JPS63178306A - Injection control device - Google Patents

Injection control device

Info

Publication number
JPS63178306A
JPS63178306A JP914987A JP914987A JPS63178306A JP S63178306 A JPS63178306 A JP S63178306A JP 914987 A JP914987 A JP 914987A JP 914987 A JP914987 A JP 914987A JP S63178306 A JPS63178306 A JP S63178306A
Authority
JP
Japan
Prior art keywords
injection
flow rate
rate
water quality
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP914987A
Other languages
Japanese (ja)
Inventor
Akira Kamoto
明 加本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP914987A priority Critical patent/JPS63178306A/en
Publication of JPS63178306A publication Critical patent/JPS63178306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high responsiveness prevented from the influence of the feeding flow rate of a raw material by finding out a correcting injection volume from a deviation or an injection correcting value, converting the correcting injection volume into a correcting injection flow rate and then adding the correcting injection flow rate to an objective injection flow rate to correct the objective injection flow rate. CONSTITUTION:When a detected water quality from a water quality meter 4 is shifted from an objective water quality, a correcting medicine volume corresponding to a deviation between the detected water quality and the objective water quality is found out by mimic process parts 6, 7 and a correcting medicine flow rate is found out through a converting circuit 9. On the other hand, a converter 8 finds out an injection rate correcting value from the correcting medicine volume and adds the flow rate to a reference injection rate to find out a corrected injection rate and a multiplier 11 multiplies the corrected injection rate by a raw water flow rate to find out the medicine injecting flow rate proportional to the raw water flow rate. The correcting medicine flow rate is added to the medicine injection flow rate proportional to the raw water flow rate and the added value is outputted to a controller 5 as an objective medicine injection flow rate to control the medicine flow rate. Thus, the medicine flow rate can be rapidly corrected even if the raw water flow rate is low.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、浄水場等で使用される薬品注入I制御に好適
な注入制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an injection control device suitable for chemical injection I control used in water purification plants and the like.

(従来の技術) 第8図は従来の薬品注入υ制御装置の構成を示している
(Prior Art) FIG. 8 shows the configuration of a conventional chemical injection υ control device.

同図において、1は原水流量計、2は薬品流m計、3は
調節弁、4は水質計、5は調節計、20は目標薬品注入
流m演算部、30は混合槽である。
In the figure, 1 is a raw water flow meter, 2 is a chemical flow m meter, 3 is a control valve, 4 is a water quality meter, 5 is a controller, 20 is a target chemical injection flow m calculating section, and 30 is a mixing tank.

原水流量計1で得られる原水流Mと目標薬品注入流m演
算部20で得られる注入率とを乗じて目標薬品注入流f
f1(=原水流向×注入率)を求め、調節計5により薬
品流量計2で得られる薬品注入流量が上記目標薬品注入
流量と等しくなるように調節弁3の弁開度を屑減して混
合槽30へ薬品が注入される。
The target chemical injection flow f is obtained by multiplying the raw water flow M obtained by the raw water flow meter 1 and the injection rate obtained by the target chemical injection flow m calculation unit 20.
f1 (=raw water flow direction x injection rate) is determined, and the valve opening degree of the control valve 3 is reduced and mixed so that the chemical injection flow rate obtained by the chemical flow meter 2 is equal to the target chemical injection flow rate using the controller 5. A chemical is injected into the tank 30.

また、この従来例では、水質計4で得られた薬品注入後
の水質と目標水質との偏差から注入率補正量が目標薬品
注入流量演算部20で求められている。
Further, in this conventional example, the target chemical injection flow rate calculation unit 20 calculates the injection rate correction amount from the deviation between the water quality after chemical injection obtained by the water quality meter 4 and the target water quality.

目標薬品注入流量演算部20は、模擬プロセス静特性部
の逆数部(KO、以下、静特性逆数部という)6と、模
擬プロセス動特性部(Gc  (S)、以下、動特性部
という)7とを備え、補完フィードバックにより以下の
ようにして薬注接水質が目標水質となるように制御され
ている。
The target chemical injection flow rate calculation unit 20 includes a reciprocal part (KO, hereinafter referred to as the static characteristic reciprocal part) 6 of a simulated process static characteristic part, and a simulated process dynamic characteristic part (Gc (S), hereinafter referred to as the dynamic characteristic part) 7. The chemical injection water quality is controlled to the target water quality using complementary feedback as follows.

すなわち、水質計4で得られた薬品注入後の水質と予め
設定された目標水質との偏差から注入率補正量を求め、
この注入率補正量を予め設定されている基本注入率に加
算して補正後の注入率を得、この補正後注入率と原水流
量とを乗じて目標注入流度を得ている。
That is, the injection rate correction amount is calculated from the deviation between the water quality after chemical injection obtained by the water quality meter 4 and the preset target water quality,
This injection rate correction amount is added to a preset basic injection rate to obtain a corrected injection rate, and this corrected injection rate is multiplied by the raw water flow rate to obtain a target injection rate.

ここで、プロセスの伝達関数の静特性部(静態ゲイン)
をKp、動特性部(動態ゲイン)をGp(S)とすると
、Kc =KI)、GO(S)=Gl)(S)と設定さ
れていると、上記水められた注入率補正量により薬注接
水質が変化して偏差が減少するが、その減少分相当だけ
、動特性部7の出力が増加して注入率補正量は不変に保
たれる。従って注入率補正量としては、開回路制御のよ
うな応答性が得られ、薬注制御のようなむだ時間要素の
大きいものには有効な手段である。
Here, the static characteristic part (static gain) of the process transfer function
If Kp is the dynamic characteristic part (kinetic gain) and Gp (S) is the dynamic characteristic part (dynamic gain), then if Kc = KI) and GO (S) = Gl) (S), then the above-mentioned injection rate correction amount Although the chemical injection water quality changes and the deviation decreases, the output of the dynamic characteristic section 7 increases by the amount corresponding to the decrease, and the injection rate correction amount is kept unchanged. Therefore, as an injection rate correction amount, responsiveness similar to open circuit control can be obtained, and it is an effective means for things such as drug injection control that have a large dead time element.

しかしながら、上記従来の薬品注入制御装置にありては
、次のような問題点があった。すなわち、原水流量の変
化に伴ない、上記動態ゲインGp(S)も変化するので
、模擬動態ゲインGO(S)が固定の場合には、Gc 
 (S)=Gp  (S)でなくなり、制御応答性が悪
化する。
However, the conventional chemical injection control device described above has the following problems. In other words, as the raw water flow rate changes, the dynamic gain Gp(S) also changes, so when the simulated dynamic gain GO(S) is fixed, Gc
(S)=Gp (S) is no longer satisfied, and control responsiveness deteriorates.

従って、原水流量が零になると永久に偏差が残り、補正
後注入率が無限大に発散してしまう。
Therefore, when the raw water flow rate becomes zero, the deviation remains forever, and the corrected injection rate diverges to infinity.

さらに、上記従来例では原水流量に基づいて偏差分を補
正しているが、混合120に残留する分については原水
流量にもとづく補正ではカバーできず、i制御性が悪い
Further, in the conventional example described above, the deviation is corrected based on the flow rate of raw water, but the correction based on the flow rate of raw water cannot cover the amount remaining in the mixture 120, resulting in poor i-controllability.

(発明が解決しようとする問題点) このように、上記従来の薬品注入制御装置にあっては、
制御応答性が悪く、原水流量が零の場合の制御や混合槽
の残留分の補正ができないという問題点があった。
(Problems to be Solved by the Invention) As described above, in the above-mentioned conventional chemical injection control device,
There was a problem in that the control response was poor and it was impossible to control when the raw water flow rate was zero or to correct the residual amount in the mixing tank.

