JPS63178517A - Photo excitation reaction apparatus - Google Patents

Photo excitation reaction apparatus

Info

Publication number
JPS63178517A
JPS63178517A JP1053387A JP1053387A JPS63178517A JP S63178517 A JPS63178517 A JP S63178517A JP 1053387 A JP1053387 A JP 1053387A JP 1053387 A JP1053387 A JP 1053387A JP S63178517 A JPS63178517 A JP S63178517A
Authority
JP
Japan
Prior art keywords
gas
substrate
light
plasma
reaction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1053387A
Other languages
Japanese (ja)
Inventor
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1053387A priority Critical patent/JPS63178517A/en
Publication of JPS63178517A publication Critical patent/JPS63178517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute surface treatment of substrate by forming a plasma, as a light source, by applying a microwave power and magnetic field higher than the electron cyclotron resonance (ECR) condition, providing an optical reflector and decomposing the second gas with optical excitation. CONSTITUTION:The microwave and magnetic field higher than the ECR condition are applied with a coil 4 into the apparatus 1. A second gas inlet port 8 and a substrate 3 are arranged within the same case as that forming the plasma of ECR discharge. A first gas is kept at 10<-6>-10<-4> Torr and is then introduced 2 and the sufficient vacuum ultraviolet beam is obtained from the plasma of ECR discharge and the substrate 3 is irradiated with such beam by selecting the waveform and reflecting 9 the beam with a concave mirror or diffraction grating. A second gas which does not react with the first gas is introduced 8, a CVD thin film is formed on the substrate 3 or the etching is carried out. Since the vacuum ultraviolet beam is not caused to pass through the phototransmitting window, the beam effectively excites the second gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を利用して基板上に薄膜形成またはエツチ
ング等の表面処理を行なう光励起反応装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photoexcitation reaction device that utilizes light to form a thin film on a substrate or perform surface treatment such as etching.

従来の技術 従来の光励起反応装置としては1例えば特開昭60−2
02928号公報に示されている。以下薄膜形成につい
て述べる。
2. Prior Art Conventional photoexcitation reaction devices include 1, for example, JP-A-60-2
It is shown in the No. 02928 publication. Thin film formation will be described below.

第3図は、従来の光励起反応装置の断面図を示すもので
あり、3は基板、4は磁場コイルである。
FIG. 3 shows a cross-sectional view of a conventional photoexcitation reaction device, where 3 is a substrate and 4 is a magnetic field coil.

5は第2ガスを光エネルギーによって励起させて基板4
上に薄膜形成させる反応室である。6はマイクロ波と磁
場コイルによる磁場によって形成されたプラズマを光エ
ネルギーの光源にする発光部である。7は発光部6で得
た光エネルギーを反応室5に透過させる光透過窓である
。光透過7は、真空紫外光を透過できるようにアルカリ
土類金属。
5 is a substrate 4 by exciting the second gas with light energy.
This is a reaction chamber in which a thin film is formed on top. Reference numeral 6 denotes a light emitting unit that uses plasma formed by microwaves and a magnetic field generated by a magnetic field coil as a light source of optical energy. Reference numeral 7 denotes a light transmitting window that transmits the light energy obtained from the light emitting section 6 into the reaction chamber 5. Light transmittance 7 is an alkaline earth metal that allows vacuum ultraviolet light to pass through.

アルカリ金属のフッ化物を用いる。Using an alkali metal fluoride.

