar flow 12 so as to cover the flame laminar flow 12.

この給気管13は上部に合成トーチ5の先端部が挿入可
能なガラス微粒子合成トーチ用窓W1とガラス微粒子が
堆積する基板1面に前記ガラス微粒子を直接吹きつけ可
能なように、その下部に基板用窓付2とを設けた構造に
なっている。前記排気口Eは排気管6に接続しており、
前記排気管6は排気制御弁14を介して排気ガス処理装
置71)  (第1図参照)に接続している。
This air supply pipe 13 has a glass particulate synthesis torch window W1 at the top into which the tip of the synthesis torch 5 can be inserted, and a substrate at the bottom so that the glass particulates can be directly sprayed onto the surface of the substrate 1 on which the glass particulates are deposited. It has a structure with 2 windows for use. The exhaust port E is connected to an exhaust pipe 6,
The exhaust pipe 6 is connected to an exhaust gas treatment device 71 (see FIG. 1) via an exhaust control valve 14.

一方前記給気管13の給気口Iは開口状態になっている
On the other hand, the air supply port I of the air supply pipe 13 is in an open state.

このような構成であるため、合成トーチ5よりガラス微
粒子を含む火炎層流12を供給すると、前記火炎層流1
2は合成トーチ用窓W1より給気管13内に導入され、
基板用窓り2を介して基板1に直接吹きつけられる。前
記基板1上にガラス微粒子を堆積させたのち、前記火炎
層流12は排気ガス処理装置i+27によって吸引され
て、排気口Eより排気管6および排気制御弁14を通っ
て排気される。このとき給気管13の、前記火炎層流1
2の排気方向と反対方向部分は負圧状態になり、かつ前
記給気口Iは開口状態になっているために、前記給気口
■より雰囲気気体、たとえば空気が流れ込み、前記火炎
層流12に沿って流れることになる。すなわち火炎層流
12の排気方向にガス流が発生し、この結果、ガス流を
火炎層流12の排気方向に流すことが可能となる。なお
、前記給気口Iより前記給気管13に流れ込むガス流量
は、前記排気制御弁14によって制御できる。
Because of this configuration, when the flame laminar flow 12 containing glass particles is supplied from the synthesis torch 5, the flame laminar flow 1
2 is introduced into the air supply pipe 13 through the synthetic torch window W1,
It is sprayed directly onto the substrate 1 through the substrate window 2. After depositing the glass particles on the substrate 1, the flame laminar flow 12 is sucked by the exhaust gas treatment device i+27 and exhausted from the exhaust port E through the exhaust pipe 6 and the exhaust control valve 14. At this time, the flame laminar flow 1 of the air supply pipe 13
Since the part in the direction opposite to the exhaust direction of No. 2 is in a negative pressure state and the air supply port I is in an open state, atmospheric gas, such as air, flows in from the air supply port II, causing the flame laminar flow 12. It will flow along. That is, a gas flow is generated in the exhaust direction of the flame laminar flow 12, and as a result, it becomes possible to flow the gas flow in the exhaust direction of the flame laminar flow 12. Note that the flow rate of gas flowing into the air supply pipe 13 from the air supply port I can be controlled by the exhaust control valve 14.

またこのような給気管13を有する場合においては、前
記ガス流を雰囲気気体、たとえば空気の給気管13への
負圧吸引によって形成するため、前記雰囲気内の埃など
を一緒に吸引してしまう虞がある。このため前記給気管
13の給気口■にフィルタなどを設けて火炎層流12に
沿って流れるガス流を浄化するのが好ましい。
Furthermore, in the case where such an air supply pipe 13 is provided, since the gas flow is formed by suctioning atmospheric gas, for example, air into the air supply pipe 13 under negative pressure, there is a risk that dust and the like in the atmosphere may be sucked together. There is. For this reason, it is preferable to provide a filter or the like at the air supply port (2) of the air supply pipe 13 to purify the gas flow flowing along the flame laminar flow 12.

この方法によれば、従来技術では不可能であったトーチ
角度θを90°としても火炎の乱流が生じることなく極
めて安定な火炎層流状態を実現することができる。
According to this method, an extremely stable flame laminar flow state can be achieved without causing flame turbulence even when the torch angle θ is 90°, which was impossible with the prior art.

また、第6図は前記火炎層流12の排気方向に、空気な
どのガスを吹き出す給気管15であるガス供給部が設け
られた構造になっている。すなわち、第5図の実施形態
例と異なり、前記給気管15は空気などのガスを吹き出
して、この吹き出したガス流を火炎層流12に沿うよう
にしている。このように構成することによって、前記火
炎層流12は基板1に吹きつけられたのち、前記給気管
15より吹き出されるガス流とともに排気管6に入り、
排気制御″$14を経て排気されることになる。
Further, FIG. 6 shows a structure in which a gas supply section, which is an air supply pipe 15, which blows out gas such as air, is provided in the exhaust direction of the flame laminar flow 12. That is, unlike the embodiment shown in FIG. 5, the air supply pipe 15 blows out a gas such as air, and the blown gas flow follows the flame laminar flow 12. With this configuration, after the flame laminar flow 12 is blown onto the substrate 1, it enters the exhaust pipe 6 together with the gas flow blown out from the air supply pipe 15,
It will be exhausted through exhaust control ``$14''.

