JPS63181391A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS63181391A JPS63181391A JP1300687A JP1300687A JPS63181391A JP S63181391 A JPS63181391 A JP S63181391A JP 1300687 A JP1300687 A JP 1300687A JP 1300687 A JP1300687 A JP 1300687A JP S63181391 A JPS63181391 A JP S63181391A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- active layer
- grown
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 238000005253 cladding Methods 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 abstract description 9
- 230000003595 spectral effect Effects 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 abstract 1
- 230000008025 crystallization Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0421—Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
- H01S5/0422—Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光通信用光源に好適であり、高速変調特性に
すぐれ、発振スペクトル線幅がせまい多重量子井戸型半
導体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-quantum well semiconductor laser which is suitable for a light source for optical communication, has excellent high-speed modulation characteristics, and has a narrow oscillation spectrum linewidth.
(従来の技術)
底中継光ファイバ通信システムの計画など光フアイバ通
信システムの実用化が急ピッチで進展している。その中
で光源である半導体レーザの特性向上は最も重要な課題
となってきている。特に光通信用光源として使用されて
いる1、3M、1.5−帯の半導体レーザの変調特性の
高速化2発振スペクトル線幅の低減が光通信システムに
おける伝送帯域の増加及び伝送距離の長距離化などに大
きな影響を与えるから、これらの特性改善は光通信シス
テムの特性向上においてきわめて重要な課題である。近
年、量子井戸構造を活性層とする半導体レーザが上記の
特性改善にすぐれた効果を有することが指摘され、特に
GaAs−AQGaAs系の半導体レーザにおいては実
験的にも理論的にも実証きれている。(Prior Art) The practical application of optical fiber communication systems, such as plans for a bottom relay optical fiber communication system, is progressing at a rapid pace. Among these, improving the characteristics of semiconductor lasers, which are light sources, has become the most important issue. In particular, increasing the modulation characteristics of 1, 3M, and 1.5-band semiconductor lasers, which are used as light sources for optical communications, and reducing the 2-oscillation spectral line width will increase the transmission band and extend the transmission distance in optical communication systems. Improving these characteristics is an extremely important issue in improving the characteristics of optical communication systems, as they have a large impact on the optical communication system. In recent years, it has been pointed out that semiconductor lasers with a quantum well structure as an active layer have excellent effects in improving the above characteristics, and this has been proven both experimentally and theoretically, especially in GaAs-AQGaAs semiconductor lasers. .
(発明が解決しようとする問題点)
半導体レーザは、光子系と電子系の相互作用を利用した
デバイスであるから、特定の変調周波数領域(変調周波
数が10GHzオーダーの領域)においイ$ 2 k
9−7− L−七l千スー優ハ北坦頂φ礒寸八ルナる、
これが緩和振動であり、半導体レーザの高周波特性の限
界をあたえる。そこで、この緩和振動周波数f、の高周
波数化が高速変調特性を有する半導体レーザを実現する
上での重要な点である。一般に緩和振動周波数f、は(
dx+(n)/dn)Hに比例する。ここでX□(n)
は活性層の複素電気感受率の虚部であり、nはキャリア
密度である。量子井戸構造においては、電子状態の2次
元化に伴い、その状態密度が階段型に変化するから、状
態密度がエネルギーの平方根に比例するバルク結晶より
dx、(n)/dnが増大し、緩和振動周波数f、が通
常のバルク結晶のそれより大きくなる。その上、活性層
内のキャリア密度の変化に伴う利得変動及び屈折率変動
により発生する発振スペクトル幅の広かも上記と同様の
効果から量子井戸構造を採用することにより低減するこ
となどが知られている0以上のように量子井戸構造を活
性層に採用することにより高速変調特性や狭スペクトル
線幅を有する半導体レーザが実現できる。しかし、実際
の素子の高周波特性やスペクトル線幅は上述した緩和振
動周波数やαパラメータによる制限ではなく素子構造自
体から制限されているのが常である。つまり、素子のキ
ャパシタンスCや光の導波構造がこれらの特性を制限す
る原因である。特に従来の半導体レーザ構造は電流狭窄
構造としてp−n−p−n及びp −n−p構造を採用
している素子が多いから、素子のキャパシタンスが大き
く高周波数特性を悪くしている素子が多かった。(Problems to be Solved by the Invention) Since a semiconductor laser is a device that utilizes the interaction between a photon system and an electronic system, it has a problem of $ 2 k in a specific modulation frequency region (region where the modulation frequency is on the order of 10 GHz).