本発明は上記問題点に基づいてなされたものであり、そ
の目的は、原料の供給滝壷に影響されることのない制御
応答性の高い注入制御¥7N置を提供することにある。
The present invention has been made based on the above-mentioned problems, and its purpose is to provide an injection control system with high control responsiveness that is not affected by the raw material supply basin.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために本発明は、原料と注入物と
の混合後の混合比率を検出し、混合比率と目標比率との
偏差に基づいて注入物の注入率補正mを求め、注入率補
正mを予め設定され′た基本注入率に加算して補正後注
入率を求め、補正後注入率と原料の供給添置とを乗算し
て目標注入物流量を求め、目標注入物流量により原料に
混合される注入物制御を行う装置において、 上記偏差または注入率補正量から補正注入物量を求め、
補正注入物量を補正注入物流量に変換し、補正注入物量
を上記目標注入物流量に加算して更正することを特徴と
する。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention detects the mixing ratio after mixing the raw material and the injected material, and detects the deviation between the mixing ratio and the target ratio. The injection rate correction m of the injectable material is determined based on the injection rate, the injection rate correction m is added to the preset basic injection rate to obtain the corrected injection rate, and the corrected injection rate is multiplied by the feed addition of the raw material. In a device that controls the injectable material mixed into the raw material based on the target injectable flow rate, the corrected injectable amount is determined from the above deviation or injection rate correction amount,
The present invention is characterized in that the corrected injection volume is converted into a corrected injection volume, and the corrected injection volume is added to the target injection volume for correction.

(作用) 本発明では、混合比率と目標比率との偏差、またはこの
偏差から求められる注入率補正量から補正注入物流mが
求められており、この補正注入物量を補正注入物流量に
変換して目標注入物流量に加算することにより目標注入
物流量が更正されている。
(Function) In the present invention, the corrected injection flow rate m is determined from the deviation between the mixing ratio and the target ratio or the injection rate correction amount obtained from this deviation, and this corrected injection volume is converted into the corrected injection volume. The target injection flow rate is corrected by adding it to the target injection flow rate.

(実施例) 第1図は本発明に係る装置の一実施例の構成を示してい
る。
(Embodiment) FIG. 1 shows the configuration of an embodiment of the apparatus according to the present invention.

図示のように、混合I!30には原水流量計1を介して
原水が供給され、また、薬品流量計2及び調節弁3を介
して薬品が注入されている。また、混合槽30の流出側
には薬品注入後の水質を測定する水質計4が設けられて
いる。そして、検出された原水流量及び測定水質(薬注
接水質)は目標薬品注入流量演算部20へ供給されてい
る。また、検出された薬品流最は調節計5に供給されて
いる。
As shown, mix I! Raw water is supplied to 30 via a raw water flow meter 1, and chemicals are injected via a chemical flow meter 2 and a control valve 3. Furthermore, a water quality meter 4 is provided on the outflow side of the mixing tank 30 to measure the water quality after the chemicals are injected. The detected raw water flow rate and measured water quality (chemical injection contact water quality) are supplied to the target chemical injection flow rate calculation section 20. Further, the detected chemical flow is supplied to the controller 5.

目標薬品注入流量演算部20は、薬品注入後の混合槽3
0の水質が目標水質と等しくなるようにするために注入
率を可変制御するとともに、原水流量とは無関係にすな
わち、原水51量が零の場合や混合槽30の残留分を補
正するために薬品供給量を可変υ制御できるようになっ
ている。
The target chemical injection flow rate calculation unit 20 is configured to control the mixing tank 3 after chemical injection.
In addition to variably controlling the injection rate so that the water quality at zero is equal to the target water quality, chemicals are The supply amount can be controlled variably.

このために、目標薬品注入流量演算部20は、前記測定
水質(薬注接水質)と目標水質との偏差をとり、この偏
差から補正薬品量を求める模擬プロセス静特性逆数部6
及び模擬プロセス動特性部7と、求められた補正薬品量
を入力して注入率補正量に換算して出力する換算器8と
、同じく補正薬品量を入力して補正薬品流量に変換して
出力する変換・回路9とを備えている。
For this purpose, the target chemical injection flow rate calculation unit 20 calculates the deviation between the measured water quality (chemical injection contact water quality) and the target water quality, and calculates the corrected chemical amount from this deviation by the simulated process static characteristic reciprocal unit 6.
and a simulated process dynamic characteristics section 7, a converter 8 which inputs the corrected chemical amount obtained, converts it into an injection rate corrected amount, and outputs it, and also inputs the corrected chemical amount, converts it into a corrected chemical flow rate, and outputs it. A conversion circuit 9 is provided.