第7図、第8図はl・−チの外周あるいはトーチの側面
から制御されたガス流を火炎の流れ方向に沿って流すガ
ス供給部を有する例であって、いずれの方法でもトーチ
設置角度θを緩和することができ、さらに外乱による火
炎層流12のゆらぎの問題を解決することができる。す
なわち、前記合成トーチ5は、第7図(a)、(bl、
(C)、(d)に示すように酸素、水素およびガラス微
粒子吹き出し口の外側側面に、ガス吹出口16.16’
 、16”を有しており、前記火炎12に沿ってガス流
を吹き出すことが可能になっている。このため、前記ガ
ス吹出口16.1G’ 、16’よりの空気などのガス
は、第5図および第6図の実施形態例と異なり、排気方
向に流れる火炎層流12に沿うばかりでなく、吹き出し
当初より火炎流12に沿って基板1に吹き当たり、排気
方向に沿って火炎層流12とともに流れ、排気管6より
排気されることになる(第7図(1))参照)。
FIGS. 7 and 8 show examples having a gas supply section that allows a controlled gas flow to flow from the outer periphery of the torch or from the sides of the torch along the direction of flame flow. θ can be relaxed, and the problem of fluctuations in the flame laminar flow 12 due to disturbances can be solved. That is, the synthesis torch 5 is shown in FIGS. 7(a), (bl,
As shown in (C) and (d), the gas outlet 16.16' is located on the outer side of the oxygen, hydrogen and glass particle outlet.
, 16'', making it possible to blow out a gas flow along the flame 12. Therefore, the gas such as air from the gas outlet 16.1G', 16' is Unlike the embodiments shown in FIGS. 5 and 6, the laminar flame flow not only follows the laminar flame flow 12 flowing in the exhaust direction, but also blows against the substrate 1 along the laminar flame flow 12 from the beginning of the blowout, causing the laminar flame flow to flow along the exhaust direction. 12 and is exhausted from the exhaust pipe 6 (see FIG. 7 (1)).

第8図に示す例においては、前記合成トーチ5の種々の
吹出口の最外側に同心的にガス吹出口16を設けた例で
あって、前記第7図に示した実施形態例と同様に、前記
ガス流は火炎流12に沿って、当初より流れ、排気管6
より排気される構造になっている。
In the example shown in FIG. 8, a gas outlet 16 is provided concentrically on the outermost side of the various outlets of the synthesis torch 5, and is similar to the embodiment shown in FIG. , the gas flow flows from the beginning along the flame flow 12 and reaches the exhaust pipe 6.
It has a structure that allows for more exhaust air.

すなわち、本発明においては、前述のように火炎層流1
2の、排気方向に流れる火炎層流12部分にガス流を沿
わせればよい。このため、合成トーチ5部分より、ガス
流を沿わせても、前記排気方向に流れる火炎層流12部
分に前記ガス流は同様に沿うことになるため、同様の効
果が得られる。
That is, in the present invention, as described above, the flame laminar flow 1
2, the gas flow may be made to follow the flame laminar flow 12 portion flowing in the exhaust direction. Therefore, even if the gas flow is made to follow the synthesis torch 5 portion, the gas flow will similarly follow the flame laminar flow 12 portion flowing in the exhaust direction, and the same effect can be obtained.

以下、本発明の実施例を第5図〜第8図を用いて詳細に
説明する。なお、本発明では第5図〜第8図に示したガ
ス供給部を有する以外は第1図に示した従来法の装置構
成で何ら問題はないので第1図も用いて説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 5 to 8. In the present invention, there is no problem with the conventional apparatus configuration shown in FIG. 1 except for having the gas supply section shown in FIGS. 5 to 8, so the explanation will be made with reference to FIG. 1 as well.

(以下余白) 実施例1 第1図において、第5図に示したような排気口■と給気
口Eが一体化された給気管13を設置してガラス微粒子
の堆積を行った。給気管13は石英ガラス製で作られて
おり、寸法は幅7c1)、高さ5CIm、長さ30cm
とし、上面に2c1)×5c1)のトーチ配置用窓−1
)下面に7c+aXIQcmのガラス微粒子堆積用窓縁
2を有した構造となっており、排気口下流側には排気量
制御弁14が設けである。この給気管の下面と基板表面
の間隔が3鰭隣るように給気管13を配置する一方、排
気量制御弁14により給排気量を開整した。
(The following is a blank space) Example 1 In FIG. 1, an air supply pipe 13 in which an exhaust port (2) and an air supply port E were integrated as shown in FIG. 5 was installed to deposit glass particles. The air supply pipe 13 is made of quartz glass, and its dimensions are width 7c1), height 5cim, and length 30cm.
and a 2c1) x 5c1) torch placement window-1 on the top surface.
) The structure has a glass particulate deposition window edge 2 of 7c+aXIQcm on the lower surface, and an exhaust amount control valve 14 is provided on the downstream side of the exhaust port. The air supply pipe 13 was arranged so that the distance between the lower surface of the air supply pipe and the surface of the substrate was three fins, and the amount of air supply and exhaust was adjusted by the exhaust amount control valve 14.

基板1には、外径75鰭φ、厚さ0.7 mのシリコン
基板を用い、半径的50CIlのターンテーブルの上に
10枚配置した。ガラス微粒子の堆積条件はターンテー
ブル回転速度       5γpmトーチ移動速度 
          1mm /秒トーチ移動ストロー
ク         150mmO2ガス供給量   
        6I!/分II 2ガス供給量   
        31/分基板温度         
     700℃とした。なお、ターンテーブルの回
転方向と火炎の流れ方向を一致させた。原料ガス供給装
置9の内部には、電子恒温槽内に収められたバブラー中
に、主原料5iC1a、ドーパントGeCl4 、PC
I 3、またボンベ中にBCI 3が収納され、流量制
御機構によってそれぞれ次の原料組成に混合してトーチ
へと供給した。
A silicon substrate with an outer diameter of 75 fins and a thickness of 0.7 m was used as the substrate 1, and 10 silicon substrates were placed on a turntable with a radius of 50 CIl. The deposition conditions for glass particles are: turntable rotation speed, 5γpm torch movement speed.
1mm/sec torch movement stroke 150mmO2 gas supply amount
6I! /min II 2 gas supply amount
31/min substrate temperature
The temperature was 700°C. Note that the direction of rotation of the turntable and the direction of flame flow were made to match. Inside the raw material gas supply device 9, a main raw material 5iC1a, a dopant GeCl4, and a PC are contained in a bubbler housed in an electronic thermostat.
I 3 and BCI 3 were stored in a cylinder, mixed with the following raw material compositions by a flow rate control mechanism, and supplied to the torch.

