JPS6034526B2 - Method for producing cis-4-tert-butylcyclohexanol - Google Patents

Method for producing cis-4-tert-butylcyclohexanol

Info

Publication number
JPS6034526B2
JPS6034526B2 JP53001411A JP141178A JPS6034526B2 JP S6034526 B2 JPS6034526 B2 JP S6034526B2 JP 53001411 A JP53001411 A JP 53001411A JP 141178 A JP141178 A JP 141178A JP S6034526 B2 JPS6034526 B2 JP S6034526B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
alumina
butylcyclohexanol
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53001411A
Other languages
Japanese (ja)
Other versions
JPS5495546A (en
Inventor
秀光 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP53001411A priority Critical patent/JPS6034526B2/en
Publication of JPS5495546A publication Critical patent/JPS5495546A/en
Publication of JPS6034526B2 publication Critical patent/JPS6034526B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はシス型に富んだ4−にrt−プチルシクロヘキ
サノールert−ブチルシクロヘキサノールを製造する
方法に関し、さらに詳しくは高品位のシス型−4一te
rt−ブチルシクロヘキサノールの経済的な製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cis-enriched 4-rt-butylcyclohexanol, more specifically a method for producing cis-rich 4-rt-butylcyclohexanol, and more specifically, a method for producing cis-rich 4-rt-butylcyclohexanol.
The present invention relates to an economical method for producing rt-butylcyclohexanol.

4−te九一ブチルシクロヘキサノールは、酢酸、プロ
ピオン酸、酪酸、青草酸などのェステルとして香舵品の
香料に用いられるが、そのシス型異性体な強力なy−ー
メチルィオノン様の香気を有するため、シス型異性体の
含有率の高い4−にrt−ブチルシクロヘキサノールの
工業生産が強く要望されている。
4-te-91-butylcyclohexanol is used as an ester of acetic acid, propionic acid, butyric acid, cyanobic acid, etc. in perfumery products, but its cis isomer has a strong y-methylionone-like aroma. There is a strong demand for industrial production of 4-rt-butylcyclohexanol with a high content of cis isomers.

シス型に富んだ4−ten−ブチルシクロヘキサノール
を得る方法として4一tert−ブチルフェノールを酢
酸中ロジウム炭素触媒の存在下で接触還元し、シス型異
性体を70〜80%で得る方法が日特公昭42−139
38号に開示されている。
As a method for obtaining 4-ten-butylcyclohexanol rich in cis-isomers, NIPPON TOKYO has developed a method in which 4-tert-butylphenol is catalytically reduced in acetic acid in the presence of a rhodium-carbon catalyst to obtain 70-80% of the cis-isomer. Kosho 42-139
It is disclosed in No. 38.

しかし、比較的安価なルテニウム触媒を用いる方法では
、エタノール中でルテニウム炭素触媒の存在下に4−に
rtーブチルフェノールを接触還元し、シス型−4−に
rtーブチルシクロヘキサノールを最高で55%で得ら
れることしか知られていない。ロジウム触媒は高価で、
しかも上記2例はいずれも触媒を多量に使用する必要が
あり、さらに触媒の耐久力が乏しいため実用触媒となり
えず、工業的規模での実施は困難である。しかしルテニ
ウム金属は比較的安価なため、もし得られた触媒が低温
活性を有し選択性に富み、耐久力のある触媒の製造方法
が見し・出されれば、シス型に富んだ4一にrt−ブチ
ルシクロヘキサノールの工業的な生産が可能となる。
However, a method using a relatively inexpensive ruthenium catalyst involves the catalytic reduction of 4- to rt-butylphenol in the presence of a ruthenium carbon catalyst in ethanol to convert up to 55% of 4- to rt-butylcyclohexanol into cis-4-. The only thing known is what can be obtained. Rhodium catalysts are expensive;
Moreover, in both of the above two examples, it is necessary to use a large amount of catalyst, and furthermore, the durability of the catalyst is poor, so that it cannot be used as a practical catalyst, and it is difficult to implement it on an industrial scale. However, since ruthenium metal is relatively inexpensive, if a method for producing a catalyst that has low-temperature activity, high selectivity, and durability can be found, it would be possible to find a method for producing a catalyst that is rich in cis-type. Industrial production of rt-butylcyclohexanol becomes possible.