発光部6において、第1ガスをマイクロ波電力と磁場と
くに電子サイクロトロン共鳴(以T EGRと略す)を
満たす磁場によって励起されて、第1ガスの高励起のE
CR放電のプラズマが形成される。前記プラズマを光源
として1反応室5に導入された第2ガスを励起させて基
板4上に薄膜形成を行なう。そして、薄膜形成するだめ
のCVD用ガスやエツチング性ガスは、18Qnm以下
の真空紫外光によって励起されるため1発光部6は真空
紫外光を発生するKCR放電のプラズマによって行なう
。モノシランガスを用いたアモルファスシリコン膜の形
成する場合、第1ガスにキセノン。
In the light emitting section 6, the first gas is excited by microwave power and a magnetic field, particularly a magnetic field that satisfies electron cyclotron resonance (hereinafter abbreviated as TEGR), and the highly excited E of the first gas is excited.
A CR discharge plasma is formed. A thin film is formed on the substrate 4 by exciting the second gas introduced into one reaction chamber 5 using the plasma as a light source. Since the CVD gas and etching gas used to form a thin film are excited by vacuum ultraviolet light of 18 Qnm or less, the first light emitting section 6 uses plasma from a KCR discharge that generates vacuum ultraviolet light. When forming an amorphous silicon film using monosilane gas, xenon is used as the first gas.

第2ガスとしてモノシランガスを用い、第1ガスのガス
圧を10−1〜1σ’TOrr、  基板温度を200
°Cにさせて基板3上に良質なアモルファスシリコン膜
を形成されていた。
Monosilane gas was used as the second gas, the gas pressure of the first gas was 10-1 to 1σ'TOrr, and the substrate temperature was 200°C.
℃, a high quality amorphous silicon film was formed on the substrate 3.

発明が解決しようとする量定点 しかしながら上記のような構成では、発光部6で発生し
た真空紫外光によって反応室6に面した光透過窓7の表
面でも反応が起こり、薄膜を形成されてしまう。その結
果、せっかく発生部6で得た真空紫外光を光透過窓7で
吸収されてしまい。
However, in the above configuration, the vacuum ultraviolet light generated in the light emitting section 6 causes a reaction on the surface of the light transmission window 7 facing the reaction chamber 6, resulting in the formation of a thin film. As a result, the vacuum ultraviolet light obtained from the generating section 6 is absorbed by the light transmission window 7.

真空紫外光が基板3に到達しなくなってしまうという問
題点があった。
There was a problem in that the vacuum ultraviolet light did not reach the substrate 3.

本発明はかかる点に鑑み、 1!:C1(放電によるプ
ラズマを光源とし、光源で発生した光エネルギーを効率
よくガスの励起に使い、励起されたガスによって基板の
表面処理を行なう光励起反応装置を提供することを目的
とする。
In view of these points, the present invention has the following features: 1! :C1 (The object of the present invention is to provide a photoexcitation reaction device that uses plasma generated by discharge as a light source, efficiently uses the light energy generated by the light source to excite gas, and performs surface treatment of a substrate using the excited gas.

問題点を解決するための手段 本発明は、マイクロ波電力とEOR条件以上の磁場を印
加して第1ガスのECR放電を起こし。
Means for Solving the Problems The present invention applies microwave power and a magnetic field higher than the EOR condition to cause ECR discharge of the first gas.

ECR放電を光源とし、前記光源と同一容器内に基板と
第2ガス導入口を備え、前記光源より放射される光の光
路を変える光反射器を備え、望ましくは第1ガスのガス
圧を10” 〜1 o−”rorr iCした光励起反
応装置である。
ECR discharge is used as a light source, a substrate and a second gas inlet are provided in the same container as the light source, and a light reflector is provided to change the optical path of the light emitted from the light source. This is a photoexcited reaction device with ~1 o-”rorr iC.

作用 本発明は、マイクロ波と[R条件以上の磁場を印加して
第1ガスのEORプラズマを形成し、このECRプラズ
マを光源、とくに真空紫外光の光源とし、このECRプ
ラズマと同一容器に基板と第2ガス導入口を配置したも
のである。まず。
Effect of the present invention is to form an EOR plasma of a first gas by applying microwaves and a magnetic field equal to or higher than the [R condition, use this ECR plasma as a light source, particularly a vacuum ultraviolet light source, and place a substrate in the same container as this ECR plasma. and a second gas inlet. first.