バッファ層 5iC14100cc 7分[IBr 3
  5cc 7分 PCl 35cc 7分 コア層   5iC14100cc /分GeCl4 
 12cc 7分 PCI 32cc 7分 保護層   5LCIa  100cc /分BBr 
3  5cc 7分 PCI 3  5cc 7分 それぞれの堆積時間は、バッファ層30分、コア層15
0分、保護層60分とした。
Buffer layer 5iC14100cc 7 minutes [IBr 3
5cc 7min PCl 35cc 7min Core layer 5iC14100cc/min GeCl4
12cc 7 min PCI 32cc 7 min protective layer 5LCIa 100cc/min BBr
3 5cc 7 minutes PCI 3 5cc 7 minutes The deposition time for each is 30 minutes for the buffer layer, 15 minutes for the core layer.
0 minutes, and protective layer 60 minutes.

上記諸条件を一定にし、トーチの設置角度θをパラメー
タとして堆積を行った。すなわち、角度θを30”から
5 °ずつ90”まで変化させてガラス微粒子を堆積さ
せた。なお、θ=30°以下でも膜の形成は可能である
が、微粒子の堆積効率が著しく劣化するので、実用面か
ら30”以上に設定するのが好ましい。任意の゛角度毎
に火炎層流を注意深く観察したところ、従来生じていた
外乱による火炎層流の瞬間的なゆらぎ現象は全く見られ
ず、極めて安定した火炎層流が得られていた。また、ガ
ラス微粒子堆積部の周辺で故意に外乱(外気を送風機で
みだした)を生じせしめてても火炎層流に何ら影iはな
かった。ガラス微粒子の堆積工程中給気管内の火炎流お
よび空気流のゆらぎを間接的に知るため、火炎流の下流
部分に精度が±0.1鶴1)20である圧力センサを導
入して、堆積工程中の給気管内の圧力変動を検出した。
Deposition was performed while keeping the above conditions constant and using the torch installation angle θ as a parameter. That is, the glass particles were deposited while changing the angle θ from 30'' to 90'' in 5° increments. Although it is possible to form a film with θ=30° or less, the deposition efficiency of fine particles will be significantly degraded, so from a practical point of view it is preferable to set the value to 30” or more. Upon careful observation, we found that the momentary fluctuations in the flame laminar flow due to disturbances that occurred in the past were not observed at all, and an extremely stable flame laminar flow was obtained. There was no effect on the flame laminar flow even when the flame flow was generated (by blowing outside air with a blower). A pressure sensor with an accuracy of ±0.1 Tsuru 1)20 was introduced in the downstream part of the flow to detect pressure fluctuations in the air supply pipe during the deposition process.

この結果、給排気口内圧力は6.5 mll 20であ
り、変動幅はトーチ角度θ、および外乱に全く左右され
ずセンサの精度以下であった。比較のため、排気管のみ
が設けられた従来技術において火炎流の下流部分で圧力
を検出したところ平均的には−7,8土1.2HI+2
0の変動であり、瞬間的には−7,8土2.9mm1)
20まで変動した。また、変動幅はトーチ角度θが90
”に近づくにつれて大きくなった。
As a result, the pressure inside the supply/exhaust port was 6.5 ml 20, and the fluctuation range was completely unaffected by the torch angle θ and disturbances and was below the accuracy of the sensor. For comparison, when we detected the pressure in the downstream part of the flame flow using a conventional technology in which only an exhaust pipe was installed, the average pressure was -7.8 soil 1.2 HI +2
0 fluctuation, momentarily -7.8 soil 2.9 mm1)
It fluctuated up to 20. Also, the fluctuation range is 90° when the torch angle θ is
” grew larger as it approached.

実施例において、トーチ角度θが90°の場合の様子を
第9図に示す、第9図のように本発明においては角度θ
が90°でも従来問題であった火炎流の部分的な乱流(
第4図)はみられず、極めて安定な火炎層流が実現され
ていた。
In the embodiment, the situation when the torch angle θ is 90° is shown in FIG. 9. As shown in FIG.
Even if the angle is 90°, the problem of partial turbulence in the flame flow (
Figure 4) was not observed, and an extremely stable laminar flame flow was achieved.

上記のようにして堆積した多孔質ガラス膜(三重構造)
を、別に用意した電気炉でHeと02ガスとの10:1
の混合ガス雰囲気中で透明ガラス化した。なお電気炉温
度は1380’Cに保持した。得られた先導波膜の厚さ
は例えば角度θ=70°の場合、バッファ層10crm
 、コア層50μm、保護層20μ指であった。
Porous glass membrane deposited as above (triple structure)
was mixed with He and 02 gas at 10:1 in a separately prepared electric furnace.
It was made into transparent glass in a mixed gas atmosphere. Note that the electric furnace temperature was maintained at 1380'C. The thickness of the obtained leading wave film is, for example, when the angle θ=70°, the buffer layer is 10 crm.
The thickness of the core layer was 50 μm, and the thickness of the protective layer was 20 μm.