前記模擬プロセス静特性逆数部6と模擬ブ0セス動特性
部7は注入設備を含んだプロセス伝′a関数を模擬的に
設定する部分で、サンプルP動作等により目標水質と薬
注水質との偏差が零になるように補正薬品量を求めてい
る。
The simulated process static characteristic reciprocal part 6 and the simulated process dynamic characteristic part 7 are parts for simulating setting of the process characteristic function including the injection equipment, and are used to set the target water quality and chemical injection water quality by sample P operation, etc. The corrected chemical amount is determined so that the deviation becomes zero.

この補正薬品mは目標水質が変更される以前に混合槽3
0に流入した原水と薬品との混合の滞留分を変更後の目
標水質にするのに必要とする薬品容量を基準に決定され
る。すなわち、この補正薬品量だけの薬品を混合槽30
に注入すれば、原水流量が零でも混合槽30の滞留分の
水質を目標水質にすることができる。この補正薬品量は
変換回路9を介して補正薬品流量に変換されて供給され
る。
This correction chemical m is added to the mixing tank 3 before the target water quality is changed.
It is determined based on the amount of chemicals required to make the retained amount of the mixture of raw water and chemicals flowing into the tank 0 to the target water quality after the change. In other words, only this corrected amount of chemicals is added to the mixing tank 30.
By injecting the water into the mixing tank 30, the water quality of the water remaining in the mixing tank 30 can be made to the target water quality even if the raw water flow rate is zero. This corrected chemical amount is converted into a corrected chemical flow rate via the conversion circuit 9 and supplied.

第2図に変換回路9の例を示す。FIG. 2 shows an example of the conversion circuit 9.

第2図(△)〜(C)の3例は同一のものを表現を変え
て構成したものである。また、同図(D)は流fflx
時間=容闇のプログラムをメモリ内に設定しておき、容
量(入力)から流R(出力)をプログラム制御により得
る構成である。さらに、同図(E)は実流量を入力にフ
ィードバックさせて構成したもので、より正確な補正薬
品流量値を得ることができる。
The three examples shown in FIG. 2 (Δ) to (C) are the same structure but expressed in different ways. In addition, the same figure (D) shows the flow fflx
The configuration is such that a program of time = darkness is set in the memory, and the flow R (output) is obtained from the capacitance (input) by program control. Furthermore, the diagram (E) is constructed by feeding back the actual flow rate to the input, so that a more accurate corrected chemical flow rate value can be obtained.

前記注入率補正量は予め設定された基本注入率に加算さ
れて補正後注入率とされ、この補正後注入率が乗算器1
1で検出原水流量に乗ぜられている。
The injection rate correction amount is added to a preset basic injection rate to obtain a corrected injection rate, and this corrected injection rate is added to a preset basic injection rate.
1 is multiplied by the detected raw water flow rate.

この乗算器11の出力は薬品注入流山の比例弁であり、
本実施例では、この薬品注入流口の原水流m比例弁に前
記補正薬品流量が加算されて目標薬品注入流量が求めら
れている。
The output of this multiplier 11 is a proportional valve for the chemical injection stream,
In this embodiment, the target chemical injection flow rate is determined by adding the corrected chemical flow rate to the raw water flow m proportional valve of the chemical injection flow port.

求められた目標薬品注入流量は調節計5に供給されてい
る。そして、この調節計5で目標薬品注入流量と薬品流
量計2で検出された薬品注入流山の偏差分が求められ、
この偏差分に比例した弁開度になるように調節弁3が制
御されている。
The determined target chemical injection flow rate is supplied to the controller 5. Then, the controller 5 calculates the deviation between the target chemical injection flow rate and the chemical injection flow rate detected by the chemical flow meter 2.
The control valve 3 is controlled so that the valve opening is proportional to this deviation.