9-7- L-7l thousand su Yuha north top φ 1000cm 8 Lunaru,
This is relaxation oscillation, and it imposes a limit on the high frequency characteristics of semiconductor lasers. Therefore, increasing the relaxation oscillation frequency f is an important point in realizing a semiconductor laser having high-speed modulation characteristics. In general, the relaxation oscillation frequency f is (
dx+(n)/dn)H. Here X□(n)
is the imaginary part of the complex electrical susceptibility of the active layer, and n is the carrier density. In a quantum well structure, the density of states changes stepwise as the electronic state becomes two-dimensional, so dx,(n)/dn increases compared to a bulk crystal, where the density of states is proportional to the square root of energy, and relaxation The vibration frequency f becomes larger than that of a normal bulk crystal. Furthermore, it is known that the wide oscillation spectrum width caused by gain fluctuations and refractive index fluctuations due to changes in carrier density in the active layer can be reduced by adopting a quantum well structure due to the same effect as above. By employing a quantum well structure in the active layer as in the case of 0 or more, a semiconductor laser having high-speed modulation characteristics and a narrow spectral linewidth can be realized. However, the high frequency characteristics and spectral linewidth of an actual device are usually limited not by the above-mentioned relaxation oscillation frequency or α parameter but by the device structure itself. In other words, the capacitance C of the element and the optical waveguide structure are the factors that limit these characteristics. In particular, many conventional semiconductor laser structures employ a p-n-p-n or p-n-p structure as a current confinement structure, so some devices have large capacitance and deteriorate high frequency characteristics. There were many.
本発明の目的は、高速変調特性にすぐれ、発振スペクト
ル線幅がせまい半導体レーザを提供することにある。An object of the present invention is to provide a semiconductor laser with excellent high-speed modulation characteristics and a narrow oscillation spectrum linewidth.
(問題点を解決するための手段及び作用)本発明の半導
体レーザでは、変調ドープした超格子構造を活性層に採
用し、電流狭窄構造として高抵抗層を用いることで、素
子のキャパシタンスを小キ<シ、素子の変調特性及びス
ペクトル線幅を改善している。(Means and effects for solving the problem) In the semiconductor laser of the present invention, a modulation-doped superlattice structure is adopted as an active layer, and a high resistance layer is used as a current confinement structure, thereby reducing the capacitance of the device. <Shi, the modulation characteristics and spectral linewidth of the device are improved.
(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.
第1図は本発明の一実施例を示す断面図、第2図(a)
〜(e)はその実施例の製造工程を示した断面図、第3
図は第1図、第2図の変調ドープ超格子構造活性届3を
拡大して示す断面図である。本実施例の製作においては
、まず第2図(a)に示すように、高抵抗InP基板1
上に高抵抗の例えばFeドープInPクラッド層2.l
Xl0’″llm−’程度ドーピングしたp型又はn型
InPバリア層4とノンドープInGaAsウェル層5
を交互に成長した変調ドープ超格子構造活性層3.高抵
抗InPクラッド/’I 6 、 p−InGaAsP
オーミックNI7を順次に結晶成長し、p−InGaA
sPオーミック層の一部12をエツチングにより取り除
く。次に第2図Cb”)に示すようにチッ化シリコン膜
13を成長した後、チッ化シリコン膜の一部分14をエ
ツチングにより取り除いた後、チッ化シリコン膜13を
マスクとして少なくとも超格子構造層を含む半導体レー
ザ(C)に示すように、チッ化シリコン膜13をマスク
として気相成長法などによりn−InP層8を選択成長
する。その後チッ化シリコン膜13を取り除く0次に第
2図(d)に示すように、誘電体膜例えばSin、膜1
6を成長し、SiOx膜の一部分17を取り除き、Si
ow膜16をマスクとして超格子構造活性届3を少なく
とも含む領域9までZn拡散を行なう。Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
~(e) is a cross-sectional view showing the manufacturing process of the example, the third
The figure is an enlarged cross-sectional view of the modulation doped superlattice structure active layer 3 shown in FIGS. 1 and 2. In manufacturing this example, first, as shown in FIG. 2(a), a high resistance InP substrate 1
A high resistance, for example, Fe-doped InP cladding layer 2. l
A p-type or n-type InP barrier layer 4 doped to the extent of Xl0'''llm-' and a non-doped InGaAs well layer 5
Modulation doped superlattice structure active layer grown alternately 3. High resistance InP cladding/'I6, p-InGaAsP
The crystals of ohmic NI7 are sequentially grown, and p-InGaA
A portion 12 of the sP ohmic layer is removed by etching. Next, as shown in FIG. 2Cb''), after growing a silicon nitride film 13, a part 14 of the silicon nitride film is removed by etching, and at least the superlattice structure layer is etched using the silicon nitride film 13 as a mask. As shown in FIG. 2 (C), an n-InP layer 8 is selectively grown by vapor phase growth using the silicon nitride film 13 as a mask.Then, the silicon nitride film 13 is removed. As shown in d), a dielectric film such as Sin, film 1
6 is grown, a portion 17 of the SiOx film is removed, and the Si
Using the OW film 16 as a mask, Zn is diffused to the region 9 containing at least the superlattice structure active layer 3.