このようにして製造した光導波膜の伝播損失を測定しく
測定系の測定限界は0.0IdB/cm)  トーチ角
度θと伝播損失の関係をまとめた結果を第10図に示す
。また、第10図には比較のため従来技術で製造した光
導波膜の伝播損失も示した。実線で示した本発明による
先導波膜の伝播損失は、トーチ角度θが30’から90
°の広い角度範囲で、測定限界である0、01dB/c
n+以下であった。これに対して点線で示した従来技術
では、損失の角度依存性が見られ、θが約80°までは
0.02〜0.04dB/ ellと比較的低損失であ
るが、θが80°以上になると損失が高くなり始め、9
0゛では3dB/c1)であった。また、θ=90°で
10枚のシリコン基板に堆積した多孔質ガラス膜のうち
6枚にクラックが生じた。
The measurement limit of the measurement system used to measure the propagation loss of the optical waveguide film manufactured in this manner is 0.0 IdB/cm). The results of the relationship between the torch angle θ and the propagation loss are shown in FIG. Furthermore, for comparison, FIG. 10 also shows the propagation loss of an optical waveguide film manufactured using the conventional technique. The propagation loss of the leading wave film according to the present invention shown by the solid line is as follows when the torch angle θ ranges from 30' to 90'.
Measurement limit of 0.01 dB/c over a wide angle range of °
It was n+ or less. On the other hand, in the conventional technology shown by the dotted line, angular dependence of loss is seen, and the loss is relatively low at 0.02 to 0.04 dB/ell up to θ of about 80°, but when θ is 80° If it exceeds 9, the loss starts to increase and
At 0゛, it was 3 dB/c1). Moreover, cracks occurred in 6 of the porous glass films deposited on 10 silicon substrates at θ=90°.

このように、火炎層流を安定に保つ手段例えば実施例に
記したように給気管を配置する本発明ではガラス微粒子
堆積部の周囲の外乱、さらにはトーチ角度に左右される
ことなく、極めて安定な火炎層流が実現できるため、多
孔質ガラス薄膜一層毎の厚さが均一でしかもドーパント
濃度のゆらぎが極めて小さいガラス膜を得ることができ
、この結果第10図に示したように広い角度範囲で0.
01dB/cm以下の低伝播損失光導波膜が得られた訳
である。トーチ角度θが30°以上において、角度θに
関係なく高品質光導波膜が製造できることはガラス微粒
子堆積条件が大幅に緩和されるばかりでな(、ガラス微
粒子の堆積効率の面からも有利である。第1)図にトー
チ角度θとガラス微粒子堆積効率の関係を示す。堆積効
率は角度θが大きくなるに従って向上し、角度θが90
°では90%に達する。従って、実施例に記したように
θ−90’でも高品質先導波膜が製造できる本発明では
、高効率で高品質膜の製造ができる利点を有する。
In this way, the method of maintaining the flame laminar flow stably, for example, by arranging the air supply pipe as described in the embodiment of the present invention, is extremely stable without being influenced by disturbances around the glass particulate deposition area or even by the torch angle. Since a laminar flame flow can be realized, it is possible to obtain a porous glass thin film in which the thickness of each layer is uniform and the fluctuation in dopant concentration is extremely small.As a result, a wide angular range can be obtained as shown in Figure 10. So 0.
This means that an optical waveguide film with a low propagation loss of 0.01 dB/cm or less was obtained. When the torch angle θ is 30° or more, a high-quality optical waveguide film can be produced regardless of the angle θ, which not only greatly eases the deposition conditions for glass particles (but is also advantageous in terms of the deposition efficiency of glass particles). Figure 1) shows the relationship between the torch angle θ and the glass particle deposition efficiency. The deposition efficiency improves as the angle θ increases, and when the angle θ is 90
It reaches 90% at °. Therefore, as described in the examples, the present invention, which can produce a high-quality leading wave film even at θ-90', has the advantage of being able to produce a high-quality film with high efficiency.

前記実施例は、基板の移動方向と火炎層流の入射方向を
同一方向とした場合であるが、トーチ設置角度θを30
°、45°、60°、75°、90°に設定し、基板の
移動方向を火炎層流の入射方向に対して逆方向としてバ
ッファ層、コア層、保護層を堆積させたところ、従来技
術で見られた火炎層流の瞬間的なゆらぎや角度θに依存
した火炎層流の部分的な乱流などが生じることなく、極
めて安定した火炎層流が実現できた。また、このように
して製造した光導波膜の伝播損失はいずれのトーチ角度
においても0.01dB/(至)以下と良好な結果であ
った。
In the above embodiment, the moving direction of the substrate and the incident direction of the flame laminar flow are the same direction, but the torch installation angle θ is set to 30
, 45°, 60°, 75°, and 90°, and the buffer layer, core layer, and protective layer were deposited with the moving direction of the substrate opposite to the incident direction of the laminar flame flow. An extremely stable flame laminar flow was achieved without the instantaneous fluctuations of the flame laminar flow or the partial turbulence of the flame laminar flow depending on the angle θ, which were observed in . Further, the propagation loss of the optical waveguide film manufactured in this manner was 0.01 dB/(maximum) or less at any torch angle, which was a good result.

