JPS622849B2 - - Google Patents

Info

Publication number
JPS622849B2
JPS622849B2 JP141078A JP141078A JPS622849B2 JP S622849 B2 JPS622849 B2 JP S622849B2 JP 141078 A JP141078 A JP 141078A JP 141078 A JP141078 A JP 141078A JP S622849 B2 JPS622849 B2 JP S622849B2
Authority
JP
Japan
Prior art keywords
ruthenium
catalyst
carrier
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP141078A
Other languages
Japanese (ja)
Other versions
JPS5494491A (en
Inventor
Hidemitsu Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP141078A priority Critical patent/JPS5494491A/en
Publication of JPS5494491A publication Critical patent/JPS5494491A/en
Publication of JPS622849B2 publication Critical patent/JPS622849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は担体に担持された水素化反応用ルテニ
ウム触媒に関するものである。 担体に担持されたルテニウム触媒は多数知られ
ており、たとえばPlatinum Metal Rev 、12
(1962)には塩化ルテニウムの水溶液を担体にし
みこませて水素還元する方法、日特公昭45−
30696号にはルテニウム酸カリウムを担体上に支
持し、炭酸ガスの存在下に温度150ないし500℃で
熱処理して活性化する方法などがある。しかしな
がら、これら従来のルテニウム触媒はある特定の
反応にのみ有効で、使用される分野が限られ、そ
の上低温活性および耐久性が十分でないなどの難
点がある。 このような見地から本発明者は、低温活性と耐
久力を持ち、しかも汎用型の各種有機化合物の水
素化に有用なルテニウム触媒について鋭意検討し
たところ、アルカリ性の液相中でルテニウム塩を
水酸化ルテニウムとして完全に担体に吸着させ、
この水酸化ルテニウムを完全に金属状態まで還元
し、しかもルテニウム金属の粒子径をできるだけ
小さくし、かつ均一に担体に分散させることが重
要であることを見出し本発明を完成した。 すなわち本発明は、温和な条件で炭化水素系の
芳香核、アミノ基、フエノール性ヒドロキシル基
およびカルボン酸などの置換基を有する芳香核、
さらに一般の触媒では水素化されにくい石油系液
状不飽和樹脂の水素化を可能としたルテニウム触
媒を提供するものである。 本発明のルテニウム触媒を得るための製造方法
についてその一実施態様を示せば、水酸化ナトリ
ウムなどのアルカリ金属水酸化物水溶液中にアル
ミナなどの担体を加えて懸濁させ、40ないし60℃
に昇温し、この中に塩化ルテニウム水溶液を投入
する。約10分後に液は透明となり塩化ルテニウム
は水酸化ルテニウムとして完全にアルミナに吸着
されて黒色を呈する。 次に水素化ホウ素ナトリウム(以下SBHと略
称する)の水溶液を前記懸濁液の液温を40ないし
80℃に保つて約1時間で滴下する。この際激しく
水素ガスを発生し、水酸化ルテニウムはルテニウ
ム金属に還元される。還元終了後室温まで冷却し
た後水洗し、そのまままたは乾燥してルテニウム
触媒が得られる。 本発明のルテニウム触媒に用いる担体は、活性
炭、アルミナ、シリカ、シリカアルミナ、ケイソ
ー土、ゼオライトなどであるが、特に限定するも
のではない。 本発明品を製造する際に用いるアルカリは水酸
化ナトリウム、水酸化カリウム、水酸化リチウム
などの強塩基で、その使用量は担体に対し10〜40
重量%が好ましい。10重量%以下ではルテニウム
の担体に対する吸着が不完全で触媒の水洗を行う
際コロイド化してルテニウムが担体からはずれ
て、ロスを生じ触媒の性能を低下させる。また40
重量%以上用いることは何ら支障ないが不経済で
あると同時に水洗回数がいたずらに増加するだけ
である。塩基度の弱い炭酸水素ナトリウム、炭酸
ナトリウムなどを用いるときはルテニウムの担体
に対する完全な吸着が期待できない。 本発明品を製造する際に用いるルテニウム塩
は、アルカリ金属水酸化物水溶液中で担体に水酸
化ルテニウムとして吸着されるものであればどの
ようなものでもよいが、担体に完全に吸着される
点でとくに塩化ルテニウムが好適である。 本発明品を製造する際担体にルテニウム塩を吸
着させる温度は40ないし60℃の範囲が好ましい。
低温ではルテニウムの吸着が遅く触媒の活性にば
らつきを生ずるおそれがあり、高温では吸着が早
過ぎてルテニウムの一部が担体に吸着されないで
沈降する場合があり一定品質の触媒が得られにく
い。 本発明品を製造する際に用いるSBHの使用量
はルテニウム金属の重量の1ないし2倍の範囲が
好ましい。使用量が少いと未還元の水酸化ルテニ
ウムが残る可能性があり、多く用いることは不経
済であるとともに水洗回数の増加をまねく。 本発明品を製造する際、水酸化ルテニウムを
SBHで還元する温度は、40ないし70℃が好まし
い。低温では還元速度が極めて遅く、高温では還
元速度が早過ぎて、触媒活性にばらつきを生ずる
おそれがある。 本発明品のルテニウム担持量は、金属として
0.01ないし5重量%が好ましいが、特に限定され
ない。 このようにして得られた本発明品の触媒中には
通常ホウ素が0.1ないし0.02重量%含有され、こ
れが触媒性能を向上させる要因の一つになつてい
るものと思われる。 本発明品は水素化反応において従来に見られな
い低温活性と耐久性を有している。たとえばγ−
アルミナにルテニウムを2%担持した本発明の触
媒を用いp−tert−ブチルフエノールを水素圧80
Kg/cm2の下に水素化を行うと、60℃から水素の吸
収が始まり80℃で20分間で反応が終了する。 この触媒を回収し6回まで繰返し使用しても活
性低下が認められず、その低温活性の優れている
ことは驚くべきことである。ちなみに一般的な従
来法による5%担持ルテニウム−アルミナ触媒を
用い同物質を同一条件下に水素化するときは最低
150℃が必要で、しかも耐久性に乏しく実用的で
ない。 さらに本発明を実施例により詳細に説明する。 実施例 1 粒径60μのγ−アルミナ980gを水5中に入
れ、この中に20%水酸化ナトリウム水溶液1.5
を加えて室温で30分撹拌した。液温を40℃とし、
ルテニウム金属として20gを含有する塩化ルテニ
ウム水溶液3を3回に分けて投入し、液温を50
±5℃に保つて1時間撹拌を行いルテニウムを担
体に吸着させた。次いで液の温度を上げて60±5
℃に保つてこの中へSBH40gを含む水溶液1
