JP3296917B2 - Semiconductor laser device and method of manufacturing the same - Google Patents

Semiconductor laser device and method of manufacturing the same

Info

Publication number
JP3296917B2
JP3296917B2 JP03949794A JP3949794A JP3296917B2 JP 3296917 B2 JP3296917 B2 JP 3296917B2 JP 03949794 A JP03949794 A JP 03949794A JP 3949794 A JP3949794 A JP 3949794A JP 3296917 B2 JP3296917 B2 JP 3296917B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
active layer
surface emitting
layer
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03949794A
Other languages
Japanese (ja)
Other versions
JPH07249824A (en
Inventor
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03949794A priority Critical patent/JP3296917B2/en
Publication of JPH07249824A publication Critical patent/JPH07249824A/en
Application granted granted Critical
Publication of JP3296917B2 publication Critical patent/JP3296917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094088Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with ASE light recycling, i.e. with reinjection of the ASE light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ素子、特
に光情報処理或いは光通信用の光源に適する面発光型半
導体レーザをもつ半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a semiconductor laser device having a surface emitting semiconductor laser suitable for a light source for optical information processing or optical communication.

【0002】[0002]

【従来の技術】面発光型半導体レーザは、2次元アレー
集積が可能などの利点をもち、光情報処理或いは光通信
用の光源としてを開発が進められている。半導体基板上
に結晶を成長する方向に共振器(垂直共振器と略称)を
形成し、出力光が半導体基板野面と垂直方向となる面発
光型の半導体レーザにおいて、電流注入により励起され
た室温での連続発振が報告されている。例えば、文献
電子情報通信学会1993年、4巻、179頁において述べられ
ている。
2. Description of the Related Art A surface-emitting type semiconductor laser has any advantage that a two-dimensional array can be integrated, and is being developed as a light source for optical information processing or optical communication. In a surface-emitting type semiconductor laser in which a resonator (abbreviated as a vertical resonator) is formed in a direction in which a crystal grows on a semiconductor substrate, and output light is in a direction perpendicular to a semiconductor substrate field surface, room temperature excited by current injection is applied. Continuous oscillations have been reported. For example, literature
The Institute of Electronics, Information and Communication Engineers, 1993, vol. 4, p. 179.

【0003】[0003]

【発明が解決しようとする課題】従来の面発光型半導体
レーザ素子は、レーザ素子抵抗が非常に大きいことによ
り、直接電流注入だけによってレーザ発振を得る構成で
は、発振を行なわせるためには電流密度が非常に高くな
るという問題がある。上記文献に記載されている技術
は、活性層に対して直接電流注入を行って励起させた面
発光型半導体レーザの室温連続発振について述べている
が、発光可能な閾値電流密度が依然10kA/cm2
上と高く、レーザ素子抵抗が非常に大きいことにより熱
の発生が著しく熱放散の必要がある。高熱伝導材料を用
いた反射鏡を設けることにより放熱特性の改善を行なっ
ていいるが、室温以上の高温動作や光出力の熱飽和を避
けた高出力化については実用上まだ十分な特性が得られ
ていない。また、これらの問題に対する対策や素子構造
に関しては記述されていない。
The conventional surface-emitting type semiconductor laser device has a very large laser device resistance. Therefore, in a configuration in which laser oscillation is obtained only by direct current injection, a current density is required to cause oscillation. Is very high. The technique described in the above-mentioned document describes a continuous-wave oscillation at room temperature of a surface-emitting type semiconductor laser excited by directly injecting current into an active layer. However, the threshold current density at which light can be emitted is still 10 kA / cm. Since the resistance is as high as 2 or more and the resistance of the laser element is extremely large, heat is remarkably generated and heat dissipation is required. Although the heat dissipation characteristics are improved by providing a reflector made of a high thermal conductive material, sufficient characteristics for practical use are still obtained for high-temperature operation above room temperature and high output avoiding thermal saturation of light output. Not. In addition, there is no description about measures against these problems or element structures.

【0004】本発明の目的は、従来の面発光型半導体レ
ーザの素子構造に起因する、高い電流密度や素子抵抗を
低減した半導体レーザ素子を実現することである。
An object of the present invention is to realize a semiconductor laser device having a high current density and a reduced device resistance due to the device structure of a conventional surface emitting semiconductor laser.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体レーザ素子は、光注入励起によって
発振する面発光型半導体レーザと、上記面発光型半導体
レーザに光注入励起を行なう横方向共振器構造をもつ横
方向共振器型半導体レーザとを同一半導体基板上に集積
して形成した。
In order to achieve the above object, a semiconductor laser device according to the present invention comprises a surface emitting semiconductor laser oscillating by light injection pumping, and a lateral light emitting laser for performing light injection pumping on the surface emitting semiconductor laser. A lateral cavity type semiconductor laser having a directional cavity structure was integrated and formed on the same semiconductor substrate.

【0006】本発明の半導体レーザ素子の好ましい形態
としては、上記面発光型半導体レーザの活性層の禁制帯
幅が上記横方向共振器構造をもつ半導体レーザの活性層
の禁制帯幅より小さく、上記面発光型半導体レーザの活
性層に対して注入により蓄積されるキャリア分布の擬フ
ェルミレベル間エネルギーよりも上記横方向共振器型半
導体レーザの活性層のエネルギーが大きく、望ましくは
60meV以上に設定される。
In a preferred embodiment of the semiconductor laser device according to the present invention, the forbidden band width of the active layer of the surface emitting semiconductor laser is smaller than the forbidden band width of the active layer of the semiconductor laser having the lateral cavity structure. The energy of the active layer of the lateral cavity semiconductor laser is larger than the energy between the pseudo-Fermi levels of the carrier distribution accumulated by injection into the active layer of the surface emitting semiconductor laser, and is preferably set to 60 meV or more. .

