JPH0524195B2 - - Google Patents

Info

Publication number
JPH0524195B2
JPH0524195B2 JP20079789A JP20079789A JPH0524195B2 JP H0524195 B2 JPH0524195 B2 JP H0524195B2 JP 20079789 A JP20079789 A JP 20079789A JP 20079789 A JP20079789 A JP 20079789A JP H0524195 B2 JPH0524195 B2 JP H0524195B2
Authority
JP
Japan
Prior art keywords
amount
heat
generated gas
flow rate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20079789A
Other languages
Japanese (ja)
Other versions
JPH0364396A (en
Inventor
Kazumitsu Nukui
Toshio Oohashi
Masahiko Arai
Yoshihiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP20079789A priority Critical patent/JPH0364396A/en
Publication of JPH0364396A publication Critical patent/JPH0364396A/en
Publication of JPH0524195B2 publication Critical patent/JPH0524195B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は発生ガスの熱量調節方法及び熱量調節
機構に関するものである。 (従来の技術) ガス発生プロセスには、発生ガスと、高熱量ガ
ス等の操作流体との混合による熱量調節過程が付
随する。そこで従来の熱量調節方法、機構を第2
図を用いて説明する。符号1はガス発生プロセ
ス、2は発生ガス経路、3は操作流体経路、4は
混合部、5は混合ガス経路である。経路2,3に
は夫々流量センサ6,7を設けると共に、経路5
には熱量センサ8を設け、この熱量センサ8の出
力を入力とする熱量調節計9を設けている。また
経路3には流量調節弁10を設けて、この流量調
節弁10と流量センサ7及び流量調節計11とに
より流量制御ループ12を構成しており、この流
量調節計11の流量設定値は、演算器13に於い
て、流量センサ6によつて測定した発生ガスの流
量に、混合に於ける熱量バランス式から導出され
る係数を乗じ、これに熱量調節計9の操作出力を
加える演算を行つて導出し、設定している。 いま、発生ガスと操作流体の夫々の流量をFA
FBそして夫々の熱量をQA,QBとすると共に混合
ガスの所望の熱量をQSとすると、次の熱量バラ
ンス式が成り立つ。 QS=QAFA+QBFB/FA+FB ……(1) そして(1)式を変形した次式により、操作流体の
必要流量を求めることができる。 FB=QS−QA/QB−QSFA ……(2) しかして従来は、次式で示すように熱量バラン
ス式(1)から導出される係数γB(=(QS−QA)/
(QB−QS))を、流量センサ6によつて測定した
発生ガスの流量FAに乗じ、これに熱量調節計9
の操作出力MVを加える演算を演算器13に於い
て行い、 FB′=γBFA+MV ……(3) この値FB′を流量調節計11に設定して操作流
体の流量を制御することにより、熱量調節を行つ
ている。そして従来は、かかる係数γBを定数とし
て扱つており、即ちこの係数γBは、プロセスの稼
働率100%等に於ける発生ガスの熱量を基に算出
して定数としている。 (発明が解決しようとする課題) 前述した通り、従来は発生ガスの熱量を一定と
して係数γBを算出しているのであるが、実際のプ
ロセスに於いては、発生ガスの熱量は例えば第3
図に示すようにその稼働率に応じて変動する。従
つて、プロセスの稼働率が変動して、定数として
の係数γBを設定した際の発生ガスの熱量と、実際
の発生ガスの熱量との間に差異が生じると、該係
数γBを用いて得られる操作流体の必要量と、発生
ガスの実際の熱量から熱量バランス式(1)を用いて
得られる操作流体の真の必要量との間に差が生
じ、前者の必要量では混合ガスの所望の熱量QS
からずれてしまう。このずれの修正動作は、熱量
調節計9によつて混合ガスの熱量の偏差を検出し
て前述の操作出力MVを変動させることによつて
のみで行わざるを得ず、従つて前述した稼働率の
変動に対する混合ガスの熱量調節の追従性が悪
く、熱量変動が生じ易いという課題がある。 本発明は以上の課題を解決することを目的とす
るものである。 (課題を解決するための手段) 前述した課題を解決するために、本発明はま
ず、ガス発生プロセスの発生ガスと操作流体の混
合に於いて、該発生ガスの流量に、混合に於ける
熱量バランス式から導出される係数を乗じ、これ
に熱量調節計の操作出力を加えた値を、前記操作
流体の流量制御ループを構成する流量調節計の設
定値とする熱量調節方法に於いて、前記係数は、
前記プロセスの稼働率と発生ガスの熱量との対応
関係に基づき、該稼働率の関数として導出する熱
量調節方法を要旨とする。 また本発明は、 ガス発生プロセスの発生ガスと操作流体の混合
系統を構成し、該ガス発生ガスの熱量に、混合に
於ける熱量バランス式から導出される係数を乗
じ、これに熱量調節計の操作出力を加えて、前記
操作流体の流量制御ループを構成する流量調節計
の設定値を導出する第1の演算器と、ガス発生プ
ロセスの稼働率から発生ガスの熱量を導出して前
記第1の演算器に出力する第2の演算器を設けた
熱量調節機構を他の要旨とする。 ガス発生プロセスの稼働率から発生ガス熱量を
導出する第2の演算器には、該稼働率と熱量との
対応関係をデータテーブルとして、また関係式と
して記憶する手段等を設け、かかる記憶手段を演
算に利用することにより稼働率から熱量を導出す
ることができる。 (作用) 以上の構成に於いて、本発明はガス発生プロセ
スの運転、そしてそれに付随する熱量調節過程に
於いて、発生ガスの流量に、混合に於ける熱量バ
ランス式から導出される係数を乗じ、これに熱量
調節計の操作出力を加えた値を、前記操作流体の
流量制御ループを構成する流量調節計の設定値と
する熱量調節を行う。この際、前記係数は、前記
プロセスの稼働率と発生ガスの熱量との対応関係
に基づき、該稼働率の関数として導出する。 従つて、前記プロセスの稼働率が変動して発生
ガスの熱量が変化した場合には、予めの測定等に
よつて得られ、そして記憶されている稼働率と熱
量との対応関係を参照することにより、稼働率か
ら発生ガスの実際の熱量を導出することができ、
このようにして導出した発生ガスの熱量に基づい
て前述の係数を導出し、そしてこの係数に発生ガ
スの流量を乗じることにより、真の必要量と等し
いか、またはそれに近い操作流体の流量を得るこ
とができる。 このようにして、流量調節計の設定値に於ける
熱量調節計の操作出力の割合を低くすることによ
り、稼働率の変動に対する混合ガスの熱量調節の
追従性を良好とすることができ、こうして稼働率
の変動に於いても混合ガスの熱量を安定させるこ
とができる。 (実施例) 次に本発明の実施例を第1図につき説明する。
尚、第1図は、第2図の構成と同様の構成要素に
は同一符号を付している。 第1図に於いて符号1はガスプロセス、2は発
生ガス経路、3は操作流体経路、4は混合部、5
は混合ガス経路である。経路2,3には夫々流量
センサ6,7を設けると共に、経路5には熱量セ
ンサ8を設け、この熱量センサ8の出力を入力と
する熱量調節計9を設けている。また経路3には
流量調節弁10を設けて、この流量調節弁10と
流量センサ7及び流量調節計11とにより流量制
御ループ12を構成しており、この流量調節計1
1の流量設定値は、第1の演算器14に於いて、
流量センサ6によつて測定した発生ガスの流量
に、混合に於ける熱量バランス式から導出される
係数をを乗じ、これに熱量調節計9の操作出力を
加える演算を行つて導出し、設定している。かか
る第1の演算器14に於ける係数の導出に用いる
発生ガスの流量は、第2の演算器15に於いてプ