次に上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

まず、原水に対しある注入率で薬品が注入されており、
混合槽30が目標水質を保持している定常状態の場合、
水質計4の検出値と目標水質の間に偏差がないため、混
合槽30への既流入分の原水と薬品との混合水に薬品が
追加されることはない。
First, chemicals are injected into raw water at a certain injection rate.
In a steady state where the mixing tank 30 maintains the target water quality,
Since there is no deviation between the detected value of the water quality meter 4 and the target water quality, no chemicals are added to the mixed water of raw water and chemicals that has already flowed into the mixing tank 30.

また、このとき、一定の注入率補正mが得られており、
これが基本注入率と加算されて最適注入率としての補正
注入率が求められている。但し、原水に基本注入率で薬
品を注入している状態で目標水質が得られている場合は
注入率補正量は零である。
Also, at this time, a constant injection rate correction m is obtained,
This is added to the basic injection rate to obtain a corrected injection rate as the optimum injection rate. However, if the target water quality is obtained while injecting chemicals into raw water at the basic injection rate, the injection rate correction amount is zero.

そして、乗算器11でこの最適注入率と原水流量とが乗
じられてその時の原水流量に対する薬品注入流量が求め
られ、補正薬品流山が零なので、そのまま目標薬品注入
流量として調節計5に出力され、これにより薬品流山が
前記目標薬品注入流Iとなるように[1弁3が制御され
る。
Then, this optimum injection rate is multiplied by the raw water flow rate in the multiplier 11 to obtain the chemical injection flow rate for the raw water flow rate at that time, and since the corrected chemical flow rate is zero, it is directly output to the controller 5 as the target chemical injection flow rate. As a result, the [1 valve 3] is controlled so that the chemical flow mountain becomes the target chemical injection flow I.

このため、その襖流入する原水に対し最適注入率で薬品
が注入される。原水流山が変化してもそれに比例して薬
品流量が変化するので混合槽30内の混合水質は目標水
質を維持する。
Therefore, chemicals are injected into the raw water flowing into the sliding door at an optimal injection rate. Even if the raw water flow rate changes, the chemical flow rate changes in proportion to the change, so that the mixed water quality in the mixing tank 30 maintains the target water quality.

この状態から何らかの原因で水質計4の検出水質が目標
水質からずれた場合、模擬プロセス部6゜7では検出水
質と目標水質の偏差に対応した補正薬品量が求められる
。そして、変換回路9を介して補正薬品流量が求められ
る。
In this state, if the water quality detected by the water quality meter 4 deviates from the target water quality for some reason, the simulation process section 6.7 calculates a corrected chemical amount corresponding to the deviation between the detected water quality and the target water quality. Then, the corrected chemical flow rate is determined via the conversion circuit 9.

一方、換算器8では補正薬品間から注入率補正量が求め
られ、基本注入率と加算され補正注入率が求められる。
On the other hand, in the converter 8, an injection rate correction amount is obtained from the correction chemical, and is added to the basic injection rate to obtain a corrected injection rate.

そして、乗算器11で補正注入率に原水流量が掛は合わ
されて原水流量比例弁の薬品注入流山が求められる。
Then, a multiplier 11 multiplies the corrected injection rate by the raw water flow rate to obtain the chemical injection flow rate of the raw water flow rate proportional valve.

上記補正薬品流量は原水流量比例弁の薬品注入流mに加
粋されて目標薬品注入流mとして調節計5に出力され、
薬品ytmが制御される。但し、目標注入流量が負のと
きは零として扱われる。
The above-mentioned corrected chemical flow rate is added to the chemical injection flow m of the raw water flow rate proportional valve and outputted to the controller 5 as the target chemical injection flow m,
Drug ytm is controlled. However, when the target injection flow rate is negative, it is treated as zero.