【0007】また、上記面発光型半導体レーザ及び上記
横方向共振器構造をもつ半導体レーザの活性層は圧縮又
は引張歪を生じる格子歪を持つ多重量子井戸構造にする
ことが望ましい。
Further, it is desirable that the active layer of the above-mentioned surface emitting semiconductor laser and the above-mentioned semiconductor laser having the lateral resonator structure have a multiple quantum well structure having a lattice strain which causes a compressive or tensile strain.

【0008】更に、光励起効率を高めること及び基板に
対して垂直方向に効率良くレーザ光を引き出すために、
上記横方向共振器型半導体レーザの活性層と基板との間
に1次回折格子を形成した分布帰還(DFB:Distribut
ed Feedback)構造を設け、面発光型半導体レーザの活性
層と基板との間に2次回折格子を形成して横方向のレー
ザ光に対して垂直方向に分離させる成分を持たせる分布
ブラッグ反射(DBR:Distributed Blagg Reflector)
構造を設定する。また、面発光型半導体レーザを形成す
る部分に対しては、横方向共振器型半導体レーザによる
光励起だけでなく、直接電流注入できるように電極を設
けてもよいが、横方向共振器型半導体レーザに対する電
流注入用電極とは独立に駆動できるように電極を設け
る。
Further, in order to increase the light pumping efficiency and efficiently extract the laser light in the direction perpendicular to the substrate,
Distributed feedback (DFB) in which a first-order diffraction grating is formed between an active layer and a substrate of the above-mentioned lateral cavity type semiconductor laser.
ed Feedback) structure, forming a second-order diffraction grating between the active layer of the surface-emitting type semiconductor laser and the substrate, and having a component for separating the laser light in the horizontal direction vertically from the distributed Bragg reflection ( DBR: Distributed Blagg Reflector)
Set the structure. In addition, an electrode may be provided for a portion forming a surface-emitting type semiconductor laser so that current can be directly injected as well as optical excitation by the lateral resonator type semiconductor laser. The electrodes are provided so that they can be driven independently of the current injection electrodes.

【0009】本発明の半導体レーザ素子を作成するた
め、特に、単一の半導体基板上に前述ように異なった特
性の活性層を形成するために、気相成長法の結晶選択性
を利用し、有機金属気相成長法又はガスソース分子線エ
ピタキシー法のいずれかにより活性層を成長する。
In order to produce the semiconductor laser device of the present invention, in particular, to form active layers having different characteristics on a single semiconductor substrate as described above, utilizing the crystal selectivity of the vapor deposition method, The active layer is grown by either metal organic chemical vapor deposition or gas source molecular beam epitaxy.

【0010】[0010]

【作用】本発明では、面発光型レーザの発振が、同一基
板上に形成された横方向共振器型半導体レーザからの光
注入により励起するか、電流注入とともに光注入によっ
て励起するので、発光可能な閾値電流密度を低くするこ
とができる。以下、面発光型レーザに光注入励起を行
い、面発光型レーザから低閾値でレーザ光を取り出す原
理について述べる。
According to the present invention, the oscillation of the surface emitting laser is excited by light injection from a lateral cavity semiconductor laser formed on the same substrate, or is excited by light injection together with current injection. Threshold current density can be reduced. Hereinafter, the principle of performing light injection excitation on a surface emitting laser and extracting laser light from the surface emitting laser at a low threshold will be described.

【0011】図2は面発光型半導体レーザ(領域I)の両
側に横方向共振器を有する半導体レーザ(領域I)を配し
た場合のエネルギバンド構造を示す。領域Iの量子井戸
活性層の禁制帯幅Eg(1)を領域IIの量子井戸活性層の禁
制帯幅Eg(0)よりも大きく設定して、領域IIの光吸収を
促進させ励起効率を高める。実際には、領域IIの活性層
において注入により蓄積されるキャリア分布に対して擬
フェルミレベルが形成されるので、伝導帯と価電子帯に
おける擬フェルミレベル間エネルギーEg(2)よりも大き
いEg(3)に相当するエネルギーを領域Iの擬フェルミレ
ベル間エネルギーとして得ることができるようにする。
このとき、Eg(3)はEg(2)よりも望ましくは60meV以
上大きく、障壁層のエネルギー高さよりも小さいことが
効率のよい光注入励起を達成する。すなわち、領域Iが
領域IIの憂乱を受けずに効率よい光励起を実現するに
は、面発光レーザが発振したときの発振エネルギーを持
つ誘導放出が横方向共振器レーザの活性層において光吸
収が生じてキャリア反転分布が乱れて横方向共振器レー
ザの特性変動が生じないように、しかも領域Iからのレ
ーザ光エネルギーが効率よく領域IIに光吸収が行われる
必要が有る。領域Iに対して領域IIがほぼ透明となり、
光吸収損失を及ぼさないことを考慮して、光吸収特性の
実験を行った結果、禁制帯エネルギーの大きな材料はそ
の小さい材料よりも60meV以上の差を有しているとき
にほぼ透明で無視し得る光吸収損失に抑制できることが
判明した。
FIG. 2 shows an energy band structure when a semiconductor laser (region I) having a lateral resonator is arranged on both sides of a surface emitting semiconductor laser (region I). The forbidden band width Eg (1) of the quantum well active layer in the region I is set to be larger than the forbidden band width Eg (0) of the quantum well active layer in the region II, thereby promoting light absorption in the region II and increasing excitation efficiency. . Actually, a pseudo-Fermi level is formed with respect to the carrier distribution accumulated by injection in the active layer in the region II, so that Eg (2) is larger than the energy Eg (2) between the pseudo-Fermi level in the conduction band and the valence band. The energy corresponding to 3) can be obtained as the energy between quasi-Fermi levels in region I.
At this time, Eg (3) is desirably larger than Eg (2) by at least 60 meV, and smaller than the energy height of the barrier layer achieves efficient light injection excitation. In other words, in order to realize efficient optical excitation in the region I without being disturbed by the region II, stimulated emission having oscillation energy when the surface emitting laser oscillates requires light absorption in the active layer of the lateral cavity laser. It is necessary that the laser light energy from the region I be efficiently absorbed in the region II so that the carrier inversion distribution is not disturbed and the characteristics of the lateral resonator laser are fluctuated. Region II is almost transparent to region I,
As a result of conducting an experiment on light absorption characteristics in consideration of no light absorption loss, a material having a large forbidden band energy is almost transparent and ignored when it has a difference of 60 meV or more than a material having a small forbidden band energy. It has been found that the obtained light absorption loss can be suppressed.