ロセス1の稼働率から導出し、これを第1の演算
器14に出力して前記係数の導出を行う。 即ち、前述と同様に発生ガスと操作流体の夫々
の流量をFA,FBそして夫々の熱量をQA,QBとす
ると共に、混合ガスの所望の熱量をQS、そして
熱量調節計9の操作出力をMVとすると、流量調
節計11には次式で得られる値FBを設定値とし
て設定する。 FB=QS−QA(LA)/QB−QS・FA+MV ……(4) 尚、(4)式に於いて、QA(LA)は稼働率LAの関
数としての発生ガスの流量を表わすものである。
前述した通り、(4)式のQA(LA)はプロセス1の
稼働率LAから第2の演算器15に於いて導出し、
そして設定値FBは、該QA(LA)を用いて第1の
演算器14に於いて導出する。 プロセス1の稼働率LAと発生ガスの熱量QA
は一例として第3図に示すような対応関係があ
り、従つてかかる対応関係を予め測定等により得
て、第2の演算器15に記憶しておけば、該第2
の演算器15は稼働率を入力することにより熱量
を導出することができる。対応関係の記憶はデー
タテーブルとして行うこともできるし、関数式と
して行うこともできる。 次に本発明と従来の動作を具体的な数値例を参
照して説明する。即ちプロセス1に於ける稼働率
LAと発生ガス熱量QAの対応関係は第3図に示す
ものとし、稼働率が100%から80%に変動した場
合の動作につき説明する。稼働率が100%と80%
に於ける条件は次の表で示される。
(Industrial Application Field) The present invention relates to a method and mechanism for regulating the amount of heat of generated gas. (Prior Art) The gas generation process is accompanied by a process of adjusting the amount of heat by mixing the generated gas with an operating fluid such as a high-calorie gas. Therefore, the conventional method and mechanism for adjusting the amount of heat were developed.
This will be explained using figures. Reference numeral 1 is a gas generation process, 2 is a generated gas path, 3 is an operating fluid path, 4 is a mixing section, and 5 is a mixed gas path. Paths 2 and 3 are provided with flow rate sensors 6 and 7, respectively, and path 5 is provided with flow rate sensors 6 and 7, respectively.
A calorie sensor 8 is provided, and a calorie controller 9 whose input is the output of the calorie sensor 8 is provided. Further, a flow rate control valve 10 is provided in the path 3, and a flow rate control loop 12 is constituted by this flow rate control valve 10, the flow rate sensor 7, and the flow rate controller 11, and the flow rate setting value of the flow rate rate meter 11 is as follows. In the calculator 13, the flow rate of the generated gas measured by the flow rate sensor 6 is multiplied by a coefficient derived from the calorific balance equation in mixing, and the operation output of the calorific value controller 9 is added to this. are derived and set. Now, the respective flow rates of the generated gas and the operating fluid are F A ,
When F B and the respective calorific values are Q A and Q B , and the desired calorific value of the mixed gas is Q S , the following calorific balance formula holds true. Q S =Q A F A +Q B F B /F A +F B ...(1) Then, the required flow rate of the operating fluid can be determined by the following equation, which is a modification of equation (1). F B = Q S −Q A /Q B −Q S F A ...(2) Conventionally, the coefficient γ B (=(Q S −Q A )/
(Q B −Q S )) is multiplied by the flow rate F A of generated gas measured by the flow rate sensor 6, and then added to this by the calorific value controller 9.
Calculation is performed in the computing unit 13 to add the manipulated output MV of F B ′=γ B F A +MV ……(3) This value F B ′ is set in the flow rate controller 11 to control the flow rate of the manipulated fluid. By doing this, the amount of heat is adjusted. Conventionally, the coefficient γ B has been treated as a constant, that is, the coefficient γ B is calculated based on the calorific value of the generated gas at a process operating rate of 100%, and is a constant. (Problem to be Solved by the Invention) As mentioned above, in the past, the coefficient γ B was calculated by assuming that the calorific value of the generated gas was constant, but in the actual process, the calorific value of the generated gas was