次に第2図(e)に示すように、p側を極11及びn側
TIt極10を形成して本発明による実施例の半導体t
・−ザが完成する。Next, as shown in FIG. 2(e), a pole 11 on the p side and a TIt pole 10 on the n side are formed to form the semiconductor t of the embodiment according to the present invention.
・-The is completed.
上記実施例は活性層近傍に回折格子が存在しないが、活
性層近傍に回折格子をもうけることにより、本発明は分
布帰還型又はブラッグ反射型半導体レーザに適応できる
ことはもちろんである。また、上記実施例はInP系結
晶材料を用いた半導体レーザについて説明したが、本発
明は他の材料系の半導体レーザにも適用できることはも
ちろんである。Although the above embodiment does not have a diffraction grating near the active layer, it goes without saying that by providing a diffraction grating near the active layer, the present invention can be applied to distributed feedback type or Bragg reflection type semiconductor lasers. Furthermore, although the above embodiments have been described with respect to a semiconductor laser using an InP-based crystal material, the present invention can of course be applied to semiconductor lasers using other materials.
上記のようにして製造した本発明による半導体いるから
、素子のキャパシタンスは小さい。従来の量子井戸型半
導体レーザにおいては、MQw活性活性型直な方向から
キャリアの注入を行なっていたから、MQW層のバリア
結晶とウェル結晶のバンドギャップ差が大きくかつバリ
ア層厚が厚いときには、MQW層のウェル内部へ均一な
キャリア注入がされにくくなり、ひいてはしきい値電流
密度が高くなってしまう、これに対し、本発明の半導体
レーザでは、MQW層を変調ドーピングし、活性層に平
行な方向からキャリアの注入を行なう構造となっている
から、比較的ウェル内へのキャリア注入が容易である。Since the semiconductor according to the present invention is manufactured as described above, the capacitance of the device is small. In conventional quantum well semiconductor lasers, carriers are injected from the direction perpendicular to the MQW active type, so when the band gap difference between the barrier crystal and well crystal of the MQW layer is large and the barrier layer is thick, the MQW layer In contrast, in the semiconductor laser of the present invention, the MQW layer is modulated and doped to inject carriers from a direction parallel to the active layer. Since the structure is such that carriers are injected into the well, it is relatively easy to inject carriers into the well.
本発明の半導体レーザの光導波機構は、第1図から明ら
かなように、領域■と■の境界における結晶の積層構造
の違いによる屈折罵ステップと、領域Iと■の境界にお
けるZn拡散の有無による屈折率ステップとから形成さ
れており、発光領域■が横方向では最も屈折率の高い先
導波路となっている。そこで、本実施例では光の構モー
ドが安定な光導波構造が形成きれていることになる。ま
た、本実施例は、量子井戸構造を活性層に採用している
し、キャパシタンスが小さいから、高速変調が可能で狭
スペクトル線幅で動作するといる特徴を有する。As is clear from FIG. 1, the optical waveguide mechanism of the semiconductor laser of the present invention is characterized by a refraction step due to the difference in the laminated structure of crystals at the boundary between regions (1) and (2), and by the presence or absence of Zn diffusion at the boundary between regions (1) and (2). The light-emitting region (2) is the leading waveguide with the highest refractive index in the lateral direction. Therefore, in this example, an optical waveguide structure with a stable optical configuration mode has been formed. Further, this embodiment employs a quantum well structure in the active layer and has small capacitance, so it has the characteristics of being capable of high-speed modulation and operating with a narrow spectral linewidth.
(発明の効果)
以上説明したように、本発明によれば、高速変調特性に
すぐれ、発振スペクトル線幅がせまい半導体レーザを得
ることができる。(Effects of the Invention) As described above, according to the present invention, a semiconductor laser having excellent high-speed modulation characteristics and a narrow oscillation spectrum linewidth can be obtained.
第1図は本発明を適用してなる半導体レーザの一実施例
の構造を示す断面図、第2図(a)〜(e)はその実施
例の製造工程を説明するために中間製品を工程順に示し
た断面図、第3図はその実施例における活性層の構造を
拡大して示す断面図である。
1・・・高抵抗InP基板、2・・・高抵抗InPクラ
ッド暦、3・・・変調ドープした超格子活性居、4・・
・p型InPバリア層、5・・・ノンドープInGaA
sウェル層、6・・・高抵抗工nPクラッド届、7・・
・p型InGaAsPオーミック届、8・・・n型In
P埋め込み居、9・・・Zn拡散領域、10・・・n側
電極金属層、11・・・p側電極金属層、12・・・エ
ツチングにより取り除かれるInGaAsPオーミック
暦、13・・・チッ化シリコン膜、14・・・エツチン
グにより取り除かれるチッ化シリコン膜、15・・・エ
ツチングにより取り除かれる半導体レーザ。
域、16・・・Sin、膜、17・・・エツチングによ
り取り除かれるSin、膜。FIG. 1 is a sectional view showing the structure of an embodiment of a semiconductor laser to which the present invention is applied, and FIGS. 2(a) to 2(e) are intermediate products for explaining the manufacturing process of the embodiment. The cross-sectional views shown in order, and FIG. 3 are cross-sectional views showing an enlarged structure of the active layer in the example. 1... High resistance InP substrate, 2... High resistance InP cladding, 3... Modulation doped superlattice active layer, 4...