ECRプラズマによる真空紫外光の発生例として水素原
子のライマン系列の発光をみると(91,2〜122.
5 nm) 、水素原子数10110−1度で水素原子
自身がライマン系列の発光を吸収する自己吸収の吸収断
面積σは1X 1o−12crilと非常に大きい。
As an example of the generation of vacuum ultraviolet light by ECR plasma, we can look at the Lyman series emission of hydrogen atoms (91, 2-122.
5 nm), the absorption cross section σ of self-absorption where the hydrogen atom itself absorbs Lyman series light emission at a hydrogen atom number of 10110-1 degrees is as large as 1×10-12 cril.

ゆえに1o−1〜1σ’TorrにおけるECR放電で
も1発生したライマン系列の真空紫外光は、吸収係数3
〜3 X 103cM−’ と大きいため殆んど吸収さ
れてしまう。ゆえに薄膜形成に必要な真空紫外光を得る
ため大口径で大容量の放電空間を反応室と別に設ける必
要がある。また、放電空間と反応室とを分け、真空紫外
光を透過させる光透過窓も必要である。
Therefore, the Lyman series vacuum ultraviolet light generated even in ECR discharge at 1o-1 to 1σ' Torr has an absorption coefficient of 3.
Since it is large at ~3 x 103 cM-', most of it is absorbed. Therefore, in order to obtain the vacuum ultraviolet light necessary for thin film formation, it is necessary to provide a large-diameter, large-capacity discharge space separately from the reaction chamber. Furthermore, a light transmitting window is also required that separates the discharge space from the reaction chamber and allows vacuum ultraviolet light to pass therethrough.

しかし、本発明者らの実験によると第1ガスの水素ガス
のガス圧を10−6〜1σ’ Torrすると、吸収係
数は3〜3 X I Q−2ffl−”となり、薄膜形
成に十分な真空紫外光を得ることができた。このため同
一容器内に基板と第2ガス導入口を設けることが可能に
なった。
However, according to experiments conducted by the present inventors, when the gas pressure of hydrogen gas as the first gas is 10-6 to 1σ' Torr, the absorption coefficient becomes 3 to 3 It was possible to obtain ultraviolet light.This made it possible to provide the substrate and the second gas inlet in the same container.

実施例 第1図に本発明の一実施例の装置の概略図を示す。1は
装置本体、2は第1ガス導入口、3は基板、4は磁場コ
イル、8は第2ガス導入口、9は光反射器である。
Embodiment FIG. 1 shows a schematic diagram of an apparatus according to an embodiment of the present invention. 1 is a main body of the apparatus, 2 is a first gas inlet, 3 is a substrate, 4 is a magnetic field coil, 8 is a second gas inlet, and 9 is a light reflector.

装置1内にマイクロ波(2,45Gl(z )とECl
R条件(マイクロ波周波数f0= 2.45GIIZの
場合、磁場強度B。= 0.0875 T )以上の磁
場を磁場コイル4で印加した。第2ガス導入口8と基板
3をECR放電のプラズマの形成される容器と同一容器
の装置1内に配置した。
Microwave (2,45Gl(z) and ECl
A magnetic field equal to or higher than the R condition (in the case of microwave frequency f0 = 2.45 GIIZ, magnetic field strength B = 0.0875 T) was applied by the magnetic field coil 4. The second gas inlet 8 and the substrate 3 were arranged in the device 1 in the same container as the container in which plasma of ECR discharge is formed.

そして、ECR放電のプラズマから放射される光エネル
ギーの光路を変える光反射器9によって。
and by a light reflector 9 which changes the optical path of the light energy emitted from the plasma of the ECR discharge.

光路を変えて基板3に光エネルギーを入射させた。Optical energy was made incident on the substrate 3 by changing the optical path.

以上のような構成にして、第1ガス導入口2より水素ガ
スを導入して、KCR放電を起こし水素ガス圧1o−6
〜1σ’ Torr  まで変化させた時のライマン系
列の真空紫外光(121nm)の光量を第2図に示す。
With the above configuration, hydrogen gas is introduced from the first gas inlet 2 to cause KCR discharge and the hydrogen gas pressure is 1o-6.
FIG. 2 shows the amount of Lyman series vacuum ultraviolet light (121 nm) when changing it to ~1σ' Torr.