【0012】上記エネルギー幅Eg(3)とEg(2)の差を領
域IとIIに対応して設定するために、気相成長法の結晶
選択性を利用して多重量子井戸構造活性層を成長する。
領域IIにおいて、SiO2やSiN等の絶縁膜を用いて
一方向だけを囲うか周囲を囲った狭いパターンを形成す
ることにより、気相成長法では選択成長ができる。この
領域選択成長では、絶縁膜上に元素が成長せず、マイグ
レーションすることによってパターン内で元素の成長速
度が大きくなるため、多重量子井戸構造の活性層の量子
井戸幅を広げることができる。このとき、3元系以上の
元素を用いた混晶の量子井戸層では材料組成も変わるこ
とになるので、量子井戸幅の変化とともに実効的に禁制
帯幅に影響する。即ち、絶縁膜のパターンの内外におい
て、パターン幅と量子井戸層の成長速度及び材料組成を
制御することにより、領域の禁制帯幅に差をもたせるこ
とができ、前述のエネルギー差60meV以上に設定さ
せることができる。
In order to set the difference between the energy widths Eg (3) and Eg (2) corresponding to the regions I and II, the active layer of the multiple quantum well structure is formed by utilizing the crystal selectivity of the vapor phase growth method. grow up.
In the region II, by using an insulating film such as SiO 2 or SiN to form a narrow pattern surrounding only one direction or surrounding the periphery, selective growth can be performed by the vapor phase growth method. In this region selective growth, the element does not grow on the insulating film, and the migration speed of the element in the pattern is increased by migration, so that the quantum well width of the active layer having the multiple quantum well structure can be increased. At this time, since the material composition of the mixed crystal quantum well layer using an element of three or more elements changes, the band gap is effectively affected as the quantum well width changes. In other words, by controlling the pattern width, the growth rate of the quantum well layer, and the material composition inside and outside the pattern of the insulating film, a difference can be made in the forbidden band width of the region, and the energy difference is set to 60 meV or more. be able to.

【0013】[0013]

【実施例】【Example】

<実施例1>図1は、本発明による半導体レーザ素子の
一実施例の構造を示す図で、(a)及び(b)は、それ
ぞれその斜視図及びA−A’部の断面図を示す。図示の
ように、半導体基板1上には、中央部に光注入励起によ
って発振する垂直共振器構造をもつ面発光型半導体レー
ザ(領域II)と、上記面発光型半導体レーザに光注入励
起を行なう横方向共振器構造をもつ4つの半導体レーザ
(領域I)が面発光型半導体レーザ(領域II)を挾むよう
に配置、集積して形成されている。
<Embodiment 1> FIGS. 1A and 1B are views showing the structure of an embodiment of a semiconductor laser device according to the present invention. FIGS. 1A and 1B are a perspective view and a cross-sectional view taken along the line AA ', respectively. . As shown in the figure, a surface emitting semiconductor laser (region II) having a vertical cavity structure oscillating by light injection pumping in the center portion on a semiconductor substrate 1 and performing light injection pumping on the surface emitting semiconductor laser. Four semiconductor lasers (region I) having a lateral resonator structure are arranged and integrated so as to sandwich the surface emitting semiconductor laser (region II).

【0014】本実施例の詳細な構造を製造工程と関連し
て説明する。
The detailed structure of this embodiment will be described in connection with a manufacturing process.