実施例2 第6図において、給気管15の吹出口寸法は、501φ
とし、火炎層流12が基板面に接触する位置から30n
前方に給気管15の先端を設置し、給気管15内の圧力
が−4mll I!0となるように供給側から圧縮空気
を供給した。また排気口はトーチ先端部から120鶴後
方に設置し、排気管内6内の圧力が6.0 mml 2
0となるように排気量制御弁14を調整した。このよう
な設置状態において、実施例1に記したガラス微粒子堆
積条件と同様な条件でガラス微粒子の堆積を行った。こ
の結果、火炎層流の安定化が図られ、得られた光導波膜
の伝播損失もトーチ設置角度θ=30°〜90°の範囲
で0.02dB/cmであった。実施例において、ガラ
ス微粒子堆積部の周囲で故意に外乱を生じせしめたとこ
ろ火炎層流にわずかにゆらぎが生じた。これは実施例1
の給排気一体型よりも外乱の影響を受けやすいことを意
味しており、このことからガラス微粒子堆積工程中わず
かながら火炎層流がゆらぎ、このため伝播損失にバラツ
キが生じたと思われる。
Embodiment 2 In FIG. 6, the outlet size of the air supply pipe 15 is 501φ.
30n from the position where the flame laminar flow 12 contacts the substrate surface.
The tip of the air supply pipe 15 is installed in front, and the pressure inside the air supply pipe 15 is -4ml I! Compressed air was supplied from the supply side so that the temperature was 0. In addition, the exhaust port is installed 120 mm behind the torch tip, and the pressure inside the exhaust pipe 6 is 6.0 mml 2.
The displacement control valve 14 was adjusted so that it became 0. In this installed state, glass particles were deposited under the same conditions as the glass particle deposition conditions described in Example 1. As a result, the flame laminar flow was stabilized, and the propagation loss of the obtained optical waveguide film was also 0.02 dB/cm in the range of torch installation angle θ=30° to 90°. In the example, when a disturbance was intentionally caused around the part where the glass particles were deposited, slight fluctuations occurred in the flame laminar flow. This is Example 1
This means that it is more susceptible to external disturbances than the integrated air supply and exhaust type, and this suggests that the flame laminar flow fluctuated slightly during the glass particle deposition process, resulting in variations in propagation loss.

なお、本実施例では給気管15に供給するガス供給量よ
りも排気管6の排気量を多く調整することが重要であり
、排気量が少ない場合には基板面に堆積されないガラス
微粒子の一部が排気口に排気されなくなると同時に、火
炎流が給気口側に広がってしまい本発明の効果を失うこ
とになる。
In this embodiment, it is important to adjust the exhaust volume of the exhaust pipe 6 to be larger than the gas supply volume supplied to the air supply pipe 15. If the exhaust volume is small, some of the glass particles that are not deposited on the substrate surface At the same time, the flame flow spreads toward the air supply port side, and the effect of the present invention is lost.

実施例3 第7図(b)に示したようなトーチ5の側面に火炎形成
用ガスと別個のガス吹出口16を有したl・−チによっ
てガラス微粒子を堆積した。この工程中、ガス吹出口1
6から各々101/分の圧縮空気を流した。その他の堆
積条件は実施例1と同一である。この結果、火炎層流は
外乱によって乱れることなく、また火炎層流の入射方向
に対して基板移動方向を逆方向とした場合でも極めて安
定した火炎層流であり、従来技術の欠点は皆無であった
Example 3 Glass particles were deposited using a torch having a flame-forming gas and a separate gas outlet 16 on the side surface of the torch 5 as shown in FIG. 7(b). During this process, gas outlet 1
Compressed air was flowed from 6 to 101/min, respectively. Other deposition conditions were the same as in Example 1. As a result, the flame laminar flow is not disturbed by external disturbances, and even when the substrate movement direction is opposite to the direction of incidence of the flame laminar flow, it is an extremely stable flame laminar flow, and there are no drawbacks of the conventional technology. Ta.

ただし、トーチ設置角度θが90°の場合には、排気口
の排気量をわずかに多くする必要があり、θが90”以
下の場合の排気量と同一排気量とした場合火炎層流が基
板に触れる上流域で乱流が生じることがあった。
However, if the torch installation angle θ is 90°, the exhaust volume at the exhaust port must be slightly increased, and if the exhaust volume is the same as when θ is 90" or less, the laminar flame flow will Turbulent flow sometimes occurred in the upstream area where it touched the water.

排気管内の圧力によると、θが90°以下で−551)
1)20の場合、θ−90°では−6,1mall 2
0がiJであった。これ以上の排気圧にするとガラス微
粒子の堆積効率が劣化するようになり好ましくない。
According to the pressure inside the exhaust pipe, -551 when θ is 90° or less)
1) In the case of 20, -6,1mall 2 at θ-90°
0 was iJ. If the exhaust pressure is higher than this, the deposition efficiency of glass particles will deteriorate, which is not preferable.

このようにして製造した光導波膜の伝播損失は角度θが
30°以上で0.01dB/cm以下であった。なおθ
=90°において排気量調整を行わなかった場合の損失
は0.03dB/amであり、わずかに劣化していた。
The propagation loss of the optical waveguide film thus manufactured was 0.01 dB/cm or less when the angle θ was 30° or more. Note that θ
When the displacement was not adjusted at =90°, the loss was 0.03 dB/am, which was a slight deterioration.

ガス吹出口から吹出すガス流量を多くしていくと、これ
によって火炎層流が乱れるようになるので好ましくない
。乱れが生じるガス流量は、ガラス微粒子および火炎を
形成するトーチ断面の寸法により異なるが、第7図(b
)に示したトーチの外径が15鰭φの場合には毎分3i
以上の圧縮空気において乱れが生じ始めた。なお、トー
チの側面に有したガス吹出口およびトーチの形状は第7
図(C)、(d)のような構造でも本発明の効果は(b
)の場合と同様であった。
Increasing the flow rate of gas blown out from the gas outlet is not preferable because this will disturb the flame laminar flow. The gas flow rate at which turbulence occurs varies depending on the dimensions of the torch cross section that forms the glass particles and the flame, but it is shown in Figure 7 (b).
) If the outside diameter of the torch shown in ) is 15 fins, the rate of
Turbulence began to occur in the compressed air. Note that the shape of the gas outlet on the side of the torch and the shape of the torch are as follows.
Even with the structures shown in Figures (C) and (d), the effect of the present invention is (b)
).