このように、原水流量の大きさとはs関係に水質偏差に
対応した薬品量を求め、この補正薬品量から補正薬品流
量が求められて混合[30に既流入分の混合水の水質補
正がなされるので、水質制御の応答性が原水流量に影響
されず、原水流量が小さい場合でも速やかに補正が行な
われる。従って、原水流mが零になっても薬品流量補正
層が正の場合は既流入分の混合水は有る時間内に確実に
目標水質とされる。
In this way, the amount of chemicals corresponding to the water quality deviation is calculated based on the relationship s with the raw water flow rate, and the corrected chemical flow rate is calculated from this corrected chemical amount and mixed. Therefore, the responsiveness of water quality control is not affected by the flow rate of raw water, and correction is performed quickly even when the flow rate of raw water is small. Therefore, even if the raw water flow m becomes zero, if the chemical flow rate correction layer is positive, the mixed water that has already flown in will surely reach the target water quality within a certain time.

また、混合槽30に既流入分の水質は前記薬品注入流量
補正量によって速やかに目標水質に修正されていくが、
これに伴って迅速に最適化されていく注入率でその後の
流入原水に対し薬品を注入することができ、新たな流入
部についても速やかに目標水質となっていく。従って、
混合槽30に既流入分の水質に対する偏差修正動作をほ
とんど妨げることがなく、制御応答が早くなる。
In addition, the water quality of the water already flowing into the mixing tank 30 is quickly corrected to the target water quality by the chemical injection flow rate correction amount.
As a result, chemicals can be injected into subsequent inflow raw water at an injection rate that is quickly optimized, and the new inflow section quickly reaches the target water quality. Therefore,
This hardly interferes with the deviation correction operation for the quality of the water already flowing into the mixing tank 30, and the control response becomes faster.

このようにして混合槽30の水質が目標水質に近づくと
補正注入率も最適値に近づいて行き、目標水質が得られ
たところで最適注入率となる。
In this way, when the water quality of the mixing tank 30 approaches the target water quality, the corrected injection rate also approaches the optimum value, and when the target water quality is obtained, the optimum injection rate is reached.

その後は、目標水質となっている混合水槽30に、ある
昂の原水が流入するとそれに比例して最適注入率により
薬品も注入されるので混合槽30の水質は目標水質を維
持する。
Thereafter, when raw water of a certain level flows into the mixing tank 30, which has the target water quality, chemicals are also injected at the optimum injection rate in proportion to the flow, so that the water quality of the mixing tank 30 maintains the target water quality.

第3図は本発明の第2実施例の構成を示している。FIG. 3 shows the configuration of a second embodiment of the present invention.

本実施例では、目標水質と薬注後水質との偏差から模擬
プロセス部6,7により、先ず、注入率補正量が求めら
れ基本注入率に加算されるとともに、この注入率補正率
から換算器8を介して補正薬品量が求められている。こ
の補正薬品mは変換回路9を介して補正薬品流量に変換
され、薬品注入51mの原水流ω比例弁と加算されて目
標薬品注入流量が求められている。
In this embodiment, the injection rate correction amount is first determined by the simulation process units 6 and 7 from the deviation between the target water quality and the water quality after chemical injection, and is added to the basic injection rate. The corrected chemical amount is determined via 8. This corrected chemical m is converted into a corrected chemical flow rate via the conversion circuit 9, and is added to the raw water flow ω proportional valve of the chemical injection 51m to obtain the target chemical injection flow rate.

このように構成しても前記第1実施例と全く同様の効果
を呈する。
Even with this configuration, the same effects as those of the first embodiment can be obtained.

第4図は本発明の第3実施例の構成を示している。FIG. 4 shows the configuration of a third embodiment of the present invention.

本実施例では、模擬プロセス動特性部7の引出し点を変
更して変換回路9の出力を引出し点とし、補正薬品流、
量を積分器10を介して積分した後、模擬プロセス動特
性部7に供給している。
In this embodiment, the extraction point of the simulated process dynamic characteristic section 7 is changed and the output of the conversion circuit 9 is used as the extraction point, and the corrected chemical flow,
After the quantity is integrated via the integrator 10, it is supplied to the simulated process dynamic characteristics section 7.

このように構成することにより、前記第1実施例の効果
に加えて、模擬プロセス動特性部7は変換回路9の特性
を加味することなく構成できるので、この動特性部7の
構成が簡単化されるという効果を呈する。
With this configuration, in addition to the effects of the first embodiment, the simulated process dynamic characteristic section 7 can be configured without taking into account the characteristics of the conversion circuit 9, so the configuration of the dynamic characteristic section 7 is simplified. It has the effect of being

第5図は本発明の第4実施例の構成を示している。FIG. 5 shows the configuration of a fourth embodiment of the present invention.