【0015】基板面方位が(100)から[011]又
は[0−1−1]方向(−符号は結晶軸座標において負
の方向を示す)に15.8°オフした面方位(511)の
n型InP基板1上に、n型InPバッファ層2(層の
厚さd=0.5μm、ND=1×1018cm~3)、n型I
0.4Ga0.6As層(d=0.108μm、ND=1×1
18cm~3)とn型In0.52Al0.48As層(d=0.
115μm、ND=1×1018cm~3)を40周期交互
に繰り返したDBR構造の高反射膜3、n型InP層4
(d=0.15〜0.2μm、ND=7×1017cm~3
を順次成長する。
The plane orientation (511) in which the substrate plane orientation is off by 15.8 ° from (100) in the [011] or [0-1-1] direction (the minus sign indicates a negative direction in the crystal axis coordinates). on the n-type InP substrate 1, n-type InP buffer layer 2 (thickness d = 0.5 [mu] m layer, n D = 1 × 10 18 cm ~ 3), n -type I
n 0. 4 Ga 0. 6 As layers (d = 0.108μm, N D = 1 × 1
0 18 cm ~ 3) and n-type In 0. 52 Al 0. 48 As layer (d = 0.
115 μm, N D = 1 × 10 18 cm -3 ) 40 cycles of alternating reflection of DBR structure 3, n-type InP layer 4
(D = 0.15~0.2μm, N D = 7 × 10 17 cm ~ 3)
Grow sequentially.

【0016】この後、領域Iには発振波長1.55μm
に対して1次の回折格子を形成し、領域IIには上記発振
波長に対して2次の回折格子を形成するように、ホトリ
ソグラフィーによりマスクを形成し、さらにケミカル或
いはドライエッチングによって50〜70nm深さの周
期的な溝を形成する。次に、InGaAsP層5(λ=
1.05μm、d=0.3〜0.5μm、ND=5〜7×1
17cm~3)を成長することにより、領域IとIIの回折
格子の段差を平坦に埋め込む。その後、絶縁膜SiNマ
スクを領域IIを囲うように形成して、n型InGaAs
P光分離閉じ込め層6(λ=1.05μm、d=0.1〜
0.15μm、ND=3〜5×1017cm~3)とInGa
AsP量子障壁層6(λ=1.15μm、d=10n
m)と引張歪InGaAs量子井戸層7(λ=1.55
μm、d=10nm)を10周期成長する。このとき、
領域IではInGaAs量子井戸層の厚さdは7nmと
なっており、領域IIの量子井戸層における量子準位間エ
ネルギーよりも60meV以上の大きい差を設けること
ができる。
Thereafter, the oscillation wavelength is 1.55 μm in region I.
A first-order diffraction grating is formed, and a mask is formed by photolithography in the region II so as to form a second-order diffraction grating with respect to the above-mentioned oscillation wavelength, and furthermore, 50 to 70 nm by chemical or dry etching. Form a periodic groove of depth. Next, the InGaAsP layer 5 (λ =
1.05μm, d = 0.3~0.5μm, N D = 5~7 × 1
By growing 0 17 cm ~ 3 ), the steps of the diffraction gratings in the regions I and II are buried flat. Thereafter, an insulating film SiN mask is formed so as to surround the region II, and n-type InGaAs is formed.
P light separation confinement layer 6 (λ = 1.05 μm, d = 0.1-
0.15 μm, N D = 3-5 × 10 17 cm- 3 ) and InGa
AsP quantum barrier layer 6 (λ = 1.15 μm, d = 10n
m) and the tensile strained InGaAs quantum well layer 7 (λ = 1.55)
μm, d = 10 nm) for 10 periods. At this time,
In the region I, the thickness d of the InGaAs quantum well layer is 7 nm, and a difference larger than the energy between quantum levels in the quantum well layer in the region II by 60 meV or more can be provided.

【0017】続いて、p型InGaAsP光分離閉じ込
め層8(λ=1.05μm、 d=0.1〜0.15μ
m、ND=3〜5×1017cm~3)、p型InP光導波
層9(d=1.5〜2.0μm、ND=5×1017〜1×
1018cm~3)、p型InGaAsPコンタクト層10
(λ=1.05μm、d=0.1〜0.2μm、ND=4×
1018〜9×1018cm~3)を順次エピタキシャル成長
する。次に、ホトリソグラフィーにより絶縁膜マスクパ
ターンを形成し、メサ状にエッチングした後、p型In
P層とn型InP層を交互に2回繰り返した埋込層11
を選択的に形成する。次に、SiO2とSiを交互に繰
り返した誘電体DBR構造の高反射膜12を領域IIの上
面に形成する。
Subsequently, the p-type InGaAsP light separation / confinement layer 8 (λ = 1.05 μm, d = 0.1-0.15 μm)
m, N D = 3~5 × 10 17 cm ~ 3), p -type InP waveguide layer 9 (d = 1.5~2.0μm, N D = 5 × 10 17 ~1 ×
10 18 cm ~ 3 ), p-type InGaAsP contact layer 10
(Λ = 1.05μm, d = 0.1~0.2μm , N D = 4 ×
10 18 to 9 × 10 18 cm 3 ) are sequentially epitaxially grown. Next, after forming an insulating film mask pattern by photolithography and etching it in a mesa shape, p-type In
A buried layer 11 in which a P layer and an n-type InP layer are alternately repeated twice.
Are formed selectively. Next, a high reflection film 12 having a dielectric DBR structure in which SiO 2 and Si are alternately repeated is formed on the upper surface of the region II.

