JPS6156019B2 - - Google Patents

Info

Publication number
JPS6156019B2
JPS6156019B2 JP57223603A JP22360382A JPS6156019B2 JP S6156019 B2 JPS6156019 B2 JP S6156019B2 JP 57223603 A JP57223603 A JP 57223603A JP 22360382 A JP22360382 A JP 22360382A JP S6156019 B2 JPS6156019 B2 JP S6156019B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
noble metal
exchange resin
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57223603A
Other languages
Japanese (ja)
Other versions
JPS59112838A (en
Inventor
Yukimichi Nakao
Kyoji Kaeryama
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57223603A priority Critical patent/JPS59112838A/en
Publication of JPS59112838A publication Critical patent/JPS59112838A/en
Publication of JPS6156019B2 publication Critical patent/JPS6156019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い触媒活性を示す新規な担持型貴
金属触媒の製造方法に関するものである。 担持型貴金属触媒は、これに含まれる金属表面
積が大きく、また回収性及び取扱い性に優れるも
ので最も多用されているが、このような形態の金
属触媒を製造する方法としては、活性炭やシリカ
ゲル、ケイソウ土といつた比表面積の大きな固体
に触媒となる金属の塩を含浸ないし吸着させ、次
にでこれに分子状水素又は適当な還元剤を作用さ
せて該金属塩を還元して金属微粒子を生成させる
方法が知られている。しかし、この方法では、金
属塩の還元が担体表面で起るため、その結果生成
する金属微粒子の形状が一定せず、触媒活性につ
いてその再現性がしばしば問題となる。また、担
体表面上の金属塩の密度が低い場合、この還元反
応が著しく遅くなることから、一般に低担持率の
金属触媒の製造には厳しい条件が必要とされる。 一方、金属塩を水溶液中又はアルコール溶液中
で還元する場合は、低濃度でも反応が十分な速さ
で進み、容易に全ての金属塩を対応する金属微粒
子に変換することができる。こうして得られる粉
末状金属も触媒として有効であるが、反応条件に
よつては、金属粒子の凝集が進んで塊状沈殿とな
り、有効表面積が減少して著しく触媒活性が低下
したり、逆に金属微粒子が細かすぎると反応後の
回収が困難となるなど、担持型金属触媒と比べて
操作上の難点が多い。 本発明者らは、このような従来の担持型貴金属
触媒や粉末状貴金属触媒がもつ欠点を克服し、大
きい有効表面積を長時間にわたつて維持し、しか
も再現性の一定した貴金属触媒を得るために鋭意
研究を重ねた結果、貴金属触媒をいつたん微粒子
状に形成し、次いでこれを所定の固体上に担持さ
せれば、一定の粒度及び形状に調製された触媒粒
子が、その粒度、形状を保つたまま長時間にわた
つて作用すること、及び低級アルコール中で還元
して調製した貴金属の微粒子を、四級アンモニウ
ム基を有する固体状陰イオン交換樹脂と接触させ
れば、容易にその表面に再分散することを見出
し、これらの知見に基づいて本発明をなすに至つ
た。 すなわち、本発明は、ロジウム、白金、銀の中
から選ばれた貴金属の塩を低級アルコール中で還
元処理し、貴金属を沈殿として析出させたのち、
これを四級アンモニウム基を有する固体状陰イオ
ン交換樹脂と接触させ、樹脂上に分散担持させる
ことを特徴とするイオン交換樹脂担持型貴金属触
媒の製造方法を提供するものである。 本発明方法においては、先ず貴金属を微粒子の
沈殿として析出させることが必要であり、このこ
とにより触媒の粒度や形状の調整が容易になるの
であるが、この沈殿の形成は、貴金属塩の低級ア
ルコール溶液に水素化ホウ素ナトリウム、ヒドラ
ジンなどのアルコール可溶性還元剤を作用させる
公知の方法によつて行うことができる。貴金属塩
としては、塩化ロジウム、塩化白金酸、硝酸銀な
どが用いられ、溶媒の低級アルコールとしては、
メタノール、エタノール、プロパノールなどの炭
素数が1〜3のアルコール類が用いられる。貴金
属を形成させる操作は、0℃ないし低級アルコー
ルの沸点で行われ、通常は室温付近で行われる。
このとき、貴金属沈殿が凝集して大きな塊状とな
ると、担持に要する時間が極めて長くなるので、
分散状態の良好な沈殿を形成させるのが望まし
い。 本発明においては、担体として四級アンモニウ
ム基を有する固体状陰イオン交換樹脂が用いられ
る。市販の陰イオン交換樹脂は大部分が塩素イオ
ン型であるが、これを水洗して不純物を除去した
もの、あるいは、さらに過剰量の水酸化ナトリウ
ム、硫酸ナトリウムなどと接触させて得られる水
酸イオン型、硫酸イオン型などの陰イオン交換樹
脂が使用できる。担持操作は、貴金属沈殿を含む
低級アルコール懸濁液に、陰イオン交換樹脂を加
えて撹拌することにより行われる。この時、陰イ
オン交換樹脂は当初の白色ないし淡黄色から黒色
ないし灰色に変化し、黒色の貴金属沈殿はこれに
伴つて減少し、ついには消滅する。担持操作は0
℃ないし低級アルコールの沸点で行うことがで
き、これに要する時間は室温付近の場合で5時間
以内、常圧下で還流しながら行つた場合30分以内
である。担体として用いられる市販の陰イオン交
換樹脂としては粉末状又は粒状のアンバーライト
IRA―938、アンバーライトCG―400、アンバー
ライトA―26、アンバーライトIRA―904などが
あげられるが、担持率の高い場合は表面積のより
大きな粉末状の樹脂が適する。イオン交換樹脂の
使用量は担持される貴金属の総量の20〜1000倍重
量、好ましくは100〜500倍重量である。 得られた担持型貴金属触媒を含む懸濁液はその
ままで低級アルコールを溶媒とする液相反応に供
することもできるが、通常はろ過などにより該固
体触媒を分散し、アルコールなどで洗浄した後、
乾燥させ又は湿潤状態で保持して実用に供され
る。 本発明によれば、微細な貴金属粒子を担持した
固体触媒を容易かつ能率的に得ることができ、得
られた固体触媒は、液相反応や気相反応に使用で
きると同時に、その回収も容易で触媒活性の再現
性も良好である。 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 塩化ロジウム()(Rhcl3・3H2O)50μmolを
エタノール95mlに溶解し、これに水素化ホウ素ナ
トリウム200μmolのエタノール溶液5mlを室
温、撹拌下に滴下し、さらに5分間撹拌してロジ
ウム金属の黒色微細沈殿を含む懸濁液を得た。別
途、塩素イオン型陰イオン交換樹脂(ローム・ア
ンド・ハース社製、アンバーライトCG―400
型、200〜400mesh)を20倍量の純水で3回洗浄
し、ろ過後70℃で6時間乾燥した。こうして得ら
れた樹脂1.00gを先のロジウム金属の懸濁液に加
え、室温で4時間撹拌した。この間に樹脂は灰色
に着色し、ロジウム金属の黒色沈殿は消滅した。
この樹脂をろ過後、減圧下に乾燥して灰色微粒状
の担持型ロジウム触媒が得られた。 この担持型ロジウム触媒20mg(ロジウム1μ
g―原子含有)を50ml容ナス型フラスコに入れ、
内部を水素で置換した後、溶存酸素を除いたエタ
ノール20mlを加えて30℃、1気圧の水素下で約15
分間撹拌して水素で飽和させた。これにシクロヘ
キセン0.25mmolを滴下したところ、直ちに水素
の吸収が始まり、約30分後に水素吸収が停止して
シクロヘキサンが得られた。この時の水素化初速
度はロジウム1g―原子当りに換算して0.45mol/
secであつた。 実施例 2 実施例1と同様の操作により、塩化ロジウム
()還元反応の溶媒と担体の樹脂を変えて、担
持型ロジウム触媒を調製した。こうして得られた
触媒による30℃、1気圧水素化におけるシクロヘ
キセンの水素化初速度を次に示す。
