JPS63178851A - Production of noble metal catalyst carried on ion-exchange resin - Google Patents

Production of noble metal catalyst carried on ion-exchange resin

Info

Publication number
JPS63178851A
JPS63178851A JP31825787A JP31825787A JPS63178851A JP S63178851 A JPS63178851 A JP S63178851A JP 31825787 A JP31825787 A JP 31825787A JP 31825787 A JP31825787 A JP 31825787A JP S63178851 A JPS63178851 A JP S63178851A
Authority
JP
Japan
Prior art keywords
noble metal
exchange resin
catalyst
hydrosol
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31825787A
Other languages
Japanese (ja)
Other versions
JPS6358621B2 (en
Inventor
Yukimichi Nakao
幸道 中尾
Kyoji Kaeriyama
帰山 享二
Masao Kato
加藤 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP31825787A priority Critical patent/JPS63178851A/en
Publication of JPS63178851A publication Critical patent/JPS63178851A/en
Publication of JPS6358621B2 publication Critical patent/JPS6358621B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce the title catalyst having high activity with good reproducibility by bringing a noble metal hydrosol into contact with an anion-exchange resin having a quaternary ammonium group to deposit the noble metal colloidal particles on the resin surface. CONSTITUTION:The noble metal hydrosol is brought into contact with the anion-exchange resin having a quaternary ammonium group to deposit the noble metal colloidal particles on the resin surface, and the deposition type noble metal catalyst is produced. As a result, the solid catalyst carrying fine noble metal colloidal particles can be easily and efficiently produced. The obtained solid catalyst has a large catalytic surface area and can be widely used in the catalytic reactions ranging from the liq. phase reaction to the gas phase reaction, the recovery is also easy, and the reproducibility of the catalytic activity is excellent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い触媒活性を示す新規な担持型貴金属触媒
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a novel supported noble metal catalyst exhibiting high catalytic activity.

従来の技術 担持型貴金属触媒は、これに含まれる金属表面積が大き
く、また回収や取扱いが簡単なので最も多用されている
ものである。ところで、このような形態の金属触媒を製
造するには、活性炭やシリカゲル、ケイソウ土のような
比表面積の比較的大きい固体に触媒となる金属の塩を含
浸ないし吸着させ、次いでこれに分子状水素または適当
な還元剤を作用させて該金属塩を還元して金属微粒子を
生成させる方法が一般に行われている6しかしながら、
このような方法は、製造過程における温度や操作手順等
の微妙な条件の相違が、得られる担持型触媒の活性に大
きく影響し、触媒活性の制御が困難であるという欠点を
有している。
Conventional technology-supported precious metal catalysts are the most widely used catalysts because they contain a large metal surface area and are easy to recover and handle. By the way, in order to produce this type of metal catalyst, a solid with a relatively large specific surface area, such as activated carbon, silica gel, or diatomaceous earth, is impregnated with or adsorbed with a metal salt that will serve as a catalyst, and then molecular hydrogen is added to this solid. Alternatively, a method of reducing the metal salt by applying an appropriate reducing agent to produce metal fine particles is commonly used.6 However,
Such methods have the disadvantage that subtle differences in conditions such as temperature and operating procedures during the production process greatly affect the activity of the obtained supported catalyst, making it difficult to control the catalyst activity.

一方、微細な金属コロイド粒子を含む金属ゾルは、再現
性がよく、調製が容易であるという長所があるが、これ
は外見上完全に透明な液体であるため、触媒金属の反応
後の回収が困難である上に、その使用する反応系が金属
ゾルの状態を安定に保持しうるちのに限られるし、また
高温下では金属コロイド粒子が非可逆的に凝集して触媒
活性が著しく低下するという欠点をもっている。
On the other hand, metal sol containing fine metal colloid particles has the advantage of good reproducibility and easy preparation, but since it is a completely transparent liquid in appearance, it is difficult to recover the catalytic metal after the reaction. In addition to being difficult, the reaction system used is limited to being able to maintain the metal sol state stably, and metal colloid particles will irreversibly aggregate at high temperatures, resulting in a significant decrease in catalytic activity. It has shortcomings.

発明が解決しようとする問題点 本発明は、従来の貴金属触媒における、製造過程での条
件の相違の触媒活性への多大の影響、触媒金属の回収難
、金属粒子の凝集による活性低下等の欠点を克服し、活
性が高く、しかも再現性のめになされたものである。
Problems to be Solved by the Invention The present invention solves the drawbacks of conventional precious metal catalysts, such as the large influence of differences in conditions during the manufacturing process on catalytic activity, difficulty in recovering the catalytic metal, and decreased activity due to agglomeration of metal particles. It was developed to overcome this problem, have high activity, and be reproducible.