を一時間にわたつて連続的に投入して還元を行つ
た。この後液体が室温まで冷却するのを待つて、
遠心分離機により洗液のPHが9となるまで連続的
に水洗した後、110℃で10時間温風乾燥を行い
1003gの2%担持ルテニウム−γ−アルミナ触媒
を得た。この触媒を分析したところルテニウム
1.89重量%、ホウ素0.12重量%が含まれていた。 この触媒1gをp−tert−ブチルフエノール15
gおよびイソプロパノール30mlとともにオートク
レーブ中に仕込み、水素初圧80Kg/cm2で昇温させ
ながら反応を行つたところ、60℃で水素吸収が始
まり22分後80℃となり水素の吸収が停止して核還
元反応が終了した。反応生成物をオートクレーブ
から取り出し触媒を別した後溶剤を溜去してp
−tert−シクロヘキサノール15.3gを得た。この
ものはシス体55%、トランス体45%を含有してい
た。 実施例 2 実施例1の触媒調製における担体のγ−アルミ
ナに代え活性炭を用い実施例1に準じてルテニウ
ム炭素触媒を得た。 この触媒0.4gを平均分子量3000の液状ポリブ
タジエン50gとともにオートクレーブに仕込み、
水素初圧50Kg/cm2、反応温度125±8℃で水素化
を行つた。300分後20.4の水素が消費されて反
応が終了した。得られた水素化化合物のヨウ素価
は2.3であつた。 実施例 3〜7 実施例1の触媒を原料に対し5%用いて水素化
反応を行つたところ、反応時間および核還元物の
収率は第1表のような結果になつた。
The present invention relates to a ruthenium catalyst for hydrogenation reaction supported on a carrier. Many ruthenium catalysts supported on carriers are known, such as Platinum Metal Rev 6 , 12
(1962) describes a method for reducing hydrogen by impregnating an aqueous solution of ruthenium chloride into a carrier,
No. 30696 discloses a method in which potassium ruthenate is supported on a carrier and activated by heat treatment at a temperature of 150 to 500°C in the presence of carbon dioxide gas. However, these conventional ruthenium catalysts are effective only in certain specific reactions, limiting the fields of use, and have drawbacks such as insufficient low-temperature activity and durability. From this perspective, the present inventor conducted extensive research on ruthenium catalysts that have low-temperature activity and durability, and are useful for the hydrogenation of various general-purpose organic compounds. Completely adsorbed on the carrier as ruthenium,
The present invention was completed by discovering that it is important to completely reduce this ruthenium hydroxide to a metallic state, to make the particle size of ruthenium metal as small as possible, and to uniformly disperse it in a carrier. That is, the present invention provides hydrocarbon-based aromatic nuclei, aromatic nuclei having substituents such as amino groups, phenolic hydroxyl groups, and carboxylic acids under mild conditions;
Furthermore, the present invention provides a ruthenium catalyst that can hydrogenate petroleum-based liquid unsaturated resins that are difficult to hydrogenate with common catalysts. In one embodiment of the production method for obtaining the ruthenium catalyst of the present invention, a carrier such as alumina is added and suspended in an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, and the ruthenium catalyst is heated at 40 to 60°C.
The temperature was raised to , and an aqueous ruthenium chloride solution was poured into the mixture. After about 10 minutes, the liquid becomes transparent and the ruthenium chloride is completely adsorbed on the alumina as ruthenium hydroxide, giving it a black color. Next, an aqueous solution of sodium borohydride (hereinafter abbreviated as SBH) was added to the suspension at a temperature of 40°C to 40°C.