このように第1ガスのガス圧をI Q”−6〜I Q−
’ TorrにするにJ:、 ッテ、 十分子Z真空紫
外光を得ることができる。この真空紫外光を利用してア
モルファスシリコン膜の形成について以下に述べる。
In this way, the gas pressure of the first gas is
'Torr J:, it is enough to obtain Z vacuum ultraviolet light. The formation of an amorphous silicon film using this vacuum ultraviolet light will be described below.

第1ガスに重水素(D2)、第2ガスて水素(H2)を
含むモノシランガス(SiH4)を用いた。
Deuterium (D2) was used as the first gas, and monosilane gas (SiH4) containing hydrogen (H2) was used as the second gas.

重水素ガスのガス圧を5 X 1o−5Torr 、モ
ノシランガスのガス圧を2 X 10 ’Torr、マ
イクロ波パワーを200Wとした。このようにして基板
加熱なしに基板3上にアモルファスシリコン膜に形成し
た。堆積速度は250人/min程度であった。
The gas pressure of deuterium gas was 5×10-5 Torr, the gas pressure of monosilane gas was 2×10'Torr, and the microwave power was 200W. In this way, an amorphous silicon film was formed on the substrate 3 without heating the substrate. The deposition rate was about 250 people/min.

従来例と本実施例との比較を第1表に示す。Table 1 shows a comparison between the conventional example and this example.

第  1  表 本発明の装置は、光透過窓7や基板加熱せずに薄膜形成
を可能にした。
Table 1 The apparatus of the present invention made it possible to form a thin film without heating the light transmission window 7 or the substrate.

なお、実施例においては、アそルア1スシリコン膜の形
成を行ったが、第2ガスとして少なくとも1種類のエツ
チング性のガスを用いて基板表面のエツチングをしても
よく、また第2ガス導入口を2本以上用いて多皿類のガ
スで表面処理を行ってもよい。また、第1ガスとしてこ
こでは、重水素ガスを用いたが、第2ガスと反応せず真
空紫外光をECR放電で励起できるものであれば何でも
よい。ECU条件以上の磁場を発生させる手段として磁
場コイルを用いたが磁石等でもよい。また磁場分布にし
ても、ミラー形でもカスブ形でもよく、ECR条件以上
満たす磁場分布であれば、何でもよい。
In the example, an alurous silicon film was formed, but the substrate surface may be etched using at least one kind of etching gas as the second gas. Surface treatment may be performed using gas from multiple plates using two or more inlets. Furthermore, although deuterium gas is used here as the first gas, any gas may be used as long as it does not react with the second gas and can excite vacuum ultraviolet light by ECR discharge. Although a magnetic field coil is used as a means for generating a magnetic field higher than the ECU conditions, a magnet or the like may also be used. Further, the magnetic field distribution may be of a mirror type or a cusp type, and any magnetic field distribution that satisfies the ECR condition or more may be used.

なお、光反射器は、真空紫外光を反射できるものであれ
ば、形状、材料は何でもよい。また光反射器を凹面鏡に
した場合でも同様に形状、材料は何でもよく基板上に真
空紫外光を集光するものであればよい。光反射器に回折
格子を用いた場合も同様である。
Note that the light reflector may be of any shape and material as long as it can reflect vacuum ultraviolet light. Further, even when the light reflector is a concave mirror, the shape and material may be any shape as long as it can condense vacuum ultraviolet light onto the substrate. The same applies when a diffraction grating is used as a light reflector.

さらに光反射器に回折格子を複数用いた場合。Furthermore, when multiple diffraction gratings are used as a light reflector.

複数の種類のガスを第2ガス導入口より導入させて、そ
れぞれのガスの励起を効率よく行なうことも含む。
It also includes introducing a plurality of types of gases through the second gas inlet to efficiently excite each gas.