As shown in the figure, it fluctuates depending on the operating rate. Therefore, if the operating rate of the process fluctuates and a difference occurs between the amount of heat of the generated gas when the coefficient γ B is set as a constant and the amount of heat of the actual gas generated, the coefficient γ B is used. There is a difference between the required amount of operating fluid obtained by The desired amount of heat Q S
It deviates from the The correction operation for this deviation has to be carried out only by detecting the deviation in the calorific value of the mixed gas using the calorific value controller 9 and varying the aforementioned operational output MV. There is a problem that the heat amount adjustment of the mixed gas has poor followability with respect to fluctuations in the amount of heat, and changes in the amount of heat are likely to occur. The present invention aims to solve the above problems. (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention first provides a method for mixing generated gas and operating fluid in a gas generation process, by adjusting the flow rate of the generated gas and the amount of heat in the mixing. In the method for adjusting the amount of heat, the value obtained by multiplying the coefficient derived from the balance equation and adding the operating output of the amount of heat amount controller to this value is set as the set value of the flow rate controller that constitutes the flow rate control loop of the operating fluid. The coefficient is
The gist of the present invention is a method of adjusting the amount of heat, which is derived as a function of the operation rate, based on the correspondence between the operation rate of the process and the amount of heat of the generated gas. In addition, the present invention configures a mixing system for the generated gas and operating fluid in the gas generation process, multiplies the calorific value of the gas generated gas by a coefficient derived from the calorific balance equation in mixing, and multiplies the calorific value of the gas generated gas by a coefficient derived from the calorific balance formula in mixing, a first computing unit that derives a setting value of a flow rate controller constituting the flow rate control loop for the operating fluid by applying the operating output; Another gist is a heat amount adjustment mechanism provided with a second arithmetic unit that outputs an output to the arithmetic unit. The second arithmetic unit that derives the generated gas calorific value from the operating rate of the gas generation process is provided with means for storing the correspondence between the operating rate and the calorific value as a data table or as a relational expression. By using it in calculations, the amount of heat can be derived from the operating rate. (Function) In the above configuration, the present invention multiplies the flow rate of the generated gas by a coefficient derived from the calorific balance equation in mixing during the operation of the gas generation process and the accompanying calorific value adjustment process. The amount of heat is adjusted by setting the value obtained by adding the operation output of the heat amount controller to the set value of the flow rate controller that constitutes the flow rate control loop of the operating fluid. At this time, the coefficient is derived as a function of the operation rate based on the correspondence between the operation rate of the process and the calorific value of the generated gas. Therefore, when the operating rate of the process fluctuates and the amount of heat of the generated gas changes, refer to the correspondence between the operating rate and the amount of heat that has been obtained through prior measurement and stored. The actual calorific value of the generated gas can be derived from the operation rate,