【0018】更に、ホトリソグラフィーによりリフトオ
フを用いてp側電極13を形成し、その後ホトリソグラ
フィーによりマスクを作製してドライエッチングによっ
て領域IとIIの素子及び電極の分離を行ってから、n側
電極14を蒸着する。最後に、スクライブして1図に示
す素子の形状に切り出す。上記実施例において、n型I
nP基板1の面方位は、基板面方位が(100)から
[011]又は[0−1−1]方向に15.8°オフし
た面方位(511)のものを使用したが、基板面方位が
(100)面から[011][0−1−1]方向又は
[0−11][01−1]方向(−符号は結晶軸座標に
おいて負の方向を示す)に0°から54.7°の範囲で
あればよい。
Further, a p-side electrode 13 is formed by lift-off by photolithography, a mask is formed by photolithography, and elements and electrodes in regions I and II are separated by dry etching. 14 is deposited. Finally, the substrate is scribed and cut into the element shape shown in FIG. In the above embodiment, the n-type I
As the plane orientation of the nP substrate 1, a plane orientation (511) in which the substrate plane orientation was off by 15.8 ° from (100) in the [011] or [0-1-1] direction was used. Is from 0 ° to 54.7 from the (100) plane in the [011] [0-1-1] direction or the [0-11] [01-1] direction (-sign indicates a negative direction in the crystal axis coordinates). The angle may be in the range of °.

【0019】本実施例によると、領域Iの横方向共振器
DFBレーザの光注入励起により、領域IIにおいて垂直
共振器をもつ面発光レーザを室温で容易に連続動作させ
ることができた。ここで、従来電流注入だけによる面発
光レーザにおいて問題になっていた10〜20Ω以上の
高い素子抵抗は、領域IIの面発光レーザでは光注入励起
によるため電流は流れず、問題はなくなる。全体の素子
抵抗は、領域Iの横方向共振器DFBレーザに依存して
おり、2〜5Ωの範囲にある。また、従来の面発光レー
ザでは10kA/cm2以上と高い閾値電流密度に対し
て、本実施例では横方向共振器DFBレーザの1kA/
cm2より低い閾値電流密度の 0.5〜0.9kA/cm
2の範囲であった。
According to this embodiment, the surface emitting laser having the vertical cavity in the region II can be easily and continuously operated at room temperature by light injection excitation of the lateral cavity DFB laser in the region I. Here, the high device resistance of 10 to 20 Ω or more, which has conventionally been a problem in the surface emitting laser only by current injection, does not flow because the surface emitting laser in the region II is excited by light injection, so that the problem disappears. The overall device resistance depends on the lateral cavity DFB laser in region I and is in the range of 2-5Ω. Further, in contrast to a threshold current density as high as 10 kA / cm 2 or more in the conventional surface emitting laser, in the present embodiment, 1 kA / cm in the lateral cavity DFB laser is used.
0.5 to 0.9 kA / cm with a threshold current density lower than cm 2
The range was 2 .

【0020】従来高い素子抵抗と電流密度による発熱に
起因して、室温以上の高温動作や光出力が制限されてい
た。しかしながら、本実施例によりこれらを改善させる
ことができた。即ち、高温動作については、領域Iの横
方向共振器DFBレーザが発振可能な温度まで動作で
き、領域IIの面発光半導体レーザは100℃までの連続
動作が達成された。
Conventionally, high-temperature operation at room temperature or higher and light output have been limited due to heat generation due to high element resistance and current density. However, these were able to be improved by this example. That is, with respect to the high-temperature operation, the lateral cavity DFB laser in the region I was able to operate to a temperature at which oscillation was possible, and the surface emitting semiconductor laser in the region II achieved continuous operation up to 100 ° C.

【0021】光注入励起による面発光レーザの閾値や光
出力に関しては、以下の通りである。相向かう領域Iの
2つの横方向共振器DFBレーザにより励起された場
合、室温において2つの横方向共振器DFBレーザに5
〜10mAの電流注入を行って全体で20mA以下で領
域IIの面発光レーザが発振する閾値に到った。領域Iの
2対の相向かうDFBレーザにより励起された場合、全
体で15mA以下で領域IIの面発光レーザの閾値に達し
た。面発光レーザの光出力は、相向かう1対のDFBレ
ーザの励起による場合、室温において10〜20mWの
連続動作が得られ、相向かう2対のDFBレーザにより
励起されると、40〜50mWの連続動作が可能であっ
た。
The threshold and light output of the surface emitting laser by light injection pumping are as follows. When pumped by two transverse cavity DFB lasers in contiguous region I, 5 transverse cavity DFB lasers at room temperature
When a current of 10 to 10 mA was injected, the threshold value at which the surface emitting laser in the region II oscillated reached 20 mA or less in total. When excited by two pairs of opposite DFB lasers in region I, the threshold value of the surface emitting laser in region II was reached with a total of 15 mA or less. The light output of the surface emitting laser is a continuous operation of 10 to 20 mW at room temperature when excited by a pair of opposite DFB lasers, and 40 to 50 mW when excited by two opposite pairs of DFB lasers. Operation was possible.

【0022】<実施例2>本発明の他の実施例を説明す
る。実施例1と全く同様にして作製するが、領域IIにお
いて誘電体膜によるDBR構造高反射膜12と隣接して
p側に電極を設ける。本実施例2では、実施例1の効果
が得られる外に、従来直接電流注入だけでは素子抵抗と
電流密度が高いために、直接変調が困難であった面発光
レーザに対して、横方向共振器DFBレーザの光注入励
起を行った外部変調によりこれまでに比べて高速変調が
可能となった。
<Embodiment 2> Another embodiment of the present invention will be described. It is manufactured in exactly the same manner as in Example 1, except that an electrode is provided on the p side adjacent to the DBR structure high reflection film 12 made of a dielectric film in the region II. In the second embodiment, in addition to obtaining the effects of the first embodiment, the lateral resonance laser is difficult to directly modulate the surface emitting laser because the element resistance and the current density are high due to the conventional direct current injection alone. High-speed modulation has been made possible by the external modulation with light injection pumping of the DFB laser.

【0023】領域IIだけに電流注入した場合、室温にお
いて20〜30mAの閾値電流で連続動作は得られた
が、直接変調時における3dBダウンの変調周波数は5
GHzが最高であった。一方、領域IIに閾値以下の電流
を注入しておき、外部変調として領域Iの横方向共振器
DFBレーザの変調光信号を入力することにより、全体
で10〜15mAの低閾値である面発光レーザの高速変
調が可能であった。変調時に得られた3dBダウンの変
調周波数は15GHzであり、変調光信号の消光比は2
0dB以上であった。
When current was injected only into region II, continuous operation was obtained at room temperature with a threshold current of 20 to 30 mA, but the modulation frequency of 3 dB down during direct modulation was 5 dB.
GHz was the highest. On the other hand, by injecting a current equal to or less than the threshold value into the region II and inputting a modulated optical signal of the lateral cavity DFB laser in the region I as external modulation, the surface emitting laser having a low threshold value of 10 to 15 mA in total. High-speed modulation was possible. The modulation frequency of 3 dB down obtained at the time of modulation is 15 GHz, and the extinction ratio of the modulated optical signal is 2 GHz.
0 dB or more.

【0024】[0024]

【発明の効果】面発光レーザの周辺部に設けた横方向共
振器DFBレーザの光注入励起により、従来の面発光レ
ーザにおいて素子抵抗と電流密度が高いという問題を解
決し、これまでに得られなかった素子特性として高温動
作100℃以上と光出力40〜50mWを達成した。ま
た、横方向共振器DFBレーザを外部変調として用いる
ことにより、これまでの面発光レーザでは実現されなか
った変調周波数を15GHz以上にでき、変調光信号の
消光比20dB以上を得ることができた。
According to the present invention, the problem that the device resistance and the current density are high in the conventional surface emitting laser can be solved by the light injection excitation of the lateral cavity DFB laser provided in the peripheral portion of the surface emitting laser. As device characteristics that did not exist, a high temperature operation of 100 ° C. or higher and an optical output of 40 to 50 mW were achieved. Further, by using the lateral cavity DFB laser as the external modulation, the modulation frequency, which was not realized by the conventional surface emitting laser, can be increased to 15 GHz or more, and the extinction ratio of the modulated optical signal can be increased to 20 dB or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体レーザ素子の一実施例の構
造を示す図
FIG. 1 is a diagram showing a structure of an embodiment of a semiconductor laser device according to the present invention.

【図2】本発明の半導体レーザ素子の構造領域における
活性層禁制帯幅の関係を示す図
FIG. 2 is a diagram showing a relationship between an active layer forbidden band width in a structural region of a semiconductor laser device of the present invention.

【符号の説明】[Explanation of symbols]

1:n型InP基板 2:n型InPバッファ層 3:n型InGaAs/InAlAs層DBR構造高反
射膜 4:n型InPバッファ層 5:p型InGaAsP層 6:n型InGaAsP光分離閉じ込め層 7:アンドープInGaAs/InGaAsP引張歪多
重量子井戸構造活性層 8:p型InGaAsP光分離閉じ込め層 9:p型InP光導波層 10:p型InGaAsPコンタクト層 11:p型InP/n型InP埋込層 12:SiO/Si誘電体DBR構造高反射膜 13:p側電極 14:n側電極
1: n-type InP substrate 2: n-type InP buffer layer 3: n-type InGaAs / InAlAs layer DBR structure high reflection film 4: n-type InP buffer layer 5: p-type InGaAsP layer 6: n-type InGaAsP light separation / confinement layer 7: Undoped InGaAs / InGaAsP tensile strained multiple quantum well structure active layer 8: p-type InGaAsP optical isolation confinement layer 9: p-type InP optical waveguide layer 10: p-type InGaAsP contact layer 11: p-type InP / n-type InP buried layer 12: SiO / Si dielectric DBR structure high reflection film 13: p-side electrode 14: n-side electrode

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電流注入又は光注入励起によって発振する
垂直共振器構造をもつ面発光型半導体レーザと、上記面
発光型半導体レーザに光注入励起を行う横方向共振器構
造をもつ横方向共振器型半導体レーザとが同一半導体基
板上に集積して形成され、上記面発光型半導体レーザの
活性層の禁制帯幅が上記横方向共振器型半導体レーザの
活性層の禁制帯幅より小さく設定され、上記面発光型半
導体レーザの活性層に対して注入により蓄積されるキャ
リア分布の擬フェルミレベル間エネルギーよりも上記横
方向共振器型半導体レーザの活性層のエネルギーが大き
く設定されていることを特徴とする半導体レーザ素子。
1. Oscillation by current injection or light injection excitation
A vertical cavity surface emitting semiconductor laser and the above surface
Lateral cavity structure for light injection pumping of a light emitting semiconductor laser
Lateral cavity type semiconductor laser with the same semiconductor base
The surface emitting type semiconductor laser is formed integrally on a plate.
The forbidden band width of the active layer is larger than that of the above-mentioned lateral cavity type semiconductor laser.
The surface emitting type is set to be smaller than the forbidden band width of the active layer.
Capacitors accumulated by injection into the active layer of a conductor laser
Lateral than the energy between the pseudo-Fermi levels of the rear distribution
High active layer energy of directional cavity semiconductor laser
A semiconductor laser device characterized by being set well.
【請求項2】請求項1記載の半導体レーザ素子におい
て、上記面発光型半導体レーザの活性層に対して注入に
より蓄積されるキャリア分布の擬フェルミレベル間エネ
ルギーより上記横方向共振器型半導体レーザの活性層の
エネルギーが60meV以上大きく設定されていることを
特徴とする半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein
Injection into the active layer of the above-mentioned surface emitting semiconductor laser.
Energy between pseudo-Fermi levels of carrier distribution accumulated from
From the active layer of the lateral cavity semiconductor laser
That the energy is set higher than 60 meV
Characteristic semiconductor laser device.
【請求項3】請求項1又は2記載の半導体レーザ素子に
おいて、上記横方向共振器型半導体レーザの活性層のエ
ネルギーは上記面発光型半導体レーザの活性層における
注入キャリア分布の擬フェルミレベル間エネルギーより
大きく、光導波層及び障壁層のエネルギーよりも小さい
範囲にあることを特徴とする半導体レーザ素子。
3. The semiconductor laser device according to claim 1, wherein
Of the active layer of the lateral cavity type semiconductor laser.
Energy is in the active layer of the above surface emitting semiconductor laser.
From energy between quasi-Fermi levels of injected carrier distribution
Large and smaller than the energy of the optical waveguide layer and the barrier layer
A semiconductor laser device characterized by being within a range.
【請求項4】請求項1、2又は3記載の半導体レーザ素
子において、上記横方向共振器型半導体レーザと上記面
発光型半導体レーザの活性層構造が、圧縮又は引張歪を
生ずる格子歪をもつ多重量子井戸構造であることを特徴
とする半導体レーザ素子
4. A semiconductor laser element according to claim 1, 2 or 3.
The lateral cavity type semiconductor laser and the surface
The active layer structure of a light-emitting semiconductor laser causes compression or tensile strain.
Characterized by a multi-quantum well structure with resulting lattice strain
Semiconductor laser device .
【請求項5】請求項1、2、3又は4記載の半導体レー
ザ素子において、上記面発光型半導体レーザと上記横方
向共振器型半導体レーザの各々は独立に駆動するための
分離された電極をもつことを特徴とする半導体レーザ素
5. The semiconductor laser according to claim 1, 2, 3, or 4.
In the device, the surface emitting semiconductor laser and the lateral
-Cavity type semiconductor lasers can be driven independently.
Semiconductor laser element characterized by having separated electrodes
Child .
【請求項6】請求項1、2、3、4又は5記載の半導体
レーザ素子において、上記半導体基板は基板面方位が
(00)面から[011] [0−1−1]方向又は[0−1
1] [01−1]方向に0°から54.7°の範囲に傾い
た基板面を有することを特徴とする半導体レーザ素子。
6. The semiconductor according to claim 1, 2, 3, 4 or 5.
In the laser device, the semiconductor substrate has a substrate plane orientation.
[011] [0-1-1] direction from [00] plane or [0-1]
1] Tilt in the range of 0 ° to 54.7 ° in [01-1] direction
A semiconductor laser device having an inclined substrate surface.
【請求項7】請求項1ないし5のいずれかの半導体レー
ザ素子において、上記横方向共振器型半導体レーザと上
記面発光型半導体レーザの活性層の禁制帯幅の差が多重
量子井戸構造における量子井戸層の厚さ及び量子井戸層
を形成する材料組成によって設定されたことを特徴とす
る半導体レーザ素子。
7. The semiconductor laser according to claim 1, wherein:
In the device, the above-mentioned lateral cavity semiconductor laser is
Multiple differences in bandgap of active layer of surface emitting semiconductor laser
Quantum well layer thickness and quantum well layers in quantum well structures
Characterized by being set by the material composition forming
Semiconductor laser device.
【請求項8】請求項1ないし5のいずれかの半導体レー
ザ素子の作成方法において、上記横方向共振器型半導体
レーザと上記面発光型半導体レーザの多重量子井戸構造
の活性層それぞれに対して、気相成長方法における結晶
の選択成長を行い、多重量子井戸構造の量子井戸層の厚
さと上記多重量子井戸層を形成する材料組成を制御し、
上記横方向共振器型半導体レーザと上記面発光型半導体
レーザの領域によって異なる活性層、禁止帯幅を設定す
ることを特徴とする半導体レーザ素子の作成方法
8. The semiconductor laser according to claim 1, wherein:
In the method of fabricating the element, the lateral resonator type semiconductor
Multiple quantum well structure of laser and the above surface emitting semiconductor laser
Crystal in the vapor phase growth method for each active layer
Of the quantum well layer of the multiple quantum well structure
And controlling the material composition forming the multiple quantum well layer,
The lateral cavity semiconductor laser and the surface emitting semiconductor
Set different active layers and band gaps depending on the laser area.
A method for producing a semiconductor laser device, comprising:
【請求項9】請求項8記載の半導体レーザ素子の作成方
法において、上記半導体基板上の結晶層を有機金属気相
成長方又はガスソース分子エピタキシー法のいずれかに
より成長することを特徴とする半導体レーザ素子の作成
方法。
9. A method of manufacturing a semiconductor laser device according to claim 8.
In the method, the crystal layer on the semiconductor substrate is
Either growth method or gas source molecular epitaxy
Fabrication of semiconductor laser device characterized by growing more
Method.
JP03949794A 1994-03-10 1994-03-10 Semiconductor laser device and method of manufacturing the same Expired - Lifetime JP3296917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03949794A JP3296917B2 (en) 1994-03-10 1994-03-10 Semiconductor laser device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03949794A JP3296917B2 (en) 1994-03-10 1994-03-10 Semiconductor laser device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07249824A JPH07249824A (en) 1995-09-26
JP3296917B2 true JP3296917B2 (en) 2002-07-02