また、KCRプラズマから基板に到る方向の反対側に反
射することができる機構を有することによってより有効
的に真空紫外光を利用できる。
Further, by having a mechanism that can reflect the light in the direction opposite to the direction from the KCR plasma to the substrate, vacuum ultraviolet light can be used more effectively.

発明の効果 以上のように本発明は、ECRプラズマを真空紫外光の
光源として、IcRプラズマと同一容器内に基板とガス
導入口を配置し、真空紫外光の光路を変え、基板上に真
空紫外光を入射させる光反射器を備えたことによってE
CRプラズマで得た真空紫外光を光透過窓なしに導入ガ
スに吸収励起させて、基板表面の処理を行なう優れた効
果を有するものである。さらに、光反射器によって。
Effects of the Invention As described above, the present invention uses ECR plasma as a light source of vacuum ultraviolet light, arranges a substrate and a gas inlet in the same container as IcR plasma, changes the optical path of vacuum ultraviolet light, and emits vacuum ultraviolet light onto the substrate. By being equipped with a light reflector that allows light to enter, E
The vacuum ultraviolet light obtained by CR plasma is absorbed and excited by the introduced gas without a light transmission window, and has an excellent effect of processing the substrate surface. Additionally, by light reflectors.

KCRプラズマからのイオンによる基板表面へのダメー
ジをなくすこともできる効果を有し1本発明の工業的価
値は高い。
The industrial value of the present invention is high because it has the effect of eliminating damage to the substrate surface caused by ions from the KCR plasma.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置の断面概略図、第2図
は水素ガス圧と光量との関係を示しだ図、第3図は従来
の光励起反応装置の断面概略図である。 1・・・・・装置本体、2・・・・・・第1ガス導入口
、3・・・・・・基板、4・・・・・・磁場コイル、5
・・・・・・反応室、6・・・・・発光部、7・・・・
・・光透過窓、8・・・・・・第2ガス導入口。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名J−
基販 4− 月1湯コイ2し 第 1 図       8− 箱ど汝゛ス尊入ロ第2
図 水素カース圧 (Tbどr) 第3図
FIG. 1 is a schematic cross-sectional view of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between hydrogen gas pressure and light amount, and FIG. 3 is a schematic cross-sectional view of a conventional photoexcitation reaction apparatus. DESCRIPTION OF SYMBOLS 1...Device body, 2...First gas inlet, 3...Substrate, 4...Magnetic field coil, 5
...Reaction chamber, 6...Light emitting section, 7...
...Light transmission window, 8...Second gas inlet. Name of agent: Patent attorney Toshio Nakao and one other person J-
Basic Sales 4- Monthly 1 hot water carp 2 Part 1 Figure 8- Box for your respect Part 2
Figure Hydrogen Curse Pressure (Tbdr) Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)マイクロ波電力と前記マイクロ波の周波数で決ま
る電子サイクロトロン共鳴(ECR)条件を満たす磁場
強度以上の磁場を印加して、少なくとも一種類の第1ガ
スのプラズマを形成し、前プラズマの光エネルギーを光
源として用い、前記光源と同一容器内に基板と少なくと
も一種類の第2ガスを導入する導入口を供え、前記光源
より放射された光の光路を変える少なくとも1つの光反
射器を供え、前記光エネルギーによって前記第2ガスを
光励起分解して、前記基板の表面処理を行うことを特徴
とする光励起反応装置。
(1) Form a plasma of at least one type of first gas by applying a magnetic field greater than or equal to the magnetic field intensity that satisfies the electron cyclotron resonance (ECR) conditions determined by the microwave power and the frequency of the microwave, and generate the pre-plasma light. using energy as a light source, providing an inlet for introducing the substrate and at least one type of second gas into the same container as the light source, and providing at least one light reflector for changing the optical path of the light emitted from the light source; A photoexcitation reaction device characterized in that the second gas is photoexcited and decomposed by the light energy to perform surface treatment of the substrate.
(2)第1ガスのガス圧を10^−^6〜10^−^4
Torrにすることを特徴とする特許請求の範囲第1項
記載の光励起反応装置。
(2) Set the gas pressure of the first gas to 10^-^6 to 10^-^4
2. The photoexcitation reaction device according to claim 1, wherein the photoexcitation reaction device is set to Torr.
(3)第2ガスにCVD用ガスを用いて、基板の表面処
理を基板への薄膜形成にしたことを特徴とする特許請求
の範囲第1項記載の光励起反応装置。
(3) The photoexcitation reaction device according to claim 1, wherein a CVD gas is used as the second gas, and the surface treatment of the substrate is performed to form a thin film on the substrate.
(4)第2ガスにエッチング性ガスを用いて、基板の表
面処理を、基板へのエッチングにしたことを特徴とする
特許請求の範囲第1項記載の光励起反応装置。
(4) The photoexcitation reaction device according to claim 1, wherein the surface treatment of the substrate is performed by etching the substrate by using an etching gas as the second gas.
(5)第1ガスとして第2ガスと反応しないガスを用い
たことを特徴とする特許請求の範囲第1項記載の光励起
反応装置。
(5) The photoexcitation reaction device according to claim 1, wherein a gas that does not react with the second gas is used as the first gas.
(6)光反射器に凹面鏡を用いたことを特徴とする特許
請求の範囲第2項記載の光励起反応装置。
(6) The photoexcitation reaction device according to claim 2, characterized in that a concave mirror is used as the light reflector.
(7)光反射器に回折格子を用いて、光源の波長を選択
できることを特徴とする特許請求の範囲第2項記載の光
励起反応装置。
(7) The photoexcitation reaction device according to claim 2, characterized in that the wavelength of the light source can be selected by using a diffraction grating for the light reflector.
JP1053387A 1987-01-20 1987-01-20 Photo excitation reaction apparatus Pending JPS63178517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053387A JPS63178517A (en) 1987-01-20 1987-01-20 Photo excitation reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053387A JPS63178517A (en) 1987-01-20 1987-01-20 Photo excitation reaction apparatus