By deriving the aforementioned coefficient based on the calorific value of the generated gas derived in this way, and multiplying this coefficient by the flow rate of the generated gas, a flow rate of the operating fluid that is equal to or close to the true required amount is obtained. be able to. In this way, by lowering the ratio of the operation output of the calorific value controller to the set value of the flow rate controller, it is possible to improve the followability of the calorific value adjustment of the mixed gas to fluctuations in the operating rate. Even when the operating rate fluctuates, the amount of heat in the mixed gas can be stabilized. (Example) Next, an example of the present invention will be described with reference to FIG.
In FIG. 1, the same reference numerals are given to the same components as those in FIG. 2. In FIG. 1, reference numeral 1 is a gas process, 2 is a generated gas path, 3 is an operating fluid path, 4 is a mixing section, and 5 is a gas process.
is the mixed gas path. Paths 2 and 3 are provided with flow rate sensors 6 and 7, respectively, and path 5 is provided with a calorie sensor 8, and a calorie controller 9 whose input is the output of this calorie sensor 8. Further, a flow rate control valve 10 is provided in the path 3, and a flow rate control loop 12 is constituted by this flow rate control valve 10, a flow rate sensor 7, and a flow rate controller 11.
The flow rate setting value of 1 is determined by the first calculation unit 14,
The flow rate of the generated gas measured by the flow rate sensor 6 is multiplied by a coefficient derived from the calorific value balance equation in mixing, and the operation output of the calorific value controller 9 is added to this to derive and set. ing. The flow rate of the generated gas used for deriving the coefficient in the first calculator 14 is derived from the operating rate of the process 1 in the second calculator 15 and outputted to the first calculator 14. The coefficients are derived using That is, in the same way as described above, the respective flow rates of the generated gas and operating fluid are F A and F B and the respective calorific values are Q A and Q B , the desired calorific value of the mixed gas is Q S , and the calorific value controller 9 is Letting the operating output of MV be MV, the flow rate controller 11 is set to a value F B obtained by the following equation. F B = Q S −Q A (LA)/Q B −Q S・F A +MV ……(4) In equation (4), Q A (LA) is the generation as a function of the utilization rate LA. It represents the flow rate of gas.
As mentioned above, Q A (LA) in equation (4) is derived from the operation rate LA of process 1 in the second computing unit 15,
Then, the set value F B is derived in the first arithmetic unit 14 using the Q A (LA). As an example, there is a correspondence relationship between the operating rate LA of the process 1 and the calorific value Q A of the generated gas as shown in FIG. If you do so, the second
The computing unit 15 can derive the amount of heat by inputting the operation rate. The correspondence relationship can be stored as a data table or as a function expression. Next, the operation of the present invention and the conventional method will be explained with reference to specific numerical examples. In other words, the operating rate in process 1
The correspondence between LA and generated gas calorific value Q A is shown in Figure 3, and the operation when the operating rate changes from 100% to 80% will be explained. Occupancy rate is 100% and 80%
The conditions for this are shown in the table below.