Keep it at 80℃ and drop it in about 1 hour. At this time, hydrogen gas is violently generated and ruthenium hydroxide is reduced to ruthenium metal. After completion of reduction, the mixture is cooled to room temperature, washed with water, and left as is or dried to obtain a ruthenium catalyst. The carrier used for the ruthenium catalyst of the present invention includes activated carbon, alumina, silica, silica alumina, diatomaceous earth, zeolite, etc., but is not particularly limited. The alkali used in producing the product of the present invention is a strong base such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., and the amount used is 10 to 40% based on the carrier.
Weight percent is preferred. If the amount is less than 10% by weight, the adsorption of ruthenium onto the carrier is incomplete, and when the catalyst is washed with water, it becomes a colloid and ruthenium comes off the carrier, causing loss and deteriorating the performance of the catalyst. 40 again
There is no problem in using more than % by weight, but it is uneconomical and at the same time only unnecessarily increases the number of washings. When using sodium bicarbonate, sodium carbonate, etc., which have weak basicity, complete adsorption of ruthenium onto the carrier cannot be expected. The ruthenium salt used in producing the product of the present invention may be any salt as long as it can be adsorbed to the carrier as ruthenium hydroxide in an aqueous alkali metal hydroxide solution, but it must be completely adsorbed to the carrier. Ruthenium chloride is particularly suitable. When producing the product of the present invention, the temperature at which the ruthenium salt is adsorbed onto the carrier is preferably in the range of 40 to 60°C.
At low temperatures, the adsorption of ruthenium is slow, which may cause variations in catalyst activity, and at high temperatures, adsorption is too rapid and some of the ruthenium may not be adsorbed onto the carrier and may settle, making it difficult to obtain a catalyst of consistent quality. The amount of SBH used in producing the product of the present invention is preferably in the range of 1 to 2 times the weight of ruthenium metal. If the amount used is small, there is a possibility that unreduced ruthenium hydroxide remains, and if the amount used is too large, it is uneconomical and increases the number of washings. When manufacturing the product of the present invention, ruthenium hydroxide is
The temperature for reduction with SBH is preferably 40 to 70°C. At low temperatures, the reduction rate is extremely slow, and at high temperatures, the reduction rate is too fast, which may cause variations in catalyst activity. The amount of ruthenium supported in the product of the present invention is
It is preferably 0.01 to 5% by weight, but is not particularly limited. The thus obtained catalyst of the present invention usually contains 0.1 to 0.02% by weight of boron, which is considered to be one of the factors that improves the catalyst performance. The product of the present invention has unprecedented low-temperature activity and durability in hydrogenation reactions. For example, γ−
Using the catalyst of the present invention in which 2% of ruthenium is supported on alumina, p-tert-butylphenol is heated to 80% hydrogen pressure.
When hydrogenation is carried out under Kg/cm 2 , hydrogen absorption begins at 60°C and the reaction is completed in 20 minutes at 80°C. It is surprising that no decrease in activity was observed even after this catalyst was recovered and used up to six times, and its low-temperature activity was excellent. By the way, when the same substance is hydrogenated under the same conditions using a 5% supported ruthenium-alumina catalyst using a general conventional method, the minimum
It requires a temperature of 150℃ and is not practical due to its poor durability. Further, the present invention will be explained in detail with reference to Examples. Example 1 980g of γ-alumina with a particle size of 60μ is placed in 55g of water, and 1.5g of a 20% sodium hydroxide aqueous solution is added to the water.
was added and stirred at room temperature for 30 minutes. Set the liquid temperature to 40℃,
Ruthenium chloride aqueous solution 3 containing 20g of ruthenium metal was added in three parts, and the liquid temperature was raised to 50°C.
The mixture was kept at ±5°C and stirred for 1 hour to adsorb ruthenium onto the carrier. Next, raise the temperature of the liquid to 60±5
Aqueous solution 1 containing 40g of SBH in a lever kept at ℃
was added continuously for one hour to perform the reduction. After this, wait for the liquid to cool down to room temperature.
After washing continuously with water using a centrifuge until the pH of the washing solution reached 9, drying with hot air at 110℃ for 10 hours was performed.
1003 g of 2% supported ruthenium-gamma-alumina catalyst was obtained. Analysis of this catalyst revealed that ruthenium was found.
It contained 1.89% by weight and 0.12% by weight of boron. 1 g of this catalyst was mixed with 15 p-tert-butylphenol.
When the reaction was carried out while raising the temperature at an initial hydrogen pressure of 80 kg/cm 2 , hydrogen absorption started at 60°C and reached 80°C after 22 minutes, and hydrogen absorption stopped and nuclear reduction occurred. The reaction has finished. After removing the reaction product from the autoclave and separating the catalyst, the solvent is distilled off.
15.3 g of -tert-cyclohexanol was obtained. This product contained 55% cis isomer and 45% trans isomer. Example 2 A ruthenium carbon catalyst was obtained in the same manner as in Example 1, using activated carbon instead of γ-alumina as a carrier in the preparation of the catalyst in Example 1. 0.4g of this catalyst was charged into an autoclave along with 50g of liquid polybutadiene with an average molecular weight of 3000.
Hydrogenation was carried out at an initial hydrogen pressure of 50 Kg/cm 2 and a reaction temperature of 125±8°C. After 300 minutes, 20.4 of hydrogen was consumed and the reaction was completed. The obtained hydrogenated compound had an iodine number of 2.3. Examples 3 to 7 When a hydrogenation reaction was carried out using the catalyst of Example 1 in an amount of 5% based on the raw material, the reaction time and the yield of the nuclear reduction product were as shown in Table 1.

【表】 実施例 8〜10 実施例1の触媒調製における担体のγ−アルミ
ナを活性炭およびケイソー土に代えた触媒と、実
施例1の触媒調製における水酸化ナトリウムを水
酸化カリウムに代えて得た触媒を用いてクマリン
を水素化したところ、第2表のような結果を得
た。
[Table] Examples 8 to 10 Catalysts obtained by replacing γ-alumina as a carrier with activated carbon and diatomaceous earth in the catalyst preparation of Example 1, and replacing sodium hydroxide with potassium hydroxide in the catalyst preparation of Example 1 When coumarin was hydrogenated using a catalyst, the results shown in Table 2 were obtained.

【表】 比較例 1 粒径60μのγ−アルミナ98gを水500ml中に入
れ、撹拌しながらルテニウム金属として2gを含
有する塩化ルテニウム水溶液を投入し、室温で1
時間撹拌を行つて十分吸着させた。次いで液温を
60±5℃に保ちながらこの中へSBH4gを含む水
溶液100mlを徐々に投入して還元を行つた。この
後水洗、乾燥を行い、2%担持ルテニウム−γ−
アルミナ触媒100gを得た。 この触媒1gを使つて実施例1と同じ還元条件
でp−tert−ブチルフエノールの還元反応を行つ
た。水素吸収は100℃より始まり、水素吸収の停
止までに55分間を要した。触媒を濾過後、溶媒を
留去してp−tert−ブチルシクロヘキサノール
15.1gを得た。
[Table] Comparative Example 1 98 g of γ-alumina with a particle size of 60μ was placed in 500 ml of water, and while stirring, a ruthenium chloride aqueous solution containing 2 g of ruthenium metal was added, and 1
Sufficient adsorption was achieved by stirring for hours. Next, check the liquid temperature
While maintaining the temperature at 60±5° C., 100 ml of an aqueous solution containing 4 g of SBH was gradually introduced into the solution to perform reduction. After that, it was washed with water and dried, and 2% supported ruthenium-γ-
100g of alumina catalyst was obtained. Using 1 g of this catalyst, a reduction reaction of p-tert-butylphenol was carried out under the same reduction conditions as in Example 1. Hydrogen absorption started at 100°C and took 55 minutes to stop. After filtering the catalyst, the solvent was distilled off to give p-tert-butylcyclohexanol.
15.1g was obtained.

Claims (1)

【特許請求の範囲】 1 担体をアルカリ金属水酸化物水溶液に懸濁さ
せ、この懸濁液中にルテニム塩溶液を加えて担体
に吸着させた後、水素化ホウ素ナトリウムで還元
することを特徴とする水素化反応用ルテニウム触
媒の製造方法。 2 前記アルカリ金属がナトリウム、カリウムお
よびリチウムから選ばれた1種以上である特許請
求の範囲第1項記載の方法。 3 ルテニウム塩が塩化ルテニウムである特許請
求の範囲第1項記載の方法。 4 ルテニウムを担体に吸着させる温度が40ない
し60℃である特許請求の範囲第1項記載の方法。 5 水素化ホウ素ナトリウムで還元する温度が40
ないし80℃である特許請求の範囲第1項記載の方
法。 6 触媒中に含有されるホウ素の含有率が0.01〜
0.2重量%である特許請求の範囲第1項記載の方
法。
[Claims] 1. A carrier is suspended in an aqueous alkali metal hydroxide solution, a ruthenium salt solution is added to this suspension, adsorbed onto the carrier, and then reduced with sodium borohydride. A method for producing a ruthenium catalyst for hydrogenation reaction. 2. The method according to claim 1, wherein the alkali metal is one or more selected from sodium, potassium, and lithium. 3. The method according to claim 1, wherein the ruthenium salt is ruthenium chloride. 4. The method according to claim 1, wherein the temperature at which ruthenium is adsorbed onto the carrier is 40 to 60°C. 5 The temperature for reduction with sodium borohydride is 40
The method according to claim 1, wherein the temperature is between 80°C and 80°C. 6 The boron content contained in the catalyst is 0.01~
A method according to claim 1, wherein the amount is 0.2% by weight.
JP141078A 1978-01-10 1978-01-10 Ruthenium catalyst Granted JPS5494491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP141078A JPS5494491A (en) 1978-01-10 1978-01-10 Ruthenium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP141078A JPS5494491A (en) 1978-01-10 1978-01-10 Ruthenium catalyst

Publications (2)

Publication Number Publication Date
JPS5494491A JPS5494491A (en) 1979-07-26
JPS622849B2 true JPS622849B2 (en) 1987-01-22

Family

ID=11500709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP141078A Granted JPS5494491A (en) 1978-01-10 1978-01-10 Ruthenium catalyst

Country Status (1)

Country Link
JP (1) JPS5494491A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034742A (en) * 1983-08-05 1985-02-22 Osaka Gas Co Ltd Treatment of catalyst
GB8620982D0 (en) * 1986-08-29 1986-10-08 Shell Int Research Catalyst preparation
JP2595582B2 (en) * 1987-11-17 1997-04-02 三菱化学株式会社 Method for producing ruthenium-containing catalyst
JPH0271838A (en) * 1988-03-31 1990-03-12 Res Assoc Util Of Light Oil Production of noble metal catalyst
JP4250954B2 (en) * 2002-04-26 2009-04-08 住友化学株式会社 Method for producing ruthenium-supported alumina and method for oxidizing alcohol
JP4597024B2 (en) * 2005-10-12 2010-12-15 旭化成ケミカルズ株式会社 Cycloolefin production catalyst and cycloolefin production method
TWI494335B (en) * 2012-08-31 2015-08-01 Tsrc Corp Method for hydrogenating polymer and hydrogenated polymer thereof

Also Published As

Publication number Publication date
JPS5494491A (en) 1979-07-26

Similar Documents

Publication Publication Date Title
JPH0546252B2 (en)
KR0160308B1 (en) Method for producing a cyloolefin
US2034077A (en) Catalyst and method for preparing same
JPS622849B2 (en)
CN104785250A (en) Hydrogenation catalyst, its preparation method and its application in preparation of hexahydrophthalic anhydride
JPS6059215B2 (en) Process for producing cyclohexene from benzene
CN88101657A (en) Produce the method for amine
US1271013A (en) Hydrogenization and dehydrogenization of carbon compounds.
JPH06205B2 (en) Nickel-silica catalyst and its production method
JPS5838420B2 (en) Method for dehalogenating halogen-containing aromatic amines
CN104888794B (en) Metal composition catalyst, preparation method thereof and application thereof in preparation of D, L-menthol
CA1132966A (en) Supported nickel catalysts and process for their preparation
JP2002069016A (en) Method for hydrogenating terephthalic acid
CN114621097B (en) Method for preparing 2, 4-difluoroaniline by catalytic hydrogenation of 2, 4-difluoronitrobenzene
JPH0129173B2 (en)
JPH10204002A (en) Nucleus hydrogenation of substituted aromatic compound
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JP3143744B1 (en) Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst
US3742049A (en) Method for producing bis(4-aminocyclohexyl)alkane
US4182916A (en) Method for the production of 6-hydroxy-1,2,3,4-tetrahydronaphthalene
JP3463251B2 (en) Method for producing 4-tert-butylcyclohexanol
JPS6034526B2 (en) Method for producing cis-4-tert-butylcyclohexanol
JP3126831B2 (en) Method for producing hydrogenated bisphenols
JP4218940B2 (en) Catalyst and method for producing epoxy compound
JP2001002604A (en) Production of diols