Publications (1)

Publication Number Publication Date
JPS63178517A true JPS63178517A (en) 1988-07-22

Family

ID=11752900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053387A Pending JPS63178517A (en) 1987-01-20 1987-01-20 Photo excitation reaction apparatus

Country Status (1)

Country Link
JP (1) JPS63178517A (en)

Similar Documents

Publication Publication Date Title
US5803974A (en) Chemical vapor deposition apparatus
US6627268B1 (en) Sequential ion, UV, and electron induced chemical vapor deposition
US4678536A (en) Method of photochemical surface treatment
US6456642B1 (en) Optical coupling device
US4522674A (en) Surface treatment apparatus
EP0168768B1 (en) Dry etching process and apparatus
Takeda et al. Wide range applications of process plasma diagnostics using vacuum ultraviolet absorption spectroscopy
JPS63178517A (en) Photo excitation reaction apparatus
US5112647A (en) Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process
JPS62183512A (en) Laser-induced thin film deposition apparatus
US5368647A (en) Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
JPH0586648B2 (en)
JPS63181416A (en) Photo-excited reactor
EP0283667B1 (en) Method and apparatus of treating photoresists
JPS63317675A (en) Plasma vapor growth device
JPS6028225A (en) Optical vapor growth method
JPH02207525A (en) Substrate processing method and apparatus therefor
JPH0978245A (en) Formation of thin film
JPS6227575A (en) Formation of film
JPS6156279A (en) Film forming method
JP3000382B2 (en) Ultraviolet light emission source and photo-CVD method using the same
JPS60218474A (en) Film forming method
Henck et al. Spectroscopic study of the vacuum ultraviolet windowless photodissociation of silicon hydrides for silicon‐based film deposition
JPH07105346B2 (en) Radical beam photo CVD equipment
JP2001115267A (en) Plasma treatment system and method