実施例4 第8図(b)に示したようなガラス微粒子および火炎を
形成するトーチ5の最外周に火炎層流を安定に保つため
のガス吹出口16を有したトーチによってガラス微粒子
を堆積した。この工程中、ガス吹出口から毎分15/の
圧縮空気を流した。この結果、火炎層流の乱れはな〈従
来技術の欠点は皆無であった。ただし、この実施例にお
いても実施例3と同様にトーチ角度θが90°でわずか
に火炎層流の乱れが生じた。しかし排気量の調整によっ
て乱れの改善を図ることができた。このようにして製造
した光導波膜の伝播損失は角度θ=30°以上で0.0
1dB/co+以下と良好な結果であった。ガス吹出口
16から吹出すガス流量が毎分251以上において火炎
層流の乱れが生じ始めるので、トーチの断面寸法を考慮
した上で乱れが生じ始める以下のガス流量に設定するこ
とにより、本発明の効果は最大限発揮される。
Example 4 Fine glass particles were deposited using a torch having a gas outlet 16 to maintain a stable flame laminar flow on the outermost periphery of the torch 5 that forms glass particles and flame as shown in FIG. 8(b). . During this process, compressed air was flowed through the gas outlet at a rate of 15/min. As a result, there is no disturbance in the flame laminar flow (there are no drawbacks of the prior art). However, in this example, as in Example 3, slight turbulence in the flame laminar flow occurred when the torch angle θ was 90°. However, by adjusting the displacement, we were able to improve the turbulence. The propagation loss of the optical waveguide film manufactured in this way is 0.0 at angle θ = 30° or more.
This was a good result of 1 dB/co+ or less. Since turbulence in the flame laminar flow begins to occur when the gas flow rate blown out from the gas outlet 16 exceeds 251/min, the present invention can be achieved by setting the gas flow rate below at which turbulence begins to occur, taking into account the cross-sectional dimensions of the torch. effect will be maximized.

以上の実施例の他に、実施例2と実施例3および実施例
2と実施例4を組合せて実施することができる。この場
合にはトーチ設置角度θ−90”の際の排気量調整は不
必要となり、前記実施例よりさらに火炎層流の安定化を
図ることができる。
In addition to the above embodiments, embodiments 2 and 3 and embodiments 2 and 4 can be combined and implemented. In this case, there is no need to adjust the displacement when the torch installation angle is θ-90'', and the flame laminar flow can be further stabilized than in the previous embodiment.

また、実施例2.3.4では火炎層流の制御ガスとして
圧縮空気を用いたが、Arz N 2等の不活性ガス、
02、CIII等の不燃性ガス等火炎層流を保つための
制御されたガスであれば何でもよく、本発明はこれらの
種類に限定されるべきものではない。
In addition, in Example 2.3.4, compressed air was used as the control gas for the flame laminar flow, but inert gas such as Arz N 2,
Any controlled gas for maintaining flame laminar flow may be used, such as nonflammable gas such as 02, CIII, etc., and the present invention is not limited to these types.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、トーチの先端に形成される火炎層
流を安定に保つための手段、具体的には火炎安定化のた
めの給気口を設けることを特徴とする本発明によれば、
従来技術の欠点であった■火炎層流の瞬間的なゆらぎ現
象、■トーチ設置角度θに依存した伝播損失の劣化、お
よびθ=90゜における火炎の部分的乱流、さらに火炎
排気の問題、などが解決され、伝播損失の一層の低減化
を図ることができる。従って、本発明の実施においては
、1−−チ設置角度θが30“以上であれば、いかなる
角度でも高品質先導波膜を製造することが′でき、また
実施例で述べたように火炎層流と基板移動方向が逆方向
でも何ら問題なく高品質光導波膜が製造できる利点があ
る。
As explained above, according to the present invention, which is characterized by providing a means for stably maintaining the flame laminar flow formed at the tip of the torch, specifically, an air supply port for flame stabilization,
The disadvantages of the prior art were ■instantaneous fluctuations in the flame laminar flow, ■deterioration of propagation loss depending on the torch installation angle θ, partial turbulence of the flame at θ=90°, and problems with flame exhaust. These problems can be solved, and propagation loss can be further reduced. Therefore, in carrying out the present invention, a high-quality leading wave film can be manufactured at any angle as long as the first-chip installation angle θ is 30" or more, and as described in the examples, the flame layer This method has the advantage that high-quality optical waveguide films can be manufactured without any problems even when the direction of flow and substrate movement are opposite to each other.