The present invention relates to a method for producing a novel supported noble metal catalyst exhibiting high catalytic activity. Supported noble metal catalysts are most commonly used because they contain a large metal surface area and are easy to recover and handle. However, methods for producing metal catalysts in this form include activated carbon, silica gel, A solid with a large specific surface area, such as diatomaceous earth, is impregnated with or adsorbed with a metal salt serving as a catalyst, and then molecular hydrogen or an appropriate reducing agent is applied to the solid to reduce the metal salt and form metal fine particles. There are known methods to generate it. However, in this method, since the reduction of the metal salt occurs on the surface of the carrier, the shape of the resulting metal fine particles is not constant, and the reproducibility of the catalytic activity is often a problem. Furthermore, when the density of the metal salt on the surface of the carrier is low, this reduction reaction is significantly slowed down, and therefore, strict conditions are generally required to produce a metal catalyst with a low loading rate. On the other hand, when metal salts are reduced in an aqueous or alcoholic solution, the reaction proceeds at a sufficient speed even at low concentrations, and all of the metal salts can be easily converted into the corresponding metal fine particles. The powdered metal obtained in this way is also effective as a catalyst, but depending on the reaction conditions, the metal particles may agglomerate to form a lumpy precipitate, reducing the effective surface area and significantly reducing the catalytic activity, or conversely, the metal particles There are many operational difficulties compared to supported metal catalysts, such as if the particles are too fine, it becomes difficult to recover them after the reaction. The present inventors aimed to overcome the drawbacks of conventional supported precious metal catalysts and powdered precious metal catalysts, maintain a large effective surface area over a long period of time, and obtain a precious metal catalyst with constant reproducibility. As a result of extensive research, we have found that if a precious metal catalyst is formed into fine particles and then supported on a predetermined solid, the catalyst particles prepared to have a fixed particle size and shape will be able to maintain their particle size and shape. If noble metal fine particles prepared by reduction in a lower alcohol are brought into contact with a solid anion exchange resin having a quaternary ammonium group, the surface of the resin can be easily formed. We have discovered that redispersion occurs, and based on these findings, we have accomplished the present invention. That is, in the present invention, a salt of a noble metal selected from rhodium, platinum, and silver is reduced in a lower alcohol to precipitate the noble metal, and then,
The present invention provides a method for producing an ion-exchange resin-supported noble metal catalyst, which comprises bringing the catalyst into contact with a solid anion-exchange resin having a quaternary ammonium group and dispersing the catalyst on the resin. In the method of the present invention, it is first necessary to precipitate the precious metal as fine particles, which makes it easy to adjust the particle size and shape of the catalyst. This can be carried out by a known method in which a solution is treated with an alcohol-soluble reducing agent such as sodium borohydride or hydrazine. As noble metal salts, rhodium chloride, chloroplatinic acid, silver nitrate, etc. are used, and as lower alcohols as solvents,
Alcohols having 1 to 3 carbon atoms such as methanol, ethanol, and propanol are used. The operation for forming the noble metal is carried out at 0°C to the boiling point of the lower alcohol, and is usually carried out at around room temperature.
At this time, if the precious metal precipitate coagulates and becomes a large lump, the time required for supporting it will be extremely long.