本実施例は、第4図の第3実施例の変換回路9として第
2図(E)に示した構成例を採用して整理したもので、
装置構成が簡単化されるとともに、実8i量がフィード
バックされるので、より正確な補正薬品流Mを求めるこ
とができる。
This embodiment adopts and organizes the configuration example shown in FIG. 2(E) as the conversion circuit 9 of the third embodiment in FIG.
Since the device configuration is simplified and the actual 8i amount is fed back, a more accurate corrected chemical flow M can be determined.

第6図は本発明の第5実施例の構成を示している。FIG. 6 shows the configuration of a fifth embodiment of the present invention.

本実施例は、模擬プロセス静特性逆数部6の出力を積算
器13を介してを積算し、補正薬品量を求めるように構
成したもので、前記第1実施例と同様の効果を呈する。
This embodiment is configured to integrate the output of the simulated process static characteristic reciprocal unit 6 via an integrator 13 to obtain a corrected chemical amount, and exhibits the same effect as the first embodiment.

第7図は本発明の第6実施例の構成を示したものである
FIG. 7 shows the configuration of a sixth embodiment of the present invention.

本実施例は、薬注制御の開始時等において混合槽30内
の水が原水のままの無薬注状態である場合等、目標水質
と測定水質との偏差が大きすぎる場合における制御性を
考慮したもので、かかる状態においては前記注入率補正
弁を零とし、基本注入率を補正しない構成を採っている
This embodiment takes into consideration controllability in cases where the deviation between the target water quality and the measured water quality is too large, such as when the water in the mixing tank 30 is raw water without chemical injection at the start of chemical injection control, etc. Therefore, in such a state, the injection rate correction valve is set to zero, and the basic injection rate is not corrected.

このため、本実施例では切換えスイッチ15を設け、目
標水質と測定水質との偏差が大きすぎ、求められた注入
率補正弁が所定値以上であるときには、切換えスイッチ
15ど切換えて注入率補正弁を零としたものである。
For this reason, in this embodiment, a changeover switch 15 is provided, and when the deviation between the target water quality and the measured water quality is too large and the determined injection rate correction valve is equal to or higher than a predetermined value, the changeover switch 15 is switched to control the injection rate correction valve. is set to zero.

これにより、前記各実施例において、制御開始時等の過
渡的な過補正を防止できる。
As a result, in each of the embodiments described above, transient overcorrection at the start of control can be prevented.

なお、本実施例では切換えスイッチ15を使用注入率補
正分を零とするように構成してもよい。
In this embodiment, the changeover switch 15 may be configured to set the used injection rate correction to zero.

また、以上の各実施例において、原水水質等の諸国子を
考量して注入率を補正するフィードフォワード制御を併
用すれば、より一層制御性を向上できる。
Further, in each of the above embodiments, controllability can be further improved if feedforward control is used in combination to correct the injection rate by taking various factors such as raw water quality into consideration.

[発明の効果] 以上説明したように本発明によれば、原料供給流量とは
無関係に注入物が供給されるので、原料供給流量の変化
に影響されることなく 1ilJ ill応答性が良好
な注入制御I装装置提供できる。
[Effects of the Invention] As explained above, according to the present invention, the injection material is supplied regardless of the raw material supply flow rate, so injection with good responsiveness can be achieved without being affected by changes in the raw material supply flow rate. Control equipment can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す構成図、第2図(A
)〜(E)は本発明の使用される変換回路の一例を示す
構成図、第3図〜第7図は本発明の他の実施例を示す各
構成図、第8図は従来例の構成図である。 1・・・原水流量計 2・・・薬品流量計 3・・・調節弁 4・・・水質計 5・・・調節計 6・・・模擬ブOセス静特性逆数部 7・・・模擬プロセス動特性部 8・・・換算器 9・・・変換回路 20・・・目標薬品注入流量演算部 30・・・混合槽
FIG. 1 is a configuration diagram showing a first embodiment of the present invention, and FIG. 2 (A
) to (E) are block diagrams showing an example of a conversion circuit used in the present invention, FIGS. 3 to 7 are block diagrams showing other embodiments of the present invention, and FIG. 8 is a structure of a conventional example. It is a diagram. 1... Raw water flow meter 2... Chemical flow meter 3... Control valve 4... Water quality meter 5... Controller 6... Simulated process static characteristic reciprocal part 7... Simulated process Dynamic characteristic section 8...Converter 9...Conversion circuit 20...Target chemical injection flow rate calculation section 30...Mixing tank

Claims (1)

【特許請求の範囲】[Claims] (1)原料と注入物との混合後の混合比率を検出し、混
合比率と目標比率との偏差に基づいて注入物の注入率補
正量を求め、注入率補正量を予め設定された基本注入率
に加算して補正後注入率を求め、補正後注入率と原料の
供給流量とを乗算して目標注入物流量を求め、目標注入
物流量により原料に混合される注入物制御を行う装置に
おいて、上記偏差または注入率補正量から補正注入物量
を求め、補正注入物量を補正注入物流量に変換した後、
補正注入物流量を上記目標注入物流量に加算して更正す
ることを特徴とする注入制御装置。
(1) Detect the mixing ratio after mixing the raw material and the injectable, calculate the injection rate correction amount for the injectable based on the deviation between the mixing ratio and the target ratio, and adjust the injection rate correction amount to the preset basic injection. In a device that controls the injected material mixed into the raw material by adding it to the injection rate to obtain the corrected injection rate, and multiplying the corrected injection rate and the feed flow rate of the raw material to obtain the target injection flow rate. , After determining the corrected injection volume from the above deviation or injection rate correction amount and converting the corrected injection volume into a corrected injection volume,
An injection control device characterized by adding a correction injection flow rate to the target injection flow rate to correct the target injection flow rate.
JP914987A 1987-01-20 1987-01-20 Injection control device Pending JPS63178306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP914987A JPS63178306A (en) 1987-01-20 1987-01-20 Injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP914987A JPS63178306A (en) 1987-01-20 1987-01-20 Injection control device

Publications (1)

Publication Number Publication Date
JPS63178306A true JPS63178306A (en) 1988-07-22

Family

ID=11712564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP914987A Pending JPS63178306A (en) 1987-01-20 1987-01-20 Injection control device

Country Status (1)

Country Link
JP (1) JPS63178306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017316A (en) * 2001-07-03 2003-01-17 Isuzu Motors Ltd Electromagnetic solenoid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017316A (en) * 2001-07-03 2003-01-17 Isuzu Motors Ltd Electromagnetic solenoid

Similar Documents

Publication Publication Date Title
JPS60161724A (en) Mixing control apparatus
US6688532B2 (en) Controller, temperature controller and heat processor using same
CN107512754B (en) Automatic powder activated carbon dosing control system for water treatment
KR20170135708A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
US3791793A (en) Adaptive feed forward-feedback control of the concentration of a selected ion of a solution
CN108607462B (en) Liquid mixing device and liquid flow control method
JPS63178306A (en) Injection control device
US3394053A (en) Fractionator control system with material balance computer and feedback control
JPH0365297A (en) Control apparatus of aeration tank
JPS61156303A (en) Process controller
JPS61157387A (en) Chemical injection apparatus
JPS61156417A (en) Temperature controller
JPS6247407B2 (en)
SU717199A1 (en) Pulp mass disintegration automatic control method
RU2084946C1 (en) Method for automatic control of mixing raw material with batched component
JPS6157058B2 (en)
JPS6117445Y2 (en)
JPS60175508A (en) Flocculation reaction apparatus
JPS6272016A (en) Process controller
JPH0524195B2 (en)
JPS61223912A (en) Injection control device
JPH036601A (en) Control mode switching device
JPH0962368A (en) Controlling method for process flow rate
KR890000610B1 (en) Process control method
JPS59101590A (en) Pump control device