なお、本発明において、基板の移動はトーチと相対的に
なされるものであり、基板を全く移動せずにトーチおよ
び排気口、給気口を移動させて基板上に均質にガラス微
粒子を堆積させる製造方法も本発明の範囲に含まれるこ
とを付記する。
Note that in the present invention, the substrate is moved relative to the torch, and glass particles are deposited homogeneously on the substrate by moving the torch, exhaust port, and air supply port without moving the substrate at all. It should be noted that the manufacturing method is also included within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の製造装置の構成側図、第2図は従来法
でガラス微粒子が基板に吹きつけられている状況を示し
た図、第3図は第2図において矢印Aから見た状況およ
び空気の流れを示した図、第4図は第2図において角度
θ=90“の場合の状況を示した図、第5図は本発明の
一実施形態例であってガラス微粒子が基板に吹き付けら
れている状況を示した図、第6図は給気口を設置した本
発明の一実施形態例を示した図、第7図<a)はトーチ
の側面に給気口を設けた本発明の一実施形態例を示した
図、第7図(b)は給気口を設けたトーチの断面を示し
た実施形態図、第8図(a)はトーチの外周に給気口を
設けた本発明の一実施形態例を示した図、第8図(b)
は給気口を設けたトーチの断面を示したー実施形態図、
第9図は本発明の実施例において角度θ=90°の場合
の状況図、第10図はトーチ角度θと伝播損失の関係を
示した図、第1)図はトーチ角度θと堆積効率の関係を
示した図である。 1 ・・・基板、2 ・・・ターンテーブル、3 ・・
・回転装置、4 ・・・保護容器、5 ・・・ガタス微
粒子合成トーチ、6 ・・・排気管、7 ・・・排気ガ
ス処理装置、8 ・・・トーチ移動装置、9 ・・・原
料ガス供給装置、10・・・導管、1)・・・光高温計
、12・・・火炎流、13・・・給気管、14・・・排
気量制御弁、15・・・給気管、16、16’、 16
″、  ・・・ガス吹出口出願人代理人  雨 宮  
正 季 第2図 第3図 第5図 第6 図 (a) (b)                      
   (C)(d) 第8図 (b) !6 第9図 第to図 ool− トーナ角浅θ  (浅) 第1)図 上−千角jθ
Figure 1 is a side view of the configuration of the manufacturing equipment using the conventional method, Figure 2 is a diagram showing the situation in which glass particles are blown onto a substrate using the conventional method, and Figure 3 is a view taken from arrow A in Figure 2. FIG. 4 is a diagram showing the situation when the angle θ=90'' in FIG. Figure 6 is a diagram showing an embodiment of the present invention in which an air supply port is installed, and Figure 7 <a) is a diagram showing an example of an embodiment of the present invention in which an air supply port is installed on the side of the torch. A diagram showing an embodiment of the present invention, FIG. 7(b) is an embodiment diagram showing a cross section of a torch provided with an air supply port, and FIG. 8(a) is a diagram showing an embodiment of the torch provided with an air supply port on the outer circumference of the torch. A diagram showing an example of an embodiment of the present invention provided, FIG. 8(b)
shows a cross section of a torch provided with an air supply port - an embodiment diagram,
Figure 9 is a diagram showing the situation when the angle θ = 90° in the embodiment of the present invention, Figure 10 is a diagram showing the relationship between the torch angle θ and propagation loss, and Figure 1) is a diagram showing the relationship between the torch angle θ and the deposition efficiency. It is a diagram showing the relationship. 1... Board, 2... Turntable, 3...
・Rotating device, 4... Protective container, 5... Gatas fine particle synthesis torch, 6... Exhaust pipe, 7... Exhaust gas treatment device, 8... Torch moving device, 9... Raw material gas Supply device, 10... Conduit, 1)... Optical pyrometer, 12... Flame flow, 13... Air supply pipe, 14... Displacement control valve, 15... Air supply pipe, 16, 16', 16
″、・・・Gas outlet applicant agent Amemiya
Seasonal Figure 2 Figure 3 Figure 5 Figure 6 (a) (b)
(C) (d) Figure 8 (b)! 6 Figure 9 to figure ool- Toner angle shallow θ (shallow) 1) Figure top - thousand angle jθ

Claims (4)

【特許請求の範囲】[Claims] (1)ガラス微粒子合成トーチにより合成されるガラス
微粒子を火炎層流として基板に直接吹きつけ、かつ吹き
つけられた余剰のガラス微粒子を含む火炎層流を排気し
て、前記基板上に多孔質ガラス層を形成した後、高温で
透明ガラス化するガラス膜の製造方法において、少なく
とも前記余剰のガラス微粒子を含んだ火炎層流の排気方
向に沿ってガス流を流すことを特徴とするガラス膜の製
造方法。
(1) Glass particles synthesized by a glass particle synthesis torch are directly blown onto the substrate as a flame laminar flow, and the flame laminar flow containing excess blown glass particles is exhausted to form a porous glass on the substrate. A method for producing a glass film in which a layer is formed and then turned into transparent vitrification at a high temperature, characterized in that a gas flow is caused to flow along the exhaust direction of the flame laminar flow containing at least the surplus glass particles. Method.
(2)ガラス微粒子を含む火炎層流を基板に上方より直
接吹きつけるよう配置されたガラス微粒子合成トーチと
、基板上に付着しなかった余剰のガラス微粒子を含む火
炎層流を基板近傍から排気する排気管とからなるガラス
膜製造装置において、合成トーチ近傍に、少なくとも前
記火炎層流の排気管方向に沿うガス流を供給できるガス
供給部を設けたことを特徴とするガラス膜製造装置。
(2) A glass particle synthesis torch is arranged to blow a flame laminar flow containing glass particles directly onto the substrate from above, and a flame laminar flow containing surplus glass particles that did not adhere to the substrate is exhausted from near the substrate. 1. A glass film manufacturing apparatus comprising an exhaust pipe, characterized in that a gas supply section is provided in the vicinity of the synthesis torch, which can supply at least a gas flow along the direction of the exhaust pipe of the flame laminar flow.
(3)前記ガス供給部は一端がガス供給口で他端が排気
口である給気管であり、この給気管側面に火炎層流を前
記給気管内に吹き込むためのガラス微粒子合成トーチ用
窓、反対側面に、前記火炎層流が基板に吹きつけられる
ように開口したガラス微粒子堆積用基板用窓を設けたこ
とを特徴とする特許請求の範囲第2項記載のガラス膜製
造装置。
(3) The gas supply section is an air supply pipe having a gas supply port at one end and an exhaust port at the other end, and a glass particle synthesis torch window for blowing a flame laminar flow into the air supply pipe on the side surface of the air supply pipe; 3. The glass film manufacturing apparatus according to claim 2, further comprising a substrate window for depositing glass particles, which is opened on the opposite side so that the flame laminar flow is blown onto the substrate.
(4)前記ガス供給部をガラス微粒子合成トーチの側面
あるいは該トーチ最外周に設けることを特徴とする特許
請求の範囲第2項記載のガラス膜製造装置。
(4) The glass film manufacturing apparatus according to claim 2, wherein the gas supply section is provided on a side surface of a glass particle synthesis torch or on the outermost periphery of the torch.
JP62010378A 1987-01-20 1987-01-20 Glass film manufacturing equipment Expired - Lifetime JPH0776097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010378A JPH0776097B2 (en) 1987-01-20 1987-01-20 Glass film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010378A JPH0776097B2 (en) 1987-01-20 1987-01-20 Glass film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS63182227A true JPS63182227A (en) 1988-07-27
JPH0776097B2 JPH0776097B2 (en) 1995-08-16