問題点を解決するための手段 本発明者らは、金属コロイド粒子を固体に担持させるこ
とができれば、活性が高く、しかも再現性の良好な固体
触媒が得られると考え、その製造方法を開発するために
鋭意研究を重ねた結果、陰イオン交換樹脂を担体として
用いることにより、保護コロイドを添加しない貴金属ヒ
ドロゾル中の貴金属コロイド粒子を十分にしかも容易に
担持させ得ることを見出し、この知見に基づいて本発明
をなすに至った。
Means for Solving the Problems The present inventors believe that if metal colloid particles can be supported on a solid, a solid catalyst with high activity and good reproducibility can be obtained, and have developed a method for producing the same. As a result of intensive research, it was discovered that by using an anion exchange resin as a carrier, noble metal colloid particles in a noble metal hydrosol without the addition of a protective colloid could be sufficiently and easily supported.Based on this knowledge, The present invention has been accomplished.

すなわち、本発明の方法は、貴金属ヒドロゾルを第四級
アンモニウム基を有する陰イオン交換樹脂と接触させる
ことによl)、貴金属コロイド粒子を樹脂表面上に担持
させて、担持型貴金属触媒製造することからなっている
。ここで、貴金属ヒドロゾルとは、水を分散媒とする、
ロジウム、パラジウム、白金、金、銀のような貴金属コ
ロイド粒子より成るゾルを意味する。
That is, the method of the present invention involves producing a supported noble metal catalyst by bringing a noble metal hydrosol into contact with an anion exchange resin having a quaternary ammonium group, thereby supporting noble metal colloid particles on the resin surface. It consists of Here, noble metal hydrosol refers to a compound that uses water as a dispersion medium.
A sol consisting of colloidal particles of noble metals such as rhodium, palladium, platinum, gold, and silver.

本発明において用いられる貴金属ヒドロゾルの形成は、
対応する貴金属塩の水溶液に還元剤を作用させる公知の
方法に従って行うことができる。
The formation of the noble metal hydrosol used in the present invention is
This can be carried out according to a known method in which a reducing agent is allowed to act on an aqueous solution of the corresponding noble metal salt.

貴金属塩としては、塩化ロジウム(lI[)、塩化パラ
ジウム(n)、塩化白金酸、塩化金酸、硝酸銀などが用
いられ、還元剤としてはホルムアルデヒド、ヒドラジン
、水素化ホウ素塩などが用いられる。
As the noble metal salt, rhodium chloride (lI[), palladium (n) chloride, chloroplatinic acid, chloroauric acid, silver nitrate, etc. are used, and as the reducing agent, formaldehyde, hydrazine, borohydride salt, etc. are used.

貴金属など疎水性のヒドロゾルには、通常分散状態を安
定化するための保護コロイドとして、ポリビニルアルコ
ールなどの水溶性ポリマーを加えることが多い。しかし
、本発明方法においてはこのような保護コロイドを含ま
ない貴金属ヒドロゾルを用いることが必要である。保護
コロイドを添加した貴金属ヒドロゾルを用いた場合は、
貴金属の担持率が著しく低下し、十分な触媒活性を示す
担持型触媒を得ることができない。本発明方法では、貴
金属ヒドロゾルが長期間安定である必要はなく、数十分
間程度均一透明なゾル状態が保持されればこの間に担持
が完了し、十分に目的を達することができる。
A water-soluble polymer such as polyvinyl alcohol is often added to a hydrophobic hydrosol such as a noble metal as a protective colloid to stabilize the dispersion state. However, the method of the present invention requires the use of a noble metal hydrosol that does not contain such protective colloids. When using a noble metal hydrosol with added protective colloid,
The supporting rate of the noble metal decreases significantly, making it impossible to obtain a supported catalyst that exhibits sufficient catalytic activity. In the method of the present invention, it is not necessary for the noble metal hydrosol to be stable for a long period of time, and if a uniform and transparent sol state is maintained for about several tens of minutes, the support will be completed during this period, and the purpose can be fully achieved.

=3− モニウム基を有する陰イオン交換樹脂が用いられる。こ
の陰イオン交換樹脂に貴金属コロイド粒子を担持させる
のは、貴金属ヒドロゾルに陰イオン交換樹脂を加えてか
きまぜることにより行われる。
=3- An anion exchange resin having a monium group is used. The anion exchange resin supports the noble metal colloid particles by adding the anion exchange resin to the noble metal hydrosol and stirring the mixture.

この際、貴金属ヒドロゾルの黒かっ色が退色して無色と
なることにより担持の完了したことが確認できる。これ
に伴いイオン交換樹脂は、当初の白色ないし淡黄色から
黒色ないし灰色に変化する。
At this time, completion of the support can be confirmed by fading the brownish color of the noble metal hydrosol and becoming colorless. Along with this, the ion exchange resin changes from its initial white or pale yellow color to black or gray.

この過程に要する時間は通常1時間以内である。This process usually takes less than 1 hour.

こうして貴金属コロイド粒子を担持した固体触媒が得ら
れる。
In this way, a solid catalyst supporting noble metal colloid particles is obtained.

担体として用いられるイオン交換樹脂は第四級アンモニ
ウム基を有する陰イオン交換樹脂であればよく、例えば
市販品では粉末又は粒状のアンバーライトIRA−93
8、アンバーライトCG−400、アンバーライトA−
26、アンバーライ)IRA−904などが挙げられる
。担持率を高くするには表面積のより大きな粉末状の樹
脂を用いるのが有利である。ただし、市販の陰イオン交
換樹脂には、多くの場合不純物として、貴金属ヒドロゾ
ルに対して強い保護コロイド作用を示す物質が含まれて
いて担持の障害となるので、使用に先立って水洗などに
より、これを除いておくことが必要である。市販の陰イ
オン交換樹脂は大部分が塩素イオン型であるが、これを
水酸化ナトリウム、硫酸ナトリウムなどの水溶液で処理
して各々、水酸イオン型、硫酸イオン型などに変えたも
のも担体として用いられる。イオン交換樹脂の使用量は
担持される貴金属の総量の20〜1000倍重量、好ま
しくは50〜500倍重量程度である。貴金属ヒドロゾ
ルの調製にあたっては0.01〜1mmol/βの範囲
の濃度の原料貴金属塩水溶液に、その0.5〜10倍モ
ル量の還元剤を加える。貴金属ヒドロゾルの調製及びこ
れを担持する操作は0〜50℃の範囲でなされるが、通
常は室温付近でよい。
The ion exchange resin used as a carrier may be any anion exchange resin having a quaternary ammonium group. For example, a commercially available product is Amberlite IRA-93 in powder or granular form.
8. Amberlight CG-400, Amberlight A-
26, Amber Rai) IRA-904, etc. In order to increase the loading rate, it is advantageous to use a powdered resin with a larger surface area. However, commercially available anion exchange resins often contain substances as impurities that have a strong protective colloid effect on noble metal hydrosols, which hinders their loading, so please wash them with water before use. It is necessary to exclude. Most commercially available anion exchange resins are of the chloride ion type, but they can also be treated with an aqueous solution of sodium hydroxide, sodium sulfate, etc. to change them to the hydroxide ion type, sulfate ion type, etc. as carriers. used. The amount of ion exchange resin used is about 20 to 1000 times, preferably about 50 to 500 times, the total amount of supported noble metals. In preparing a noble metal hydrosol, a reducing agent in a molar amount 0.5 to 10 times that amount is added to a raw material noble metal salt aqueous solution having a concentration in the range of 0.01 to 1 mmol/β. Preparation of the noble metal hydrosol and operations for supporting the same are carried out at a temperature in the range of 0 to 50°C, but usually around room temperature.

得られた担持型貴金属触媒を含む懸濁液はそのままで液
相反応に供することもできるが、通常はろ過又は遠心沈
降により該固体触媒を分取し、水又はアルコールなどで
洗浄した後、乾燥させ又は(l−状態で保存して実用に
供される。
The resulting suspension containing the supported noble metal catalyst can be directly subjected to the liquid phase reaction, but usually the solid catalyst is collected by filtration or centrifugal sedimentation, washed with water or alcohol, and then dried. It is used for practical purposes by being stored in the (L-state).

発明の効果 本発明によれば、極めて微細な貴金属コロイド粒子を担
持した固体触媒を容易かつ能率的に得ることができ、得
られた固体触媒は、その触媒表面積が大ぎく液相反応や
気相反応など広い範囲の触媒反応に使用できると同時に
、その回収も容易で゛触媒活性の再現性も良好である。
Effects of the Invention According to the present invention, it is possible to easily and efficiently obtain a solid catalyst supporting extremely fine noble metal colloid particles, and the obtained solid catalyst has a large catalytic surface area for liquid-phase reactions and gas-phase reactions. It can be used in a wide range of catalytic reactions such as reactions, and at the same time, it is easy to recover and has good reproducibility of catalytic activity.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 塩素イオン型陰イオン交換樹脂(ローム・アンド・ハー
ス社製、アンバーライトCG−40011゜200−4
00 mesh)に80倍重量の10%水酸化ナトリウ
ム水溶液を加え約30分間か鰺まぜ、水洗後ろ過、風乾
して水酸イオン型の陰イオン交換樹脂とした。別途、塩
化ロジウム(llII )(RhC1,・3 )120
) 5011 molを純水95社に溶解し、これに水
素化ホウ素ナトリウム200μmolの水溶液5dを室
温でかきまぜながら滴下して黒かっ色で透明なロジウム
ヒドロゾルを得た。このゾルは数時間以上にわたって均
一透明な状態を保つ。このロジウムヒドロゾルに室温下
で、先の水酸イオン型の陰イオン交換樹脂0.515g
を加え、15分間がきまぜると、樹脂は黒灰色に変化し
、同時に溶液は無色となった。この樹脂を水洗後ろ過、
風乾して黒灰色微粒状の担持型ロジウム触媒が得られた
Example 1 Chlorine ion type anion exchange resin (manufactured by Rohm and Haas, Amberlite CG-40011゜200-4
00 mesh) was added with 80 times the weight of a 10% aqueous sodium hydroxide solution, mixed for about 30 minutes, washed with water, filtered, and air-dried to obtain a hydroxide ion type anion exchange resin. Separately, rhodium chloride (llII) (RhC1,.3) 120
) 5011 mol was dissolved in pure water 95, and 5 d of an aqueous solution of 200 μmol of sodium borohydride was added dropwise thereto with stirring at room temperature to obtain a brownish and transparent rhodium hydrosol. This sol remains uniformly transparent for several hours or more. Add 0.515 g of the above hydroxyl ion type anion exchange resin to this rhodium hydrosol at room temperature.
was added and stirred for 15 minutes, the resin turned black-gray and at the same time the solution became colorless. After washing this resin with water, filter it.
After air drying, a supported rhodium catalyst in the form of black-gray fine particles was obtained.

この相持型ロジウム触媒10zy(ロジウム1μg−原
子含有)を50a+N容ナス型フラスコに入れ、内部を
水素ガスで置換した後、溶存酸素を除いたエタノール2
0zβを加えて30℃、1気圧の水素下で約10分間か
きまぜて水素で飽和させた。これにシクロヘキセン0.
25mmolを滴下したところ、直ちに水素の吸収が始
まった。約30分でシクロヘキセンと等モルの水素を吸
収し、生成物としてシクロヘキサンが得られた。このと
きの水素化初速度はロジウム1g−原子あたりに換算し
て0.40 mol/seeであった。
10zy of this supported rhodium catalyst (containing 1 μg of rhodium atoms) was placed in a 50a+N eggplant flask, and after replacing the inside with hydrogen gas, ethanol 2 containing dissolved oxygen was added.
0zβ was added, and the mixture was stirred at 30° C. under 1 atm of hydrogen for about 10 minutes to saturate it with hydrogen. Add 0.0% cyclohexene to this.
When 25 mmol was added dropwise, hydrogen absorption started immediately. Equimolar amounts of hydrogen and cyclohexene were absorbed in about 30 minutes, and cyclohexane was obtained as a product. The initial hydrogenation rate at this time was 0.40 mol/see per 1 g of rhodium.

実施例2 担体の樹脂を変えて、担持型ロジウム、パラジウム及び
白金触媒を調製した。このようにして得られた担持型触
媒による30℃、1気圧水素下におけるシクロヘキセン
の水素化初速度を次表に示す。
Example 2 Supported rhodium, palladium and platinum catalysts were prepared by changing the carrier resin. The initial rate of hydrogenation of cyclohexene using the supported catalyst thus obtained at 30° C. and under 1 atm of hydrogen is shown in the following table.

シクロヘキセンの Pc1C12・2■20  アンバーライトCG−40
0110,16(水酸イオン型) H3PtCls・6H20アンバーライトCG−400
110,05(水酸イオン型) RhCI+・3+1.0  アンバーライトIRへ−9
380,38(水酸イオン型) RhC1,・31120  アンバーライトCG−40
0110,36(塩素イオン型) RhC1s・3H20アンバーライトCG−400■ 
   0.23(硫酸イオン型)
Cyclohexene Pc1C12・2■20 Amberlite CG-40
0110,16 (hydroxide ion type) H3PtCls・6H20 Amberlite CG-400
110,05 (hydroxide ion type) RhCI+・3+1.0 To Amberlight IR-9
380,38 (hydroxide ion type) RhC1, 31120 Amberlite CG-40
0110,36 (chloride ion type) RhC1s・3H20 Amberlight CG-400■
0.23 (sulfate ion type)

Claims (1)

【特許請求の範囲】[Claims] 1 貴金属ヒドロゾルを第四級アンモニウム基を有する
陰イオン交換樹脂と接触させることにより、貴金属コロ
イド粒子を樹脂表面上に担持させることを特徴とする担
持型貴金属触媒の製造方法。
1. A method for producing a supported noble metal catalyst, which comprises bringing noble metal hydrosol into contact with an anion exchange resin having a quaternary ammonium group to support noble metal colloid particles on the resin surface.
JP31825787A 1987-12-16 1987-12-16 Production of noble metal catalyst carried on ion-exchange resin Granted JPS63178851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31825787A JPS63178851A (en) 1987-12-16 1987-12-16 Production of noble metal catalyst carried on ion-exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31825787A JPS63178851A (en) 1987-12-16 1987-12-16 Production of noble metal catalyst carried on ion-exchange resin

Publications (2)

Publication Number Publication Date
JPS63178851A true JPS63178851A (en) 1988-07-22
JPS6358621B2 JPS6358621B2 (en) 1988-11-16

Family

ID=18097187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31825787A Granted JPS63178851A (en) 1987-12-16 1987-12-16 Production of noble metal catalyst carried on ion-exchange resin

Country Status (1)

Country Link
JP (1) JPS63178851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198491A (en) * 2005-01-19 2006-08-03 Japan Science & Technology Agency Polymer immobilized platinum catalyst and its use
JP2010214373A (en) * 2003-02-14 2010-09-30 Wako Pure Chem Ind Ltd Platinum catalyst fixed on ion exchange resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214373A (en) * 2003-02-14 2010-09-30 Wako Pure Chem Ind Ltd Platinum catalyst fixed on ion exchange resin
JP2006198491A (en) * 2005-01-19 2006-08-03 Japan Science & Technology Agency Polymer immobilized platinum catalyst and its use
JP4568802B2 (en) * 2005-01-19 2010-10-27 独立行政法人科学技術振興機構 Polymer-immobilized platinum catalyst and use thereof

Also Published As

Publication number Publication date
JPS6358621B2 (en) 1988-11-16

Similar Documents

Publication Publication Date Title
US4361500A (en) Process for the preparation of supported metal catalysts
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
US3055840A (en) Ruthenium-containing catalysts and methods of making said catalysts and increasing their activity
JPS595012B2 (en) Manufacturing method of platinum catalyst for fuel cell electrodes
US4359406A (en) Highly dispersed supported group VIII metal-phosphorus compounds, and highly dispersed, supported group VIII metal-arsenic and a process for making said compounds
US3804779A (en) Carbon supported palladium catalyst
US20080045397A1 (en) Noble metal alkali borosilicate glass composition
KR100263783B1 (en) Catalyst for selective hydrogenation of aromatic halonitro compound to aromatic haloamines and process for its production
CN111715220A (en) Novel metal composite oxide catalyst and preparation method thereof
JPS5813495B2 (en) Method for producing spherical alumina particles
JP2002508703A (en) Vinyl acetate catalyst containing palladium and gold deposited on copper-containing carrier
JP2561273B2 (en) Use of macroporous weakly basic anion exchangers
US3493343A (en) Production of hydrogen peroxide
JPS63178851A (en) Production of noble metal catalyst carried on ion-exchange resin
JPH04227058A (en) Platinum/graphite catalyst and its application method
CA2191360A1 (en) Preparation of a hydrogenation catalyst using m(or)mxn
JP2668927B2 (en) Method for producing hydroxylammonium salt and its catalyst
JPH0576340B2 (en)
JPS58139746A (en) Production of noble metal catalyst deposited on ion exchange resin
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JPS6156019B2 (en)
JPH0242541B2 (en)
JP3457682B2 (en) Noble metal hydrosol and method for producing the same
JP2000167401A (en) Carried catalyst and its use for hydrogenation
JP3748588B2 (en) Method for producing glycolic acid