Family

ID=12554692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03949794A Expired - Lifetime JP3296917B2 (en) 1994-03-10 1994-03-10 Semiconductor laser device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3296917B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111957B2 (en) 1997-12-24 2000-11-27 日本電気株式会社 Surface emitting device
US6445724B2 (en) * 2000-02-23 2002-09-03 Sarnoff Corporation Master oscillator vertical emission laser
DE10108079A1 (en) * 2000-05-30 2002-09-12 Osram Opto Semiconductors Gmbh Optically-pumped surface-emitting semiconductor laser device, has edge-emitting structure of pumping source and radiation-emitting quantum pot type structure applied to common substrate
DE10026734A1 (en) * 2000-05-30 2001-12-13 Osram Opto Semiconductors Gmbh Optically pumped surface emitting semiconductor laser device and method of manufacturing the same
CA2328637A1 (en) * 2000-12-15 2002-06-15 Richard D. Clayton Lateral optical pumping of vertical cavity surface emitting laser
CN1224148C (en) * 2001-02-20 2005-10-19 奥斯兰姆奥普托半导体有限责任公司 Optically pumped surface-emitting semiconductor laser device and method for prodn. thereof
TW595059B (en) * 2002-05-03 2004-06-21 Osram Opto Semiconductors Gmbh Optically pumped semiconductor laser device
DE10241192A1 (en) 2002-09-05 2004-03-11 Osram Opto Semiconductors Gmbh Optically pumped radiation-emitting semiconductor device comprises a semiconductor body having a pump radiation source and a surface-emitted quantum well structure, and a recess for coupling the pump radiation in the quantum well structure
DE10243545B4 (en) * 2002-09-19 2008-05-21 Osram Opto Semiconductors Gmbh Optically pumped semiconductor laser device
WO2005048423A1 (en) * 2003-11-13 2005-05-26 Osram Opto Semiconductors Gmbh Optically pumped semiconductor laser device
JP4602685B2 (en) 2004-04-14 2010-12-22 株式会社リコー Vertical cavity surface emitting semiconductor laser element, light emitting device, and optical transmission system
DE102004042146A1 (en) 2004-04-30 2006-01-26 Osram Opto Semiconductors Gmbh Optically pumped semiconductor device
DE102004036963A1 (en) * 2004-05-28 2005-12-22 Osram Opto Semiconductors Gmbh Optically pumped surface emitting semiconductor laser device
JP4748645B2 (en) * 2005-03-15 2011-08-17 株式会社リコー Light emitting system and optical transmission system
JP4919628B2 (en) * 2005-07-28 2012-04-18 株式会社リコー Surface emitting laser, surface emitting laser array, optical writing system, and optical transmission system
DE102006011284A1 (en) * 2006-02-28 2007-08-30 Osram Opto Semiconductors Gmbh Semiconductor laser device, has pumping radiation source and vertical section is configured so as to be index guiding for pumping radiation in lateral direction perpendicular to main direction of pumping radiation
KR100790898B1 (en) * 2006-11-28 2008-01-03 삼성전자주식회사 Pump laser integrated vertical external cavity surface emitting laser
JP2010278396A (en) * 2009-06-01 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Direct-modulation semiconductor laser
JP5215240B2 (en) * 2009-06-01 2013-06-19 日本電信電話株式会社 Direct modulation semiconductor laser
JP2010278395A (en) * 2009-06-01 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Direct-modulation semiconductor laser
JP5918706B2 (en) * 2013-02-21 2016-05-18 日本電信電話株式会社 Long wavelength surface emitting laser
CN111934201A (en) * 2020-09-29 2020-11-13 武汉云岭光电有限公司 Silicon-based hybrid integration and tunable laser of tunable laser and preparation method thereof

Also Published As

Publication number Publication date
JPH07249824A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP3296917B2 (en) Semiconductor laser device and method of manufacturing the same
US5398255A (en) Semiconductor laser having buried structure on p-InP substrate
JP6220614B2 (en) Semiconductor device manufacturing method and semiconductor device
US10840673B1 (en) Electrically pumped surface-emitting photonic crystal laser
JP6588837B2 (en) Semiconductor optical device
JP3548986B2 (en) Optical semiconductor device and method of manufacturing the same
US6734464B2 (en) Hetero-junction laser diode
JPH04350988A (en) Light-emitting element of quantum well structure
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP4615184B2 (en) Distributed feedback laser diode
JPH0478036B2 (en)
JP2004087564A (en) Semiconductor laser element and manufacturing method thereof
JP3223969B2 (en) Semiconductor laser
JP2500626B2 (en) Lateral micro resonator laser
JPH0349287A (en) Semiconductor laser device and manufacturing process
JPH0878773A (en) Surface-emitting semiconductor laser
JPH104239A (en) Semiconductor light emitting diode
JP2917695B2 (en) Method for manufacturing optical semiconductor device
JP2022015037A (en) Semiconductor optical element
JPH0936472A (en) Semiconductor laser element
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JPH11317563A (en) Semiconductor laser and manufacture thereof
JPH0697591A (en) Manufacture of semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term