Family

ID=11748470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010378A Expired - Lifetime JPH0776097B2 (en) 1987-01-20 1987-01-20 Glass film manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0776097B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879428A (en) * 1995-11-07 1999-03-09 The Furukawa Electric Co., Ltd. Apparatus for manufacturing optical fiber preform
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
EP1268186A1 (en) * 1999-12-29 2003-01-02 MicroCoating Technologies, Inc. Chemical vapor deposition method and coatings produced therefrom
US6504983B1 (en) 2000-03-30 2003-01-07 The Furukawa Electric Co., Ltd. Optical waveguide and method for fabricating the same
US6563986B2 (en) 2000-03-28 2003-05-13 The Furukawa Electric Co., Ltd. Arrayed waveguide grating
US7351449B2 (en) 2000-09-22 2008-04-01 N Gimat Co. Chemical vapor deposition methods for making powders and coatings, and coatings made using these methods
WO2013076525A1 (en) * 2011-11-21 2013-05-30 Arcelormittal Investigación Y Desarrollo Sl Coating method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992923A (en) * 1982-11-15 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of porous glass membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992923A (en) * 1982-11-15 1984-05-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of porous glass membrane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879428A (en) * 1995-11-07 1999-03-09 The Furukawa Electric Co., Ltd. Apparatus for manufacturing optical fiber preform
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
EP1046617A3 (en) * 1999-04-21 2001-03-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
US6339940B1 (en) 1999-04-21 2002-01-22 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
EP1268186A1 (en) * 1999-12-29 2003-01-02 MicroCoating Technologies, Inc. Chemical vapor deposition method and coatings produced therefrom
EP1268186A4 (en) * 1999-12-29 2007-10-24 Ngimat Co Chemical vapor deposition method and coatings produced therefrom
US6563986B2 (en) 2000-03-28 2003-05-13 The Furukawa Electric Co., Ltd. Arrayed waveguide grating
US6504983B1 (en) 2000-03-30 2003-01-07 The Furukawa Electric Co., Ltd. Optical waveguide and method for fabricating the same
US7351449B2 (en) 2000-09-22 2008-04-01 N Gimat Co. Chemical vapor deposition methods for making powders and coatings, and coatings made using these methods
WO2013076525A1 (en) * 2011-11-21 2013-05-30 Arcelormittal Investigación Y Desarrollo Sl Coating method and apparatus

Also Published As

Publication number Publication date
JPH0776097B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JPS6124352B2 (en)
US20120240634A1 (en) Method of depositing zinc oxide coatings by chemical vapor deposition
JPS63182227A (en) Production of glass film and device therefor
KR100414668B1 (en) Flame stabilizer of burner for flame hydrolysis deposition process
JPS6150892B2 (en)
JP4043768B2 (en) Manufacturing method of optical fiber preform
JPS6139645B2 (en)
JP4304391B2 (en) Tin oxide film, method of manufacturing the same, and tin oxide film manufacturing apparatus
JP2000290035A (en) Device for production of porous optical fiber perform
JP2001506221A (en) Organic metal for lightwave optical circuits
JP2803510B2 (en) Method and apparatus for manufacturing glass preform for optical fiber
JP3137517B2 (en) Method for producing synthetic quartz glass member and burner for producing synthetic quartz glass
KR20040065111A (en) Optical fiber preform making apparatus for modified chemical vapor deposition
JP4471445B2 (en) Method and apparatus for manufacturing porous glass base material
JP2003335541A (en) Method for manufacturing porous preform
KR100211048B1 (en) Vertical self-centering flame hydrolysis deposition reaction torch
JPS6244573A (en) Production of film containing silicon dioxide
JP2009132549A (en) Synthetic quartz glass production device
JP3154768B2 (en) Manufacturing method of preform preform for optical fiber
JP3169561B2 (en) Method for producing glass particle deposit
CN1890190B (en) Process for producing porous preform for optical fiber and glass preform
JPH0474728A (en) Production of quartz light-waveguide and apparatus therefor
JPH0322257Y2 (en)
KR100294539B1 (en) Method for controlling particle size in FHD process
JP2000297375A (en) Production of silicon carbide film, producing device therefor and production of x-ray mask

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term