【表】 以上の条件に於いて、本発明の方法または機構
を適用した結果を次表に示す。
[Table] The following table shows the results of applying the method or mechanism of the present invention under the above conditions.

【表】 第2表に示すように、本発明を適用すると、
MVを除いた操作流体の設定値を、稼働率の変動
にかかわらず真の必要量と等しくすることがで
き、MVの値を極小とすることができるので、混
合ガスの熱量を所望の値QSに安定させることが
できる。勿論、第2の演算器に於いて稼働率から
導出し発生ガスの熱量と、実際の発生ガスの熱量
は、対応関係の近似等により誤差を生じる場合も
あるが、かかる誤差は小さいための実際上は問題
とならず、より正確な近似を行うことにより改善
することもできる。 また、次表は稼働率100%の条件により前述の
係数γBを導出し、この係数γBを定数として演算器
13に於いて設定値の演算を行う前述の従来例を
適用した結果を示したものである。
[Table] As shown in Table 2, when the present invention is applied,
The set value of the operating fluid excluding MV can be made equal to the true required amount regardless of fluctuations in the operating rate, and the value of MV can be minimized, so the calorific value of the mixed gas can be adjusted to the desired value Q. It can be stabilized in S. Of course, there may be an error between the calorific value of the generated gas derived from the operating rate in the second computing unit and the actual calorific value of the generated gas due to approximation of the correspondence relationship, but such error is small and therefore The above is not a problem and can be improved by performing more accurate approximation. In addition, the following table shows the results of applying the above-mentioned conventional example in which the coefficient γ B described above is derived under the condition of 100% availability, and the set value is calculated in the calculator 13 using this coefficient γ B as a constant. It is something that