It is desirable to form a well-dispersed precipitate. In the present invention, a solid anion exchange resin having a quaternary ammonium group is used as a carrier. Most commercially available anion exchange resins are of the chlorine ion type, but hydroxide ions can be obtained by washing with water to remove impurities, or by contacting them with an excessive amount of sodium hydroxide, sodium sulfate, etc. Anion exchange resins such as type and sulfate ion type can be used. The supporting operation is carried out by adding an anion exchange resin to a lower alcohol suspension containing the noble metal precipitate and stirring the mixture. At this time, the anion exchange resin changes from its initial white to pale yellow color to black or gray, and the black precious metal precipitate decreases accordingly and finally disappears. Carrying operation is 0
℃ to the boiling point of the lower alcohol, and the time required for this is within 5 hours when the temperature is around room temperature, and within 30 minutes when the reaction is carried out under normal pressure under reflux. A commercially available anion exchange resin used as a carrier is powdered or granular Amberlite.
Examples include IRA-938, Amberlite CG-400, Amberlite A-26, Amberlite IRA-904, etc., but if the loading rate is high, a powdered resin with a larger surface area is suitable. The amount of ion exchange resin used is 20 to 1000 times, preferably 100 to 500 times the weight of the total amount of noble metals to be supported. The obtained suspension containing the supported noble metal catalyst can be directly subjected to a liquid phase reaction using a lower alcohol as a solvent, but usually the solid catalyst is dispersed by filtration or the like, washed with alcohol, etc.
It is used for practical use by drying or keeping it in a wet state. According to the present invention, it is possible to easily and efficiently obtain a solid catalyst supporting fine precious metal particles, and the obtained solid catalyst can be used for liquid phase reactions and gas phase reactions, and at the same time, it can be easily recovered. The reproducibility of catalyst activity is also good. Next, the present invention will be explained in more detail with reference to Examples. Example 1 50 μmol of rhodium chloride (Rhcl 3.3H 2 O) was dissolved in 95 ml of ethanol, and 5 ml of an ethanol solution of 200 μmol of sodium borohydride was added dropwise at room temperature with stirring. A suspension containing a fine black precipitate of metal was obtained. Separately, chlorine ion type anion exchange resin (manufactured by Rohm and Haas, Amberlite CG-400)
The mold (200 to 400 mesh) was washed three times with 20 times the amount of pure water, filtered, and then dried at 70°C for 6 hours. 1.00 g of the resin thus obtained was added to the suspension of rhodium metal and stirred at room temperature for 4 hours. During this time, the resin turned gray and the black precipitate of rhodium metal disappeared.
After filtering this resin, it was dried under reduced pressure to obtain a supported rhodium catalyst in the form of gray fine particles. 20mg of this supported rhodium catalyst (Rhodium 1μ
(containing g-atoms) in a 50 ml eggplant-shaped flask,
After replacing the inside with hydrogen, add 20ml of ethanol from which dissolved oxygen has been removed, and heat at 30℃ under 1 atm of hydrogen for about 15 minutes.
Stir for a minute to saturate with hydrogen. When 0.25 mmol of cyclohexene was added dropwise to this, hydrogen absorption started immediately, and after about 30 minutes, hydrogen absorption stopped and cyclohexane was obtained. The initial hydrogenation rate at this time is 0.45 mol/atom per gram of rhodium.
It was hot in sec. Example 2 A supported rhodium catalyst was prepared in the same manner as in Example 1 by changing the solvent for the rhodium chloride () reduction reaction and the carrier resin. The initial hydrogenation rate of cyclohexene in hydrogenation at 30° C. and 1 atm using the catalyst thus obtained is shown below.

【表】 (硫酸イオン型)
エタノール アンバーライト 0.23
CG〓400
(水酸イオン型)
[Table] (Sulfate ion type)
Ethanol Amberlight 0.23
CG〓400
(Hydroxy ion type)

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム、白金、銀の中から選ばれた貴金属
の塩を低級アルコール中で還元処理し、貴金属を
沈殿として析出させたのち、これを四級アンモニ
ウム基を有する固体状陰イオン交換樹脂と接触さ
せ、樹脂上に分散担持させることを特徴とするイ
オン交換樹脂担持型貴金属触媒の製造方法。
1 A salt of a noble metal selected from rhodium, platinum, and silver is reduced in a lower alcohol to precipitate the noble metal, and then brought into contact with a solid anion exchange resin having a quaternary ammonium group. A method for producing an ion-exchange resin-supported noble metal catalyst, which comprises dispersing and supporting the catalyst on a resin.
JP57223603A 1982-12-20 1982-12-20 Preparation of noble metal catalyst supported by ion exchange resin Granted JPS59112838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57223603A JPS59112838A (en) 1982-12-20 1982-12-20 Preparation of noble metal catalyst supported by ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57223603A JPS59112838A (en) 1982-12-20 1982-12-20 Preparation of noble metal catalyst supported by ion exchange resin

Publications (2)

Publication Number Publication Date
JPS59112838A JPS59112838A (en) 1984-06-29
JPS6156019B2 true JPS6156019B2 (en) 1986-12-01

Family

ID=16800767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223603A Granted JPS59112838A (en) 1982-12-20 1982-12-20 Preparation of noble metal catalyst supported by ion exchange resin

Country Status (1)

Country Link
JP (1) JPS59112838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429826A (en) * 1990-05-28 1992-01-31 Japan Steel Works Ltd:The Detection of parison drawdown in hollow molding and calculating method for drawdown ratio of parison

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072019A1 (en) * 2003-02-14 2004-08-26 Wako Pure Chemical Industries, Ltd. Method for producing hydroxylamine compound using platinum catalyst fixed on ion exchange resin
FR3006609B1 (en) * 2013-06-10 2015-09-25 Pivert CATALYST AND METHOD FOR SYNTHESIS OF GLYCOLIC ACID

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429826A (en) * 1990-05-28 1992-01-31 Japan Steel Works Ltd:The Detection of parison drawdown in hollow molding and calculating method for drawdown ratio of parison

Also Published As

Publication number Publication date
JPS59112838A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
SU1060096A3 (en) Process for preparing catalyst of hydroenating processing of aliphatic and aromatic compounds
CA1071617A (en) Process for preparing noble metal catalysts
CN105921166B (en) Mesoporous molecular sieve catalyst for catalytic dehydrogenation of alkane and preparation method and application thereof
JP5791901B2 (en) Method for producing aqueous colloidal precious metal suspension
JPS595012B2 (en) Manufacturing method of platinum catalyst for fuel cell electrodes
US4088603A (en) Catalyst activation process
US4111842A (en) Process for the preparation of supported catalysts
EP0611126B1 (en) A hydrogenation catalyst for use in a hydrogen peroxide process, and a method for the preparation thereof
US5275999A (en) Process of preparing catalyst supporting highly dispersed metal particles
JPS6319217B2 (en)
US2945757A (en) Recovery of noble metals from catalytic composites
EP1247574B1 (en) Process for producing a supported metal catalyst
JPS6156019B2 (en)
US3493343A (en) Production of hydrogen peroxide
JP2000229239A (en) Supported ruthenium oxide catalyst
US5882619A (en) Preparation of a hydrogenation catalyst using M(OR)m Xn
JP2668927B2 (en) Method for producing hydroxylammonium salt and its catalyst
JP3516734B2 (en) Method for producing platinum-supported catalyst
JPS622849B2 (en)
JPH0242541B2 (en)
JP3457682B2 (en) Noble metal hydrosol and method for producing the same
JPH0360534B2 (en)
JPS6358621B2 (en)
JPH0576340B2 (en)