本発明者はこのような実情を鑑み、ルテニウム触媒を用
いてシス型−4一ten−プチルシクロヘキサノールを
選択的に得ることを目的とし、特に触媒調製法を主体に
研究した結果、本発明を完成するに至った。
In view of these circumstances, the present inventor aimed to selectively obtain cis-41-ten-butylcyclohexanol using a ruthenium catalyst, and as a result of research focusing on catalyst preparation methods, the present invention was developed. It was completed.

本発明の要旨は、強アルカリ水溶液中でアルミナにルテ
ニウム塩を吸着させ、その後水素化ホウ素ナトリウム(
以下SBHと略称する)で還元し、さらに塩酸で処理す
ることによって得られるルテニウム触媒を用いて、4一
把rtーブチルフェノールを水素加圧下で還元し、シス
型異性体を多く含んだ4一te九ーブチルシクロヘキサ
/−ルを得るものである。
The gist of the present invention is to adsorb ruthenium salt onto alumina in a strong alkaline aqueous solution, and then adsorb sodium borohydride (
Using a ruthenium catalyst obtained by reducing with SBH (hereinafter abbreviated as SBH) and further treatment with hydrochloric acid, 4-rt-butylphenol was reduced under hydrogen pressure to produce 4-te containing a large amount of cis isomer. 9-butylcyclohexyl is obtained.

本発明方法に用いる触媒は、本願と同時に出願した発明
(侍磯昭53−141ぴ号,特開昭54一94491号
)によって得られるルテニウム触媒にさらに塩酸処理を
最後の仕上として施すことによって得られる。
The catalyst used in the method of the present invention is obtained by further subjecting the ruthenium catalyst obtained according to the invention filed at the same time as the present application (Samurai Iso Sho 53-141 P, JP 54-194491) to hydrochloric acid treatment as a final finish. It will be done.

この塩酸処理の効果は、触媒表面を酸性にすると同時に
担体表面の一部を溶解させ、触媒活性点を形成させるこ
とである。そのため、4−にrt−ブチルフェノールの
触媒表面への吸着姿勢を制御し、特に基質のヒドロキシ
ル基の触媒への接近を巧みに妨げる。その結果、触媒活
性点と基質の方向は常に一定となり、触媒上で活性化さ
れた水素は常に一定方向からのみ導入される。そのため
シス型異性体の生成割合が大中に増加するものと思われ
る。本発明の−実施態様として、まず用いる触媒の調製
法を示せば、水酸化ナトリウム水溶液にアルミナ担体を
懸濁させ、40〜60り0に昇温し、この中に塩化ルテ
ニウム水溶液を投入する。
The effect of this hydrochloric acid treatment is to make the catalyst surface acidic and at the same time dissolve a part of the carrier surface to form catalyst active sites. Therefore, the adsorption posture of 4-rt-butylphenol on the catalyst surface is controlled, and in particular, the approach of the hydroxyl group of the substrate to the catalyst is skillfully prevented. As a result, the direction of the catalyst active site and the substrate is always constant, and hydrogen activated on the catalyst is always introduced only from a constant direction. Therefore, it is thought that the proportion of cis isomers produced increases during the course of the experiment. As an embodiment of the present invention, the method for preparing the catalyst used is as follows: An alumina carrier is suspended in an aqueous sodium hydroxide solution, the temperature is raised to 40-600°C, and an aqueous ruthenium chloride solution is poured into the suspension.

約10分後にうわすみ液は透明になり、塩化ルテニウム
は水酸化ルテニウムとしてアルミナに完全に吸着され黒
色を呈する。次にSBHの水溶液を液温40〜80oo
とし、約1時間で滴下する。この際激しく水素ガスが発
生し、水酸化ルテニウムが完全な金属状態となるまで還
元する。還元終了後室温まで冷却する。このものをその
まま、または触媒洗液のpHが8〜9になるまで水洗し
た後、塩酸を加えて液のpHを2以下にして、いまらく
放置する。ついで充分水洗した後、110〜120oo
で乾燥したルテニウム担持アルミナ触媒を得る。4−t
enーブチルフェノールの水素化工程では、この触媒と
4一企rtーブチルフェノールを溶媒と共にオートクレ
ープに仕込み、水素初圧80kg/c舵、反応温度55
〜15000で水素化を行う。
After about 10 minutes, the glaze becomes transparent, and the ruthenium chloride is completely adsorbed to the alumina as ruthenium hydroxide, giving it a black color. Next, add an aqueous solution of SBH to a liquid temperature of 40 to 80 oo
and drip in about 1 hour. At this time, hydrogen gas is violently generated and the ruthenium hydroxide is reduced to a completely metallic state. After completion of reduction, cool to room temperature. This product is washed as it is, or after washing with water until the pH of the catalyst washing solution becomes 8 to 9, hydrochloric acid is added to bring the pH of the solution to 2 or less, and the solution is left to stand for a while. Then, after washing thoroughly with water, 110~120oo
to obtain a dried ruthenium-supported alumina catalyst. 4-t
In the hydrogenation process of en-butylphenol, this catalyst and 400ml rt-butylphenol were charged into an autoclave together with a solvent, and the initial hydrogen pressure was 80 kg/c and the reaction temperature was 55.
Hydrogenation is carried out at ~15,000 ℃.

水素化終了後、触媒を炉別し、ガスクロマトグラフィ−
で転化率およびシス体の選択性を確認する。シス体への
選択率は65〜70%である。本発明に用いる触媒の担
体はアルミナであるが、その形体はy体またはり体が好
ましい。
After hydrogenation, the catalyst was separated from the furnace and subjected to gas chromatography.
Confirm the conversion rate and selectivity of the cis isomer. The selectivity to the cis isomer is 65-70%. The carrier of the catalyst used in the present invention is alumina, and its shape is preferably a y-type or a polymer type.

他の形体のアルミナ、たとえば0体、Q体でも使用でき
るが、シス体への選択性が若干低下する。本発明の触媒
の調製時において用いるアルカリは、水酸化ナトリウム
、水酸化カリウムおよび水酸化リチウムからなる群より
選ばれる強塩基で、その使用量はアルミナに対して10
ないし4の重量パーセント用いることが好ましく、1の
重量パーセント以下ではルテニウム塩が完全にアルミナ
に吸着しない触媒の水洗時にコロイド化してメタルのロ
スを生じ、触媒の性能も低下する。4広重量パーセント
以上用いることは何ら支障はないが、不経済であるうえ
水洗回数が増加してしまい好ましくない。
Other forms of alumina, such as 0-form and Q-form, can also be used, but the selectivity to the cis-form is somewhat reduced. The alkali used in preparing the catalyst of the present invention is a strong base selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide, and the amount used is 10% based on the alumina.
It is preferable to use a weight percent of 1 to 4. If the ruthenium salt is less than 1 weight percent, the ruthenium salt will not be completely adsorbed on the alumina and will become colloidal when the catalyst is washed with water, resulting in loss of metal and deterioration of catalyst performance. Although there is no problem in using more than 4% by weight, it is uneconomical and increases the number of washings, which is not preferable.

塩基度の弱い炭酸水素ナトリウムあるいは炭酸ナトリウ
ムを用いてもよいが、ルテニウム塩のアルミナへの完全
な吸着は期特できない。本発明の触媒の調製時において
用いるルテニウム塩は、アルカリ金属水酸化水溶液中で
担体に水酸化ルテニウムとして吸着されるものであれば
どのようなものでもよいが、担体に完全に吸着される点
でとくに塩化ルテニウムが好適である。
Sodium bicarbonate or sodium carbonate, which has a weak basicity, may be used, but complete adsorption of the ruthenium salt onto alumina cannot be expected. The ruthenium salt used in the preparation of the catalyst of the present invention may be any salt as long as it can be adsorbed as ruthenium hydroxide on the carrier in an aqueous alkali metal hydroxide solution. Ruthenium chloride is particularly suitable.

本発明における触媒の調製に際し、担体にルテニウム塩
を吸着させる温度は40つ○以上が必要で、好ましくは
40ないし6000の範囲である。吸着温度が4000
以下では、ルテニウム塩の吸着速度が極めて遅くなり、
その間に吸着しないルテニウムの水酸化物が生じて沈殿
してしまい、一定した性能を有する触媒が得られにくい
。60qo以上の高温ではアルミナがアルカリ液に浸さ
れ、担体の役割を果さなくなる。
When preparing the catalyst in the present invention, the temperature at which the ruthenium salt is adsorbed onto the carrier must be 40 °C or higher, preferably in the range of 40 to 6,000 °C. Adsorption temperature is 4000
Below, the adsorption rate of ruthenium salt becomes extremely slow;
During this time, ruthenium hydroxide that is not adsorbed is generated and precipitated, making it difficult to obtain a catalyst with consistent performance. At high temperatures of 60 qo or more, alumina is immersed in the alkaline solution and no longer plays the role of a carrier.

さらに吸着温度が6000以上の場合は、ルテニウム塩
のアルミナへの吸着速度が大で、一部水酸化物の型で担
体に吸着しないまま沈降する場合があり、低温の際と同
様に一定品質の触媒が得られにくい。本発明の触媒調製
時において用いる還元剤は、SBHで、使用量はルテニ
ウム金属に対し重量で1.0ないし2.び音である。
Furthermore, when the adsorption temperature is 6,000 or higher, the rate of adsorption of ruthenium salts onto alumina is high, and some hydroxides may settle without being adsorbed to the carrier, resulting in a constant quality of ruthenium salts as at low temperatures. Catalyst is difficult to obtain. The reducing agent used in the preparation of the catalyst of the present invention is SBH, and the amount used is 1.0 to 2.0% by weight relative to ruthenium metal. It is a loud sound.

1.折音以下では未還元の水酸化ルテニウムが残る危険
があり、2.0倍以上用いることは何ら支障ないが不経
済であると同時に水洗回数の増加をまねく。
1. There is a danger that unreduced ruthenium hydroxide will remain if the amount is less than 2.0 times, and although there is no problem in using more than 2.0 times, it is uneconomical and at the same time increases the number of washings.

本発明の方法で得られたルテニウム触媒は0.01なし
、し0.Z重量%のホウ素を含有し、これがルテニウム
金属との相互作用で触媒性能を向上させる要因のひとつ
になっている。
The ruthenium catalyst obtained by the method of the present invention has 0.01% and 0.01%. It contains Z% by weight of boron, which is one of the factors that improves catalyst performance through interaction with ruthenium metal.

SBHによる還元は40ないし7020で実施される。
この際40q○以下では還元速度が遅く、70oC以上
では還元速度が大で、水素ガスの発生が激しく、充分活
用されないまま系外に逃げてしまうおそれがある。本発
明の触媒の調製に際し、最後の仕上げとして塩酸処理さ
れるが、塩酸を用いる限りその濃度は限定まれず触媒自
身のpHが1ないし5.7になれば目的を達成すること
が可能である。
Reduction with SBH is carried out at 40-7020.
At this time, the reduction rate is slow at 40q° or less, and the reduction rate is high at 70oC or higher, resulting in intense hydrogen gas generation, which may escape from the system without being fully utilized. When preparing the catalyst of the present invention, it is treated with hydrochloric acid as a final finishing touch, but the concentration is not limited as long as hydrochloric acid is used, and the purpose can be achieved as long as the pH of the catalyst itself is between 1 and 5.7. .

ここでいう触媒のPHとは当該触媒1夕を水50地中で
1粉ご間燈拝したときの液のpHをいう。この塩酸処理
を施さないルテニウム触媒でも水素化能力を有している
が、シス型異性体への選択率は45〜55%である。本
発明の触媒中のルテニウム含有率は0.1ないし5重量
%が好ましいが、特に限定されるものではない。4−企
rtーブチルフェノールの水素化時の反応圧力は特に限
定されず常圧でも水素化されるが、最適条件は40なし
、し80k9/めである。
The pH of the catalyst here refers to the pH of the liquid obtained when one ounce of the catalyst is immersed in 50 liters of water underground. Although this ruthenium catalyst without hydrochloric acid treatment has hydrogenation ability, the selectivity to the cis isomer is 45 to 55%. The ruthenium content in the catalyst of the present invention is preferably 0.1 to 5% by weight, but is not particularly limited. The reaction pressure during hydrogenation of 4-tert-butylphenol is not particularly limited, and hydrogenation can be carried out at normal pressure, but the optimum conditions are 40 to 80 k9/m.

水素化は無溶媒でも実施可能であるが、操作上メタノー
ル、エタノール、イソプロ/ぐノール、シクロヘキサン
、ジオキサン、テトラヒドロフランなどの溶媒が使用さ
れる。水素化の反応温度は55〜1550qoが好まし
い。本発明方法によって4一tenーブチルフェノール
を水素化することによって、シス型−4一にrt−ブチ
ルシクロヘキサノールが選択率65〜70%で得られる
が、本発明方法は核水素化後にシス・トランス構造をと
りうるフェノール化合物、たとえば2一企rt−ブチル
フエノール、1,4−ジエタノールベンゼンなどの化合
物の核水素化にも応用が可能である。
Although hydrogenation can be carried out without a solvent, a solvent such as methanol, ethanol, isopro/gnol, cyclohexane, dioxane, or tetrahydrofuran is used for operational reasons. The hydrogenation reaction temperature is preferably 55 to 1550 qo. By hydrogenating 4-ten-butylphenol according to the method of the present invention, rt-butylcyclohexanol can be obtained in the cis-4-1 with a selectivity of 65 to 70%. It can also be applied to the nuclear hydrogenation of phenolic compounds that can have different structures, such as 21-rt-butylphenol and 1,4-diethanolbenzene.

さらに本発明を実施例により詳細に説明する。Further, the present invention will be explained in detail with reference to Examples.

実施例 1粒径60仏のy−アルミナ980夕を水50
00机に入れ、さらに20%水酸化ナトリウム水溶液1
500泌を加え室温で30分蝿拝した。
Example: 1 particle size: 60 mm Y-alumina: 980 mm, water: 50 mm
00, and then add 20% sodium hydroxide aqueous solution 1
500 ml of secretion was added and incubated at room temperature for 30 minutes.

液温を4000に昇温しルテニウム金属として20夕を
含有する塩化ルテニウム水溶液3000の‘を投入した
。40〜60qoで1時間櫨拝しながら吸着を完了させ
、ついでSBH40夕を含有する希アルカリ水溶液10
00Mを液温55〜70ooで1時間を要して連続投入
し還元を終了した。
The liquid temperature was raised to 4,000 °C, and 3,000 °C of a ruthenium chloride aqueous solution containing 20 °C as ruthenium metal was introduced. 40 to 60 qo to complete the adsorption for 1 hour, and then add a dilute alkali aqueous solution containing 40 qo of SBH 10
00M was continuously added over a period of 1 hour at a liquid temperature of 55 to 70 oo to complete the reduction.

さらに36%塩酸溶液100の【を加え、30分間室温
で境拝した後遠心分離機を用いて炉過しながら5000
の‘の水で洗浄した。その後1100Cの温風乾燥機で
10時間乾燥して、998夕の2%担持ルテニウム−y
−アルミナ触媒を得た。この触媒を分析したところ、ル
テニウムを1.9丸重量%、ホウ素を0.0塁重量%含
有していた。またこの触媒1夕を50叫中に加え1び分
間燭拝したときの液のpHは3.2であった。この触媒
1夕を4一teれ−プチルフェノール15夕と30の‘
のイソプロパノールとともにオートクレープに仕込み、
水素圧力80k9/地、反応温度60〜80で水素化を
行った。水素化終了後に触媒を吸引し、減圧でィソプロ
パノールを除去し、15.0夕の白色の4−ten−ブ
チルシクロヘキサノールを得た。ガスクロマトグラフ分
析の結果、4−tertーブチルシクロヘキサノール中
の異性体割合は、シス体68%、トランス体32%であ
った。次に回収した触媒をそのまま次の水素化に用い同
様の条件下でくり返し使用した。合計7回までくり返し
た結果、第1表のような結果が得られた。第 1 表 比較例 1 市販の5%担持ルテニウムーッーアルミナ触媒1夕を用
い実施例1に準じ、4一teれーブチルフェノールの水
素化を行った。
Furthermore, 100% of 36% hydrochloric acid solution was added, and after stirring at room temperature for 30 minutes, 5000
Washed with water. After that, it was dried in a hot air dryer at 1100C for 10 hours, and the 2% supported ruthenium-y
- An alumina catalyst was obtained. Analysis of this catalyst revealed that it contained 1.9% by weight of ruthenium and 0.0% by weight of boron. Further, when one ounce of this catalyst was added to 50 liters of water and allowed to stand for 1 minute, the pH of the solution was 3.2. Take 1 hour of this catalyst, 4 hours of butylphenol, 15 hours of butylphenol and 30 minutes of
Put it in an autoclave with isopropanol,
Hydrogenation was carried out at a hydrogen pressure of 80 k9/kg and a reaction temperature of 60 to 80 °C. After the hydrogenation was completed, the catalyst was suctioned off and the isopropanol was removed under reduced pressure to obtain 15.0 g of white 4-ten-butylcyclohexanol. As a result of gas chromatography analysis, the isomer ratio in 4-tert-butylcyclohexanol was 68% cis isomer and 32% trans isomer. Next, the recovered catalyst was directly used for the next hydrogenation and used repeatedly under the same conditions. As a result of repeating the process a total of seven times, the results shown in Table 1 were obtained. Table 1 Comparative Example 1 4-te-butylphenol was hydrogenated in the same manner as in Example 1 using a commercially available 5% ruthenium-alumina catalyst.

水素吸収は118qoから始まった。118〜140q
oで80分で水素化は終了した。
Hydrogen absorption started at 118 qo. 118-140q
Hydrogenation was completed in 80 minutes at 0.

水素化終了後ガスクロマトグラフ分析で、シス体とトラ
ンス体の割合を測定したところ、シス体50.3%、ト
ランス体49.7%であった。なお使用した市販触媒の
pHは6.3であった。比較例 2 市販の5%担持ロジウム−y−アルミナ触媒1夕を用い
、実施例1に準じて4−ten−ブチルフェノールの水
素化を行った。
After the hydrogenation was completed, the ratio of the cis isomer to the trans isomer was measured by gas chromatography, and the ratio was 50.3% for the cis isomer and 49.7% for the trans isomer. Note that the pH of the commercially available catalyst used was 6.3. Comparative Example 2 4-ten-butylphenol was hydrogenated according to Example 1 using a commercially available 5% supported rhodium-y-alumina catalyst.

水素吸収は120午0から始まった。120〜13がC
で水素化したところ28分で水素化は終了した。
Hydrogen absorption started at 120:00. 120-13 is C
Hydrogenation was completed in 28 minutes.

ガスクロマトグラフ分析の結果、シス体とトランス体の
割合を測定したところ、シス体70.3%、トランス体
29.3%であった。比較例 3市販の5%担持ルテニ
ウム−炭素触媒1夕を用い、実施例1に準じて4一te
九一ブチルフェノ−ルを水素化したところ、水素吸収は
14か0から始まった。
As a result of gas chromatography analysis, the ratio of the cis isomer to the trans isomer was measured, and it was found that the cis isomer was 70.3% and the trans isomer was 29.3%. Comparative Example 3 A commercially available 5% supported ruthenium-carbon catalyst was used for 4 hours according to Example 1.
When 91-butylphenol was hydrogenated, hydrogen absorption started from 14 to 0.

Claims (1)

【特許請求の範囲】 1 4−tert−ブチルフエノールをルテニウ触媒の
存在下に接触還元してシス型−4−tert−ブチルシ
クロヘキサノールを製造するに際し、(1) アルミナ
を担体として用い、そのアルミナをアルカリ金属水酸化
物水溶液中に懸濁させる工程(2) その懸濁液中にル
テニウム塩水溶液を加えて水酸化ルテニウムとしてアル
ミナに吸着させる工程(3) その水酸化ルテニウムを
水素化ホウ素ナトリウムで還元する工程(4) さらに
得られたものを塩酸で処理する工程からなる方法により
得たルテニウム触媒を用に4−tert−ブチルフエノ
ールを水素化することを特徴とする、シス型−4−te
rt−ブチルシクロヘキサノールの製造方法。 2 触媒調製時のアルミナがγ−アルミナである特許請
求の範囲第1項記載の方法。 3 触媒調製時のアルカリ金属水酸化物が、ナトリウム
、カリウムおよびリチウムからなる群より選ばれる少な
くとも1種のアルカリ金属の水酸化物である特許請求の
範囲第1項記載の方法。 4 触媒調製のルテニウム塩が塩化ルテニウムである特
許請求の範囲第1項記載の方法。 5 前記触媒中のホウ素含有率が0.01ないし0.2
重量%である特許請求の範囲第1項記載の方法。
[Claims] 1. When producing cis-4-tert-butylcyclohexanol by catalytic reduction of 4-tert-butylphenol in the presence of a ruthenium catalyst, (1) alumina is used as a carrier; Step (2) of suspending ruthenium in an aqueous alkali metal hydroxide solution; Step (3) of adding a ruthenium salt aqueous solution to the suspension and adsorbing the ruthenium hydroxide on alumina as ruthenium hydroxide; (3) suspending the ruthenium hydroxide with sodium borohydride; Step (4) of reducing cis-4-te, which is characterized by hydrogenating 4-tert-butylphenol using a ruthenium catalyst obtained by a method comprising a step of further treating the obtained product with hydrochloric acid.
Method for producing rt-butylcyclohexanol. 2. The method according to claim 1, wherein the alumina used in preparing the catalyst is γ-alumina. 3. The method according to claim 1, wherein the alkali metal hydroxide used in preparing the catalyst is a hydroxide of at least one alkali metal selected from the group consisting of sodium, potassium, and lithium. 4. The method according to claim 1, wherein the ruthenium salt for preparing the catalyst is ruthenium chloride. 5 The boron content in the catalyst is 0.01 to 0.2
% by weight.
JP53001411A 1978-01-10 1978-01-10 Method for producing cis-4-tert-butylcyclohexanol Expired JPS6034526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53001411A JPS6034526B2 (en) 1978-01-10 1978-01-10 Method for producing cis-4-tert-butylcyclohexanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53001411A JPS6034526B2 (en) 1978-01-10 1978-01-10 Method for producing cis-4-tert-butylcyclohexanol

Publications (2)

Publication Number Publication Date
JPS5495546A JPS5495546A (en) 1979-07-28
JPS6034526B2 true JPS6034526B2 (en) 1985-08-09

Family

ID=11500735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53001411A Expired JPS6034526B2 (en) 1978-01-10 1978-01-10 Method for producing cis-4-tert-butylcyclohexanol

Country Status (1)

Country Link
JP (1) JPS6034526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69009682T2 (en) * 1989-11-13 1994-10-06 Firmenich & Cie Process for the preparation of cyclohexanol derivatives.

Also Published As

Publication number Publication date
JPS5495546A (en) 1979-07-28

Similar Documents

Publication Publication Date Title
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
SA97180232B1 (en) VINYL PALLADIUM GOLD ACETATE A gold palladium catalyst for the production of vinyl acetate
JPH01146837A (en) Method for dehydrating cyclohexenone
JPH0513703B2 (en)
JPS6059215B2 (en) Process for producing cyclohexene from benzene
JPS6034526B2 (en) Method for producing cis-4-tert-butylcyclohexanol
CA1132966A (en) Supported nickel catalysts and process for their preparation
JPS622849B2 (en)
JPH03173842A (en) Preparation of 4-t-butyl-cyclohexanol and catalyst for its preparation
CN108187670B (en) Palladium catalyst loaded with hydroxyl activated carbon and preparation method thereof
CN106964385B (en) It is used to prepare the carrier-free copper bismuth catalyst and preparation method thereof of 1,4- butynediols
US3749681A (en) Catalyst for selective hydrogenation of polyunsaturated vegetable oils
JP2002544252A5 (en)
US4174300A (en) Preparation of highly active copper-silica catalysts
WO1995016014A1 (en) A process for the interesterification of triglycerides
CN111841557A (en) Catalyst for producing 1, 4-butynediol and preparation method thereof
JP3046862B2 (en) Method for producing di- (4-aminocyclohexyl) -methane containing 15 to 25% by weight of trans-trans isomer
CA1159849A (en) Method for the preparation of a pure alkali metal benzoate besides benzyl alcohol
JP3143744B1 (en) Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst
US5245082A (en) Process for the production of di-(4-aminocyclohexyl)-methane containing 15 to 25% by weight of the trans-trans isomer
JP3463251B2 (en) Method for producing 4-tert-butylcyclohexanol
CN109621933B (en) Cocatalyst for isomerization synthesis of adamantane
JP4282153B2 (en) Method for producing diol mixture
JPH07118187A (en) Hydrogenation of organic carboxylic acid and/or carboxylic ester
JP3800254B2 (en) Hydrogenation catalyst used for hydrogen peroxide production