【表】 第3表に示すように、従来例の場合には、MV
を除いた操作流体の設定値は、稼働率が変動する
と真の必要量から外れてしまい、前述した熱量バ
ランス式(1)に於いては、混合ガスの所望の熱量と
は異なつた熱量として設定されたこととなり、従
つてかかる熱量のずれはMVにより修正しなけれ
ばならないので熱量調節の追従性が悪く、混合ガ
スの熱量変動が生じ易い。 (発明の効果) 本発明は以上の通り、 ガス発生プロセスの発生ガスと操作流体の混合
に於いて、該発生ガスの流量に、混合に於ける熱
量バランス式から導出される係数を乗じ、これに
熱量調節計の操作出力を加えた値を、前記操作流
体の流量制御ループを構成する流量調節計の設定
値とする熱量調節方法に於いて、前記係数は、前
記プロセスの稼働率と発生ガスの熱量との対応関
係に基づき、該稼働率の関数として導出するの
で、稼働率が変動して発生ガスの熱量が変化して
も熱量調節計の操作出力を除いた操作流体の設定
値を真の必要量と等しく、または近い値とするこ
とができ、前記操作出力を極小とすることができ
るので、混合ガスの熱量を安定して所望の熱量に
調節することができるという効果がある。尚、本
発明は連続プロセス以外プロセスにも適用できる
ものである。
[Table] As shown in Table 3, in the case of the conventional example, MV
The setting value of the operating fluid other than , will deviate from the true required amount when the operating rate changes, and in the heat balance equation (1) mentioned above, the setting value of the operating fluid will be set as a heat amount different from the desired heat amount of the mixed gas. Therefore, such a deviation in the amount of heat must be corrected by MV, so the followability of the amount of heat adjustment is poor and fluctuations in the amount of heat in the mixed gas are likely to occur. (Effects of the Invention) As described above, the present invention, in mixing the generated gas and the operating fluid in the gas generation process, multiplies the flow rate of the generated gas by a coefficient derived from the heat balance equation in the mixing, and In the method of adjusting the amount of heat, the value obtained by adding the operation output of the amount of heat amount controller to the operating output of the amount of heat amount controller is set as the setting value of the flow rate controller constituting the flow rate control loop of the operating fluid, the coefficient is determined based on the operating rate of the process and the generated gas. Since it is derived as a function of the operating rate based on the correspondence relationship with the calorific value of can be set to a value equal to or close to the required amount, and the operation output can be minimized, resulting in the effect that the amount of heat of the mixed gas can be stably adjusted to a desired amount of heat. Note that the present invention can also be applied to processes other than continuous processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に対応する系統説明
図、第2図は従来例の系統説明図、第3図はプロ
セスに於ける稼働率と発生ガスの熱量との対応関
係の一例を示す説明図である。 符号1…ガス発生プロセス、2…発生ガス経
路、3…操作流体経路、4…混合部、5…混合ガ
ス経路、6,7…流量センサ、8…熱量センサ、
9…熱量調節計、10…流量調節弁、11…流量
調節計、12…流量制御ループ、13…演算器、
14…第1の演算器、15…第2の演算器。
Fig. 1 is an explanatory diagram of the system corresponding to the embodiment of the present invention, Fig. 2 is an explanatory diagram of the system of the conventional example, and Fig. 3 is an example of the correspondence between the operating rate in the process and the calorific value of the generated gas. It is an explanatory diagram. Reference numeral 1...Gas generation process, 2...Generated gas path, 3...Operation fluid path, 4...Mixing section, 5...Mixed gas path, 6, 7...Flow rate sensor, 8...Calorific value sensor,
9... Calorific value controller, 10... Flow rate control valve, 11... Flow rate controller, 12... Flow rate control loop, 13... Arithmetic unit,
14...first arithmetic unit, 15...second arithmetic unit.

Claims (1)