・p-type InP barrier layer, 5... non-doped InGaA
S-well layer, 6...High resistance nP cladding, 7...
・P-type InGaAsP ohmic notification, 8...n-type In
P buried region, 9... Zn diffusion region, 10... n side electrode metal layer, 11... p side electrode metal layer, 12... InGaAsP ohmic layer removed by etching, 13... nitride Silicon film, 14... Silicon nitride film to be removed by etching, 15... Semiconductor laser to be removed by etching. Area, 16...Sin, film, 17...Sin, film removed by etching.
Claims (1)
た超格子構造の活性層を有する発光領域 I 、並びに前
記発光領域 I 隣接し、前記活性層の長手方向の左右に
形成された互いに異なる導電型の半導体層から成る領域
IIびIIIを有する半導体レーザ。A light-emitting region I having an active layer with a superlattice structure sandwiched between upper and lower sides by cladding layers of high-resistance semiconductor crystal, and a light-emitting region I having a superlattice-structured active layer sandwiched between upper and lower sides of cladding layers of high-resistance semiconductor crystal, and a light-emitting region I having a superlattice-structured active layer sandwiched between upper and lower sides of cladding layers of high-resistance semiconductor crystal; A region consisting of a semiconductor layer
Semiconductor laser with II and III.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300687A JPS63181391A (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1300687A JPS63181391A (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63181391A true JPS63181391A (en) | 1988-07-26 |
Family
ID=11821090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1300687A Pending JPS63181391A (en) | 1987-01-21 | 1987-01-21 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63181391A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291110B1 (en) | 1997-06-27 | 2001-09-18 | Pixelligent Technologies Llc | Methods for transferring a two-dimensional programmable exposure pattern for photolithography |
-
1987
- 1987-01-21 JP JP1300687A patent/JPS63181391A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291110B1 (en) | 1997-06-27 | 2001-09-18 | Pixelligent Technologies Llc | Methods for transferring a two-dimensional programmable exposure pattern for photolithography |
US6480261B2 (en) | 1997-06-27 | 2002-11-12 | Pixelligent Technologies Llc | Photolithographic system for exposing a wafer using a programmable mask |
US6600551B2 (en) | 1997-06-27 | 2003-07-29 | Pixelligent Technologies Llc | Programmable photolithographic mask system and method |
US6888616B2 (en) | 1997-06-27 | 2005-05-03 | Pixelligent Technologies Llc | Programmable photolithographic mask system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6804280B2 (en) | Semiconductor laser based on the effect of photonic band gap crystal-mediated filtration of higher modes of laser radiation and method of making the same | |
EP0400559B1 (en) | Semiconductor optical device | |
JPS6215875A (en) | Semiconductor device and manufacture thereof | |
JP3296917B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2013149665A (en) | Quantum cascade semiconductor laser | |
JPS6254489A (en) | Semiconductor light emitting element | |
JP2870632B2 (en) | Semiconductor optical integrated circuit and method of manufacturing the same | |
JPS62189785A (en) | Semiconductor device with distributed bragg reflector | |
US5398255A (en) | Semiconductor laser having buried structure on p-InP substrate | |
US5519721A (en) | Multi-quantum well (MQW) structure laser diode/modulator integrated light source | |
US5821570A (en) | Semiconductor structure having a virtual diffraction grating | |
CN108988124B (en) | Monolithic integration tunnel junction laser for microwave oscillation source | |
JPS63181391A (en) | Semiconductor laser | |
JPS61164287A (en) | Semiconductor laser | |
JP2003234540A (en) | Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser | |
CN115280609A (en) | Optical device | |
JP2003177367A (en) | Semiconductor optical element | |
JP2004109594A (en) | Waveguide type semiconductor element | |
JP2012033975A (en) | Method of manufacturing semiconductor laser | |
JPS61220389A (en) | Integrated type semiconductor laser | |
WO1993020604A1 (en) | Semiconductor laser device | |
JPH03174793A (en) | Semiconductor laser | |
JPH0983077A (en) | Semiconductor optical device | |
JPH1140897A (en) | Semiconductor laser element and its manufacture | |
JPS61212082A (en) | Integrated semiconductor laser |