【特許請求の範囲】 1 ガス発生プロセスの発生ガスと操作流体の混
合に於いて、該発生ガスの流量に、混合に於ける
熱量バランス式から導出される係数を乗じ、これ
に熱量調節計の操作出力を加えた値を、前記操作
流体の流量制御ループを構成する流量調節計の設
定値とする熱量調節方法に於いて、前記係数は、
前記プロセスの稼働率と発生ガスの熱量との対応
関係に基づき、該稼働率の関数として導出するこ
とを特徴とする発生ガスの熱量調節方法。 2 ガス発生プロセスの発生ガスと操作流体の混
合系統を構成し、該発生ガスの量に、混合に於け
る熱量バランス式から導出される係数を乗じ、こ
れに熱量調節計の操作出力を加えて、前記操作流
体の流量制御ループを構成する流量調節計の設定
値を導出する第1の演算器と、ガス発生プロセス
の稼働率から発生ガスの熱量を導出して前記第1
の演算器に出力する第2の演算器を設けたことを
特徴とする発生ガスの熱量調節機構。 3 第2項記載の第2の演算器には、プロセスの
稼働率と発生ガスの熱量との対応関係をデータテ
ーブルとして記憶する手段を設けたことを特徴と
する発生ガスの熱量調節機構。 4 第2項記載の第2の演算器には、プロセスの
稼働率と発生ガスの熱量との対応関係を関数式と
して記憶する手段を設けたことを特徴とする発生
ガスの熱量調節機構。
[Claims] 1. In mixing the generated gas and the operating fluid in the gas generation process, the flow rate of the generated gas is multiplied by a coefficient derived from the calorific balance equation for mixing, and then the calorific value controller is calculated. In the heat amount adjustment method in which a value obtained by adding the operation output is set as a set value of a flow rate controller constituting the flow rate control loop of the operation fluid, the coefficient is:
A method for adjusting the amount of heat of generated gas, characterized in that the amount of heat is derived as a function of the rate of operation based on the correspondence between the rate of operation of the process and the amount of heat of the generated gas. 2 Configure a mixing system for the generated gas and operating fluid in the gas generation process, multiply the amount of the generated gas by a coefficient derived from the calorific balance equation in mixing, and add the operational output of the calorific value controller to this. , a first calculator for deriving a set value of a flow rate controller constituting the flow rate control loop for the operating fluid;
A mechanism for adjusting the amount of heat of generated gas, characterized in that it is provided with a second computing unit that outputs an output to the computing unit. 3. A mechanism for adjusting the amount of heat of generated gas, characterized in that the second arithmetic unit according to item 2 is provided with means for storing the correspondence between the operating rate of the process and the amount of heat of the generated gas as a data table. 4. A mechanism for adjusting the amount of heat of generated gas, characterized in that the second arithmetic unit according to item 2 is provided with means for storing the correspondence between the operating rate of the process and the amount of heat of the generated gas as a functional expression.
JP20079789A 1989-08-02 1989-08-02 Method and mechanism for calory control of generated gas Granted JPH0364396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20079789A JPH0364396A (en) 1989-08-02 1989-08-02 Method and mechanism for calory control of generated gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20079789A JPH0364396A (en) 1989-08-02 1989-08-02 Method and mechanism for calory control of generated gas

Publications (2)

Publication Number Publication Date
JPH0364396A JPH0364396A (en) 1991-03-19
JPH0524195B2 true JPH0524195B2 (en) 1993-04-07

Family

ID=16430351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20079789A Granted JPH0364396A (en) 1989-08-02 1989-08-02 Method and mechanism for calory control of generated gas

Country Status (1)

Country Link
JP (1) JPH0364396A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574801B2 (en) * 1999-08-27 2010-11-04 住友精化株式会社 Liquefied gas mixing equipment

Also Published As

Publication number Publication date
JPH0364396A (en) 1991-03-19

Similar Documents

Publication Publication Date Title
US4621927A (en) Mixture control apparatus and mixture control method
EP0185600A1 (en) A transient derivative scheduling control system
KR20170135708A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
CN100462887C (en) Semiconductor production system and semiconductor production process
JP4112900B2 (en) Control method and control apparatus
JPH0524195B2 (en)
JP2018526564A (en) Method and corresponding apparatus for controlling the pressure and mixing ratio of a rocket engine
JPH0697090B2 (en) Quality control method in calorie control device
JPS58207103A (en) Non-interference control system of plural control systems
JPS629405A (en) Process controller
JPS59128602A (en) Process control device
Balchen et al. An adaptive controller based upon continuous estimation of the closed loop frequency response
JPH0435767B2 (en)
JPH1163481A (en) Method and apparatus for controlling pressure of fuel gas in gas fired boiler
JPS5936803A (en) Method for correcting feedforward model
SU1321679A1 (en) Automatic device for controlling process for ammonia synthesis
JP2885544B2 (en) Dead time compensation controller
JPS59149504A (en) Process controller
JPH04277013A (en) Method and apparatus for controlling wet exhaust gas desulfurization
SU1527156A1 (en) Method of controlling ammonia synthesis process
JPS62248902A (en) Controller for temperature of steam
JPS62226316A (en) Flow rate control device
JPH11286782A (en) Substrate treating device
JPH04295901A (en) State feedback controller
JP2645112B2 (en) Gain adaptive control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees