JP4574801B2 - Liquefied gas mixing equipment - Google Patents

Liquefied gas mixing equipment Download PDF

Info

Publication number
JP4574801B2
JP4574801B2 JP2000159412A JP2000159412A JP4574801B2 JP 4574801 B2 JP4574801 B2 JP 4574801B2 JP 2000159412 A JP2000159412 A JP 2000159412A JP 2000159412 A JP2000159412 A JP 2000159412A JP 4574801 B2 JP4574801 B2 JP 4574801B2
Authority
JP
Japan
Prior art keywords
liquefied gas
pressure
mixing
liquefied
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000159412A
Other languages
Japanese (ja)
Other versions
JP2001141193A (en
JP2001141193A5 (en
Inventor
正訓 三宅
一生 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aerosol Industry Co Ltd
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Toyo Aerosol Industry Co Ltd
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aerosol Industry Co Ltd, Sumitomo Seika Chemicals Co Ltd filed Critical Toyo Aerosol Industry Co Ltd
Priority to JP2000159412A priority Critical patent/JP4574801B2/en
Publication of JP2001141193A publication Critical patent/JP2001141193A/en
Publication of JP2001141193A5 publication Critical patent/JP2001141193A5/ja
Application granted granted Critical
Publication of JP4574801B2 publication Critical patent/JP4574801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2種以上の液化ガスの混合装置に関する。特に、本発明は、エアゾル噴射剤の構成成分である2種以上の液化ガスを混合する装置に関する。
【0002】
【従来の技術】
殺虫剤、塗料、化粧品、消臭剤、医薬品等の主成分を、アルコール、塩化メチレン、メチルクロロフォルム、ケロセン等の溶媒に溶かし、手軽にエアゾルとして使用できるように、スプレイ缶に充填されたエアゾル製品は、近年ますます、その用途が広がりつつある。しかし、エアゾル製品の用途が多様化するにつれ、それに応じて、スプレイ缶での充填圧力、噴射圧力等が異なった、種々のタイプの噴射剤が望まれている。
【0003】
従来、所望の噴射剤は、数種類の噴射剤成分ガスを、スプレイ缶に充填された時に、所望の充填圧力、噴射圧力等となるよう、それらの所定量を耐圧容器内に飽和蒸気圧の低い順に液体状態で充填し、振とう、撹拌して、均一な混合液を得、その後、タンクに移送し貯蔵されてきた。しかし、このバッチ的方法では大きなタンクが必要であり、また、一つのバッチ毎にタンクを設置する必要がある。そのため、処方が多様化すると、エアゾル製品に噴射剤を充填する噴射剤充填工場に多数のタンクや、それに付随する諸設備を設置しなければならないという問題が生じる。
【0004】
【発明が解決しようとする課題】
そこで、上記したような、設備的にも、スペース的にも不経済となるという課題を解決して、需要者のニーズに応じた各種のエアゾル製品を、必要な時に、必要な量だけオンサイトで製造できるコンパクトな装置の開発が望まれている。
【0005】
しかしながら、従来のバッチ的プロセスによって、上記課題を解決することは非常に困難である。そこで、バッチ的プロセスに代えてフロー的なプロセスを設計する必要があるが、その場合、液化ガスの流量を正確に計測しなければならない。そのためには、流体の流量測定に関して、計測中に気液が混合した状態にならないよう、細心の温度管理、圧力管理が必要となる。
【0006】
本発明は、上記した事情のもとで考え出されたものであって、噴射剤などを構成する2種以上の液化ガスを、コンパクトな装置構成により安定かつ正確に流量測定して混合することができる、液化ガスの混合装置を提供することをその課題とする。
【0007】
【発明の開示】
上記課題を解決するために、本発明によれば、2種以上の液化ガスを混合する装置であって、上記各液化ガスの供給源と、上記各供給源に接続された個別配管と、上記各個別配管に設けられて、各供給源からの液化ガスをその飽和蒸気圧以上の圧力で液相にて供給するための送液手段と、上記各個別配管に設けられて、当該個別配管を流れる液化ガスの流量を制御するための流量制御手段と、上記各個別配管に接続された共通配管と、を備え、上記各個別配管は、上記各流量制御手段よりも下流側においてリサイクル手段に接続されており、上記リサイクル手段は上記各個別配管を流れる液化ガスの流量が所定の定常状態になるまで各液化ガスを上記各供給源にリサイクルさせることを特徴とする、液化ガスの混合装置が提供される
【0008】
一方、本発明の混合装置を用いて実施される混合方法の第1の側面によれば、2種以上の液化ガスを混合する方法であって、各液化ガスを収容する個別の供給源からそれぞれの液化ガスの飽和蒸気圧以上の圧力をかけた状態において液相にて流量を制御しつつ各液化ガスを個別配管を介して供給し、さらにこれら個別配管に接続された共通配管に供給するとともに混合することを特徴とする、液化ガスの混合方法が提供される。
【0009】
上記第1の側面においては、各液化ガスに、それぞれの飽和蒸気圧以上の圧力をかけた状態で送液するため、蒸発を抑えて、液相のみで流量を測定し、制御することができる。従って、各液化ガスが個別配管から共通配管に供給され、次工程に送液される間に各液化ガスが混合され、所望の組成の液化ガスの混合物を得ることができる。例えば、液化ガスの混合物がエアゾル噴射剤である場合、次工程でのエアゾル製品の充填工程に送液される間に混合が行われ、上記エアゾル噴射剤をオンサイトで調製することが可能となる。
【0010】
また、本発明の混合装置を用いて実施される混合方法の第2の側面によれば、2種以上の液化ガスを混合する方法であって、各液化ガスを収容する個別の供給源からそれぞれの液化ガスの飽和蒸気圧以上の圧力をかけた状態において液相にて流量を制御しつつ各液化ガスを個別配管を介して供給し、さらにこれら個別配管に接続された共通配管を介して貯留手段に導入するとともに混合することを特徴とする、液化ガスの混合方法が提供される。
【0011】
上記第2の側面においては、上記各液化ガスを共通配管を介して貯留手段に導入するとともに混合する。すなわち、各液化ガスの混合は、各液化ガスの供給源からその所定量を上記したように流量を測定、制御しつつ、個別配管、共通配管を介して貯留手段に導入するとともに混合する。さらに、貯留手段において機械的撹拌等により混合を促進させてもよい。この場合、各液化ガスの所定量を同時に貯留手段に導入してもよいし、時差を設けて個別に導入してもよい。
【0012】
上記第2の側面において、貯留手段内部の圧力は、不活性ガス、又は上記液化ガスのうちの最も蒸気圧の高い成分を加圧ガスとして供給することにより、上記液化ガスのうちの最も蒸気圧の高い成分が示す飽和蒸気圧以上の圧力に保持されることが好ましい。このようにすることによって、各液化ガスの個別配管、共通配管内の圧力は、それぞれの液化ガスの飽和蒸気圧以上に保持されることになり、気液が混合した状態とならないため、上記流量測定、制御を安定して行なうことができる。また、混合物からの成分蒸発による組成変化を抑制又は低減できる。
【0013】
また、上記第1の側面及び第2の側面において、共通配管に第1の混合器を設けることにより、各液化ガスの混合を良好に行うことができる。上記第1の混合器に加えて、同じく共通配管における当該第1の混合器よりも下流側に第2の混合器を設け、第1の混合器で混合された液化ガスをさらに第2の混合器で混合すると、各液化ガスの混合が一層促進され、より好ましい結果が得られる。
【0014】
さらに、上記第1の側面及び第2の側面において、各個別配管を流れる液化ガスを、共通配管に供給する前に、供給源にリサイクルさせ、上記各液化ガスの流量が所定の定常状態になってはじめて、上記共通配管に各液化ガスを供給する。このようにして、各液化ガスの流量を定常状態として、より正確な流量制御を行なった上で、各液化ガスの流れを同時に切替えて共通配管に供給するとともに混合するか、共通配管を介して貯留手段に導入するとともに混合すると、さらに好適に各液化ガスの混合を行うことができる。
【0015】
本発明は、エアゾル噴射剤の成分ガスとしての液化ガスを混合する場合に用いるのが好ましい。エアゾル噴射剤を構成する液化ガスの例としては、プロパン、n−ブタン、イソブタン等のハイドロカーボン類、ジメチルエーテル、ジエチルエーテル等のエーテル類、塩化メチル等のクロロカーボン類、フロン11(CCl3F)、フロン12(CCl22)等のフロロカーボン類、炭酸ガス、等を挙げることができる。
【0016】
ただし、本発明の混合装置を用いて実施される混合方法は、エアゾル噴射剤の成分ガスの混合に限定されず、一般の液化ガス、例えば、二酸化硫黄、硫化水素、亜酸化窒素、アンモニア、エチレン、エチレンオキシド、イソブテン等の混合にも用いることができる。
【0017】
なお、本発明の混合装置においては、貯留手段に窒素ガス、アルゴンガス等の不活性ガス、又は各液化ガス成分のうち最も蒸気圧の高い成分を導入することによって、最も蒸気圧の高い成分の飽和蒸気圧以上の圧力に保持することができるため、バッファータンクとしての役割も果たし、例えば、混合液化ガスがエアゾル噴射剤として用いられる場合、後の充填工程で圧力変動が生じても、その影響を液化ガスの混合に及ぼすことを防ぐという効果も得られる。
【0018】
【0019】
【0020】
【0021】
また、上記各流量制御手段は、例えば質量流量測定器と流量制御弁とで構成することができる。
【0022】
上記リサイクル手段は、上記各流量制御手段よりも下流側において、開閉弁、圧力調整器、配管を含む。
【0023】
さらに、本発明の混合装置において、貯留手段内部の加圧手段として、貯留手段の一部又は全部を伸縮できる構成とし、貯留手段の容積を可変とすることもできる。この場合、上記貯留手段内部において、不活性ガス又は上記各液化ガスのうち最も蒸気圧の高い成分の量を一定とし、上記貯留手段の容積を可変とすることにより、上記貯留手段内部の圧力を最も蒸気圧の高い成分が示す飽和蒸気圧以上の圧力に保持する方式を採ることもできる。この場合、予め、一定量の不活性ガスで加圧した後は、不活性ガス又は上記各液化ガスのうち最も蒸気圧の高い成分の追加導入、パージ等の操作が不要となるという効果がある。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しつつ説明する。
【0025】
図1は、各液化ガスを個別配管から共通配管に供給するとともに混合する形態にかかるフローチャートを示す(第1の実施形態)。図2は、各液化ガスを個別配管に接続された共通配管を介して貯留手段に導入するとともに混合する形態にかかるフローチャートを示す(第2の実施形態)。図3は、第2の実施形態において、貯留手段の内部を加圧する加圧手段をさらに1つ並設した形態にかかるフローチャートを示す(第3の実施形態)。
【0026】
第1の実施形態は、図1に示されるように、それぞれの貯蔵タンク(供給源)1a、1b、1cに貯蔵された各液化ガスは、各貯蔵タンクの下部から液体として送液手段2a、2b、2cに入り、加圧されて、まず、各個別配管ILa、ILb、ILcに供給され、その後、共通配管CLに供給される。このとき、送液手段としては、例えば、渦巻ポンプ等、通常の液体輸送用のポンプが用いられる。次いで、質量流量測定器3a、3b、3cと流量制御弁4a、4b、4cとを含む流量制御手段で質量流量が測定され、各液化ガスの流量が制御される。質量流量測定器としては、通常、質量流量計が用いられ、その形式としては特に限定されず、コリオリ方式、角運動量方式、ジャイロ方式等種々のものが用いられる。
【0027】
各液化ガスの送液手段2a、2b、2cの吐出部には、リリーフ弁21a、21b、21cが設けられている。このリリーフ弁21a、21b、21cの設定圧は、流量制御弁4a、4b、4cが各液化ガスの流量を制御したときの個別配管(ILa、ILb、ILc)の圧力よりも若干高く設定され、各液化ガスが気液混合状態とならずに、常に液体として流量制御されるように圧力を保つ。また、下流側で、不測の事態等が生じて、各液化ガスの流れが停止した場合に、それぞれの貯蔵タンク(供給源)1a、1b、1cにバイパスさせる安全弁としての役目も果たす。
【0028】
質量流量の測定値は、流量制御弁4a、4b、4cに付随する流量調節計5a、5b、5cに送られ、この流量調節計5a、5b、5cは、予め入力された各液化ガスの質量流量の設定値と測定値とが等しくなるよう流量制御弁4a、4b、4cの開度を調節する。一定時間経過後には、各液化ガスの質量流量の測定値は、設定値とほぼ等しい値にコントロールされる。上記の流量制御が行なわれている間、各液化ガスは、開閉弁6a、6b、6c、圧力調整器8a、8b、8c及びリサイクル配管RLa、RLb、RLcを含むリサイクル手段Ra、Rb、Rcを介してリサイクルされ、貯蔵タンク(供給源)1a、1b、1cに戻される。
【0029】
リサイクル手段Ra、Rb、Rcは、圧力調整器8a、8b、8cによって、最も高い蒸気圧を持つ液化ガス成分の飽和蒸気圧よりも高い圧力で一定に保たれている。その圧力は、混合する液化ガスの種類によって一概にはいえないが、通常、0.2〜3MPa(ゲージ圧をいい、以下も同様である)の範囲である。また、この圧力は、後記する混合液化ガスの貯留手段11の内部圧より若干高い圧力とされ、圧力調整器8a、8b、8cとしては、一次側(流量制御弁4a、4b、4cの出口側)の圧力を検知して、予め入力された圧力に自動的に調節する自律式圧力調整弁が好適に用いられる。
【0030】
上記のようにして、各液化ガスの質量流量の測定値と設定値が一致し、定常状態になった後、リサイクル手段Ra、Rb、Rc をリサイクルしている各液化ガスは、共通配管CLに同時にその流れが切替えられる。各液化ガスの流れの切替えは、リサイクル手段Ra、Rb、Rcの開閉弁6a、6b、6cが一斉に閉となり、同時に個別配管ILa、ILb、ILcの開閉弁7a、7b、7cが一斉に開となることにより行なわれる。その結果、各液化ガスは共通配管CLに供給され、共通配管CL内を流れる間に、第1の混合器9及び第2の混合器10にて混合される。
【0031】
上記の切替の指示は、通常、タイマやコンピュータ制御等の手段により行なわれる。切替指示を受けたリサイクル手段Ra、Rb、Rcの開閉弁6a、6b、6c及び個別配管ILa、ILb、ILcの開閉弁7a、7b、7cは、電磁式、空気圧式等の通常の方式により弁を開閉し、各液化ガスの流れを同時に切替える。
【0032】
上記共通配管CLに設けられた第1の混合器9は、耐圧容器内に、各液化ガスが個別に導入されるノズルが、液体の流れと平行に配設されており、ノズルを上記のように配設することにより、それぞれの液化ガスの動圧が流れに影響を与えない状態にて予備的な混合が行なわれる。
【0033】
また、同じく共通配管CLに設けられた第2の混合器10は、加圧下で混合を行なうためインライン・ミキシング方式の混合器が好ましく用いられる。すなわち、流体が管路内を通過する間に、管路に設置された、多数の混合素子(エレメント)によって、流体の持つ流動エネルギーを利用し、流体自身が分割、反転、転換を繰り返しながら混合される静止型混合器が好適に用いられる。
【0034】
このようにして、共通配管CLに供給されるとともに混合された液化ガスは、共通配管CLと遮断弁16を介して接続されている次工程、例えば、エアゾル製品に噴射剤を充填する充填工程(図示せず)に送液される。
【0035】
つぎに、図2に示される第2の実施形態について説明する。第2の実施形態は、図2に示されるように、共通配管CLと遮断弁16の間に貯留手段11が設けられた構成となっており、それ以外の構成は第1の実施形態と同様である。従って、第1の実施形態と重複する部分についての説明は省略する。
【0036】
この第2の実施形態では、共通配管CLに供給された各液化ガスは、両混合器9、10で混合された後に貯留手段11に導入される。このとき、貯留手段11の内部に窒素ガス、アルゴンガス等の不活性ガスあるいは、各液化ガスのうちの最も高い蒸気圧を持つ成分ガスを導入して、加圧することが好ましい。その圧力は、各液化ガスのうち、最も高い蒸気圧を持つ成分が示す飽和蒸気圧以上に保たれる。このようにすることによって、混合液化ガスを液体状態で安定して貯留することができる。
【0037】
不活性ガスとしては、通常、窒素ガスが用いられる。圧力調節計15が貯留手段11の内部圧力を検出し、予め設定された圧力となるよう、圧力が低下すれば、窒素ガスボンベ、液体窒素又はPSA方式等の加圧手段17から圧力調節弁13を経由して、窒素ガスを導入し、圧力が上昇すれば圧力調節弁14から窒素ガスをパージする。このような動作を行なうことにより、貯留手段11の内部圧力を、設定した圧力に保持することができる。
【0038】
また、加圧ガスとしては、不活性ガスの代わりに各液化ガスのうちの最も高い蒸気圧を持つ成分を加圧ガスとして用いることもできる。この場合、加圧手段17として当該成分ガスのガスボンベ等を用いればよい。
【0039】
次に、図3に示す第3の実施形態は、第2の実施形態における貯留手段の内部を加圧する加圧手段をさらに1つ並設した形態である。第3の実施形態においては、図3に示すように、不活性ガスによる第1の加圧手段17と最も高い蒸気圧を持つ成分ガスによる加圧手段18を切替可能に設けている。このように加圧手段を並設し、切替弁19、20を操作することにより、加圧ガスとして不活性ガスを用いる場合と、成分ガスを用いる場合を適宜選択することができる。
【0040】
また、第2及び第3の実施形態において、上記貯留手段内部の圧力保持に不活性ガスの圧力を用いる場合、各液化ガス成分の混合物の組成は、実質的に影響を受けることはない。しかし、不活性ガスに代えて上記液化ガスのうちの最も蒸気圧の高い成分を加圧ガスとして用いた場合、気体状態で供給される加圧用の成分ガスが一部凝縮するため組成に影響を与える場合があるので、予めその影響を加味して、最も蒸気圧の高い成分の共通配管への流量を設定することにより、所望の組成の液化ガスの混合物を得ることができる。
【0041】
第2及び第3の実施形態において、貯留手段11としては、通常、耐圧タンクが用いられ、混合液化ガスの液面の検出と開閉弁6a、6b、6c、開閉弁7a、7b、7c、遮断弁16の制御を行なう液面検出器12が備えられている。この液面検出器12は液面が上限に達すると、開閉弁7a、7b、7cを閉とし、開閉弁6a、6b、6cを開として、各液化ガスをリサイクル手段に戻して混合を停止するとともに、液面が下限を切った場合、遮断弁16を閉として液相部の確保を行なうための機能を持っている。液面が上限、下限内の適正レベルにあるとき、混合液化ガスは、例えばエアゾル噴射剤として、遮断弁16を経て、図示しないエアゾル製品の充填工程へ送られる。
【0042】
以下、本発明について実施例を基にして、さらに詳細に説明する。
【0043】
【実施例1】
図2に示した実施形態に従って、下記表1に示した組成のエアゾル噴射剤を製造するべく3種の液化ガスを混合した。(製造量25kg/分)
【0044】
【表1】

Figure 0004574801
【0045】
プロパン(a)、ブタン(b)、ジメチルエーテル(c)はそれぞれの貯蔵タンク1a、1b、1cに貯蔵されており、送液手段2a、2b、2cによって1.1MPaまで加圧されて個別配管ILa、ILb、ILcに供給し、リサイクル手段Ra、Rb、Rc内をリサイクルさせた。この時、流量制御弁4a、4b、4cに付属する流量調節計5a、5b、5cには各液化ガスが上記重量%となるように設定値が入力されており、質量流量測定器3a、3b、3c(オーバル社製、マイクロモーション流量計)によって測定された各液化ガスの測定値が、上記の設定値と等しくなるよう各液化ガスの流量が制御された。また、リサイクル手段Ra、Rb、Rcの圧力は圧力調整器8a、8b、8cによって、それぞれ1.05MPaに設定された。
【0046】
上記リサイクルを2分行なった後に、各液化ガスの質量流量の測定値が設定値と等しくなった時点で、リサイクル配管RLa、RLb、RLcを流れる各液化ガスの流れを共通配管CLに切替えた。切替指示はタイマによって行ない、開閉弁6a、6b、6cを同時に閉とするとともに、開閉弁7a、7b、7cを同時に開とし、3種類の液化ガスを共通配管CLに導入した。
【0047】
各液化ガスはまず、第1の混合器9で混合された後、第2の混合器10でさらに混合された。第2の混合器10としては、静止型混合器((株)ノリタケカンパニーリミテド製、ノリタケスタティックミキサ)を用いた。上記の第1の混合器9、第2の混合器10によって混合され、共通配管CLに供給されるとともに混合された混合液化ガスは貯留手段11に貯留された。貯留手段11は窒素ガスによって、1MPaの一定圧力に保持された。
【0048】
一方、混合液化ガスを貯留手段11に貯留する間、第2の混合器10の出口から、混合された液化ガスをサンプリングし、ガスクロマトグラフィにより各成分を分析したところ、表2に示す測定値が得られた。
【0049】
【表2】
Figure 0004574801
【0050】
この結果から、本発明を実施することにより、バッチ的に耐圧容器に各成分を、蒸気圧の低い順に一成分ずつ計量して仕込み、振とう、撹拌する従来法とほぼ、同一精度で液化ガスの混合ができることが明らかとなった。
【0051】
【発明の効果】
以上述べたように、本発明により、液化ガスの混合を必要な時に必要な量だけ、オンサイトで、コンパクトな装置によって行なうことができる。その結果、例えば、従来エアゾル噴射剤を各処方毎にバッチ的に数種類の液化ガスを混合し、それらを各タンクに貯蔵するといった設備的、スペース的な無駄を省くことが可能となった。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示すフローチャートである。
【図2】 本発明の第2の実施形態を示すフローチャートである。
【図3】 本発明の第3の実施形態を示すフローチャートである。
【符号の説明】
1a、1b、1c 液化ガス貯蔵タンク(供給源)
2a、2b、2c 送液手段
3a、3b、3c 質量流量測定器
4a、4b、4c 質量流量制御弁
5a、5b、5c 流量調節計
6a、6b、6c 開閉弁
7a、7b、7c 開閉弁
8a、8b、8c 圧力調整器
9 第1の混合器
10 第2の混合器
11 貯留手段
12 液面検出器
13、14 圧力調節弁
15 圧力調節計
16 遮断弁
17、18 加圧手段
19、20 切替弁
ILa、ILb、ILc 個別配管
CL 共通配管
RLa、RLb、RLc リサイクル配管
Ra、Rb、Rc リサイクル手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for mixing two or more liquefied gases. In particular, the present invention relates to an apparatus for mixing two or more liquefied gases that are constituents of an aerosol propellant.
[0002]
[Prior art]
Aerosol products filled in spray cans so that the main components such as insecticides, paints, cosmetics, deodorants and pharmaceuticals can be dissolved in alcohol, methylene chloride, methylchloroform, kerosene, etc. In recent years, its use has been expanding. However, as the use of aerosol products is diversified, various types of propellants with different filling pressures and spraying pressures in spray cans are desired.
[0003]
Conventionally, a desired propellant has a low saturated vapor pressure in a pressure-resistant container so that a desired filling pressure, an injection pressure, and the like are obtained when several types of propellant component gases are filled in a spray can. It was filled in a liquid state in order, shaken and stirred to obtain a uniform mixed solution, and then transferred to a tank and stored. However, this batch method requires a large tank, and it is necessary to install a tank for each batch. For this reason, when the prescription is diversified, there arises a problem that a large number of tanks and facilities associated therewith must be installed in a propellant filling factory that fills aerosol products with a propellant.
[0004]
[Problems to be solved by the invention]
Therefore, by solving the above-mentioned problem that it is uneconomical in terms of equipment and space, various types of aerosol products that meet the needs of consumers are on-site in the required amount when needed. The development of a compact device that can be manufactured at the same time is desired.
[0005]
However, it is very difficult to solve the above problem by a conventional batch process. Therefore, it is necessary to design a flow process instead of a batch process. In this case, the flow rate of the liquefied gas must be accurately measured. For that purpose, regarding temperature measurement of fluid, meticulous temperature management and pressure management are necessary so that gas and liquid are not mixed during measurement.
[0006]
The present invention has been conceived under the circumstances described above, and two or more kinds of liquefied gases constituting a propellant and the like are stably and accurately measured and mixed by a compact device configuration. It is an object of the present invention to provide a liquefied gas mixing device that can perform the above.
[0007]
DISCLOSURE OF THE INVENTION
In order to solve the above-described problems , according to the present invention , an apparatus for mixing two or more kinds of liquefied gases, each liquefied gas supply source, individual pipes connected to the respective supply sources, Provided in each individual pipe, a liquid feeding means for supplying the liquefied gas from each supply source in a liquid phase at a pressure equal to or higher than the saturated vapor pressure, and provided in each of the individual pipes. A flow rate control means for controlling the flow rate of the flowing liquefied gas, and a common pipe connected to each of the individual pipes, wherein each of the individual pipes is connected to a recycling means downstream of the flow rate control means. The liquefied gas mixing apparatus is characterized in that the recycle means recycles the liquefied gas to the supply sources until the flow rate of the liquefied gas flowing through the individual pipes reaches a predetermined steady state. Is done .
[0008]
On the other hand , according to the first aspect of the mixing method implemented using the mixing apparatus of the present invention, it is a method of mixing two or more liquefied gases, each from an individual supply source containing each liquefied gas. Each liquefied gas is supplied through individual pipes while controlling the flow rate in the liquid phase in a state where a pressure equal to or higher than the saturated vapor pressure of the liquefied gas is supplied, and further supplied to common pipes connected to these individual pipes There is provided a method for mixing liquefied gas, characterized by mixing.
[0009]
In the first aspect, since liquid is sent to each liquefied gas in a state where a pressure equal to or higher than the respective saturated vapor pressure is applied, evaporation can be suppressed and the flow rate can be measured and controlled only in the liquid phase. . Accordingly, each liquefied gas is supplied from the individual pipes to the common pipe, and each liquefied gas is mixed while being sent to the next process, whereby a mixture of liquefied gases having a desired composition can be obtained. For example, when the mixture of liquefied gas is an aerosol propellant, mixing is performed while being sent to the filling step of the aerosol product in the next step, and the aerosol propellant can be prepared on-site. .
[0010]
Further, according to the second aspect of the mixing method implemented using the mixing apparatus of the present invention, it is a method of mixing two or more liquefied gases, each from an individual supply source containing each liquefied gas. Each liquefied gas is supplied via individual pipes while controlling the flow rate in the liquid phase in a state where a pressure equal to or higher than the saturated vapor pressure of the liquefied gas is applied, and stored via a common pipe connected to these individual pipes. A method for mixing liquefied gas is provided, characterized in that it is introduced into the means and mixed.
[0011]
In the second aspect, each liquefied gas is introduced into the storage means through a common pipe and mixed. That is, each liquefied gas is mixed and introduced into the storage means through individual piping and common piping while measuring and controlling the flow rate of the liquefied gas from the supply source of each liquefied gas as described above. Furthermore, mixing may be promoted by mechanical stirring or the like in the storage means. In this case, a predetermined amount of each liquefied gas may be introduced simultaneously into the storage means, or may be introduced individually with a time difference.
[0012]
In the second aspect, the pressure inside the storage means is the highest vapor pressure of the liquefied gas by supplying an inert gas or a component having the highest vapor pressure of the liquefied gas as a pressurized gas. It is preferable to be maintained at a pressure equal to or higher than the saturated vapor pressure indicated by the high component. By doing so, the pressure in the individual piping and common piping of each liquefied gas will be maintained at or above the saturated vapor pressure of each liquefied gas, and the gas-liquid will not be mixed. Measurement and control can be performed stably. Moreover, the composition change by the component evaporation from a mixture can be suppressed or reduced.
[0013]
Moreover, in the said 1st side surface and 2nd side surface, mixing of each liquefied gas can be performed favorably by providing a 1st mixer in common piping. In addition to the first mixer, a second mixer is also provided on the downstream side of the first mixer in the common pipe, and the liquefied gas mixed in the first mixer is further mixed with the second mixer. When mixed in a vessel, mixing of each liquefied gas is further promoted, and more preferable results are obtained.
[0014]
Furthermore, in the first side surface and the second side surface, the liquefied gas flowing through each individual pipe is recycled to the supply source before being supplied to the common pipe, and the flow rate of each liquefied gas becomes a predetermined steady state. first time Te, that to supply the liquefied gas into the common pipe. In this way, the flow rate of each liquefied gas is set to a steady state and more accurate flow rate control is performed, and then the flow of each liquefied gas is simultaneously switched and supplied to the common pipe and mixed, or via the common pipe When introduced into the storage means and mixed, each liquefied gas can be more suitably mixed.
[0015]
This onset Ming is preferably used when mixing the liquefied gas as a component gas aerosol propellant. Examples of the liquefied gas constituting the aerosol propellant include hydrocarbons such as propane, n-butane and isobutane, ethers such as dimethyl ether and diethyl ether, chlorocarbons such as methyl chloride, and Freon 11 (CCl 3 F). Fluorocarbons such as chlorofluorocarbon 12 (CCl 2 F 2 ), carbon dioxide gas, and the like.
[0016]
However, the mixing method carried out using the mixing apparatus of the present invention is not limited to mixing the component gas of the aerosol propellant, but is a general liquefied gas such as sulfur dioxide, hydrogen sulfide, nitrous oxide, ammonia, ethylene , Ethylene oxide, isobutene and the like can also be used.
[0017]
In the mixing device of the present invention, by introducing an inert gas such as nitrogen gas or argon gas or a component having the highest vapor pressure among the liquefied gas components into the storage means, the component having the highest vapor pressure is obtained. Since it can be maintained at a pressure equal to or higher than the saturated vapor pressure, it also serves as a buffer tank.For example, when mixed liquefied gas is used as an aerosol propellant, even if pressure fluctuations occur in the subsequent filling process, the effect The effect of preventing the liquefied gas from being mixed with the liquefied gas is also obtained.
[0018]
[0019]
[0020]
[0021]
Moreover, each said flow control means can be comprised with a mass flow measuring device and a flow control valve, for example.
[0022]
It said recycling means, the downstream side with respect to the respective flow control means, the on-off valve, pressure regulator, including a pipe.
[0023]
Furthermore, in the mixing apparatus of the present invention, as the pressurizing means inside the storage means, a part or all of the storage means can be expanded and contracted, and the volume of the storage means can be made variable. In this case, in the storage means, the amount of the component having the highest vapor pressure among the inert gas or each of the liquefied gases is made constant, and the volume of the storage means is made variable so that the pressure inside the storage means is changed. It is also possible to adopt a method of maintaining the pressure higher than the saturated vapor pressure indicated by the component having the highest vapor pressure. In this case, after pressurizing with a certain amount of inert gas in advance, there is an effect that the operation of additional introduction, purging, etc. of the inert gas or the component having the highest vapor pressure among the above liquefied gases becomes unnecessary. .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0025]
FIG. 1 shows a flowchart according to a mode in which each liquefied gas is supplied from an individual pipe to a common pipe and mixed (first embodiment). FIG. 2 shows a flowchart according to a mode in which each liquefied gas is introduced into the storage means via a common pipe connected to the individual pipe and mixed (second embodiment). FIG. 3 shows a flowchart according to a mode in which one more pressurizing means for pressurizing the inside of the storage means is arranged in parallel in the second embodiment (third embodiment).
[0026]
In the first embodiment, as shown in FIG. 1, each liquefied gas stored in each storage tank (supply source) 1a, 1b, 1c is supplied as liquid from the lower part of each storage tank. 2b and 2c are entered, pressurized, supplied to the individual pipes ILa, ILb, and ILc, and then supplied to the common pipe CL. At this time, as the liquid feeding means, for example, a normal liquid transport pump such as a spiral pump is used. Next, the mass flow rate is measured by the flow rate control means including the mass flow rate measuring devices 3a, 3b, 3c and the flow rate control valves 4a, 4b, 4c, and the flow rate of each liquefied gas is controlled. As the mass flow meter, a mass flow meter is usually used, and the type thereof is not particularly limited, and various types such as a Coriolis method, an angular momentum method, and a gyro method are used.
[0027]
Relief valves 21a, 21b, and 21c are provided at the discharge portions of the liquefied gas feeding means 2a, 2b, and 2c. The set pressures of the relief valves 21a, 21b, 21c are set slightly higher than the pressures of the individual pipes (ILa, ILb, ILc) when the flow rate control valves 4a, 4b, 4c control the flow rate of each liquefied gas, Each liquefied gas is not in a gas-liquid mixed state, and the pressure is maintained so that the flow rate is always controlled as a liquid. In addition, when an unexpected situation occurs on the downstream side and the flow of each liquefied gas is stopped, it also serves as a safety valve that bypasses each storage tank (supply source) 1a, 1b, 1c.
[0028]
The measurement value of the mass flow rate is sent to the flow rate controllers 5a, 5b, and 5c associated with the flow rate control valves 4a, 4b, and 4c, and the flow rate controllers 5a, 5b, and 5c receive the mass of each liquefied gas input in advance. The opening degree of the flow rate control valves 4a, 4b, 4c is adjusted so that the set value of the flow rate is equal to the measured value. After a certain period of time, the measured value of the mass flow rate of each liquefied gas is controlled to a value approximately equal to the set value. While the flow rate control is performed, each liquefied gas is supplied to the recycle means Ra, Rb, Rc including the on-off valves 6a, 6b, 6c, the pressure regulators 8a, 8b, 8c and the recycle pipes RLa, RLb, RLc. And returned to the storage tanks (supply sources) 1a, 1b, 1c.
[0029]
Recycling means Ra, Rb, Rc are kept constant by pressure regulators 8a, 8b, 8c at a pressure higher than the saturated vapor pressure of the liquefied gas component having the highest vapor pressure. The pressure cannot be generally specified depending on the type of liquefied gas to be mixed, but is usually in the range of 0.2 to 3 MPa (refers to gauge pressure, and the same applies hereinafter). Further, this pressure is slightly higher than the internal pressure of the mixed liquefied gas storage means 11 to be described later, and the pressure regulators 8a, 8b, 8c are used as the primary side (the outlet side of the flow control valves 4a, 4b, 4c). It is preferable to use an autonomous pressure regulating valve that detects the pressure of) and automatically adjusts the pressure to a pressure input in advance.
[0030]
As described above, after the measured value and the set value of the mass flow rate of each liquefied gas coincide with each other and the steady state is reached, each liquefied gas recycling the recycling means Ra, Rb, Rc is supplied to the common pipe CL. At the same time, the flow is switched. For switching the flow of each liquefied gas, the open / close valves 6a, 6b, 6c of the recycling means Ra, Rb, Rc are closed simultaneously, and the open / close valves 7a, 7b, 7c of the individual pipes ILa, ILb, ILc are simultaneously opened. It is done by becoming. As a result, each liquefied gas is supplied to the common pipe CL, and is mixed in the first mixer 9 and the second mixer 10 while flowing in the common pipe CL.
[0031]
The above switching instruction is usually made by means such as a timer or computer control. The on-off valves 6a, 6b, 6c of the recycling means Ra, Rb, Rc and the on-off valves 7a, 7b, 7c of the individual pipes ILa, ILb, ILc, which have received the switching instruction, are valved by a usual method such as electromagnetic or pneumatic. Open and close to switch the flow of each liquefied gas at the same time.
[0032]
In the first mixer 9 provided in the common pipe CL, nozzles into which the respective liquefied gases are individually introduced are disposed in the pressure vessel in parallel with the flow of the liquid, and the nozzles are as described above. Therefore, preliminary mixing is performed in a state where the dynamic pressure of each liquefied gas does not affect the flow.
[0033]
Similarly, the second mixer 10 provided in the common pipe CL is preferably an in-line mixing type mixer for mixing under pressure. In other words, while the fluid passes through the pipeline, the fluid itself uses the flow energy of the fluid by a number of mixing elements (elements) installed in the pipeline, and the fluid itself repeats division, inversion, and conversion while mixing. A static mixer is preferably used.
[0034]
In this way, the liquefied gas supplied and mixed to the common pipe CL is connected to the common pipe CL via the shut-off valve 16, for example, a filling process for filling the aerosol product with a propellant ( (Not shown).
[0035]
Next, a second embodiment shown in FIG. 2 will be described. As shown in FIG. 2, the second embodiment has a configuration in which the storage means 11 is provided between the common pipe CL and the shutoff valve 16, and other configurations are the same as those in the first embodiment. It is. Therefore, the description about the part which overlaps with 1st Embodiment is abbreviate | omitted.
[0036]
In the second embodiment, each liquefied gas supplied to the common pipe CL is introduced into the storage means 11 after being mixed by both the mixers 9 and 10. At this time, it is preferable to pressurize by introducing an inert gas such as nitrogen gas or argon gas or a component gas having the highest vapor pressure of each liquefied gas into the storage means 11. The pressure is kept above the saturated vapor pressure indicated by the component having the highest vapor pressure among the liquefied gases. By doing so, the mixed liquefied gas can be stably stored in a liquid state.
[0037]
As the inert gas, nitrogen gas is usually used. When the pressure controller 15 detects the internal pressure of the storage unit 11 and the pressure is reduced so as to be a preset pressure, the pressure control valve 13 is moved from the pressurizing unit 17 such as a nitrogen gas cylinder, liquid nitrogen or PSA system. The nitrogen gas is introduced via the pressure control valve, and when the pressure rises, the pressure control valve 14 purges the nitrogen gas. By performing such an operation, the internal pressure of the storage means 11 can be maintained at a set pressure.
[0038]
Further, as the pressurized gas, a component having the highest vapor pressure among the liquefied gases can be used as the pressurized gas instead of the inert gas. In this case, a gas cylinder of the component gas may be used as the pressurizing means 17.
[0039]
Next, the third embodiment shown in FIG. 3 is a form in which one more pressurizing means for pressurizing the inside of the storage means in the second embodiment is arranged in parallel. In the third embodiment, as shown in FIG. 3, a first pressurizing means 17 using an inert gas and a pressurizing means 18 using a component gas having the highest vapor pressure are provided so as to be switchable. In this way, by arranging the pressurizing means in parallel and operating the switching valves 19 and 20, it is possible to appropriately select a case where an inert gas is used as the pressurized gas and a case where a component gas is used.
[0040]
In the second and third embodiments, when the pressure of the inert gas is used for maintaining the pressure inside the storage means, the composition of the mixture of each liquefied gas component is not substantially affected. However, when the component having the highest vapor pressure of the above liquefied gas is used as the pressurized gas instead of the inert gas, the composition gas is affected because the component gas for pressurization supplied in a gaseous state is partially condensed. Therefore, a mixture of liquefied gas having a desired composition can be obtained by setting the flow rate of the component having the highest vapor pressure to the common pipe in consideration of the influence.
[0041]
In the second and third embodiments, a pressure-resistant tank is usually used as the storage means 11, and the liquid level of the mixed liquefied gas is detected and the on-off valves 6a, 6b, 6c, the on-off valves 7a, 7b, 7c, and shut off. A liquid level detector 12 for controlling the valve 16 is provided. When the liquid level reaches the upper limit, the liquid level detector 12 closes the on-off valves 7a, 7b, 7c, opens the on-off valves 6a, 6b, 6c, returns the liquefied gases to the recycling means, and stops mixing. At the same time, when the liquid level falls below the lower limit, the shutoff valve 16 is closed and the liquid phase portion is secured. When the liquid level is at an appropriate level within the upper limit and the lower limit, the mixed liquefied gas is sent, for example, as an aerosol propellant through the shut-off valve 16 to an aerosol product filling step (not shown).
[0042]
Hereinafter, the present invention will be described in more detail based on examples.
[0043]
[Example 1]
In accordance with the embodiment shown in FIG. 2, three liquefied gases were mixed to produce an aerosol propellant having the composition shown in Table 1 below. (Production amount 25kg / min)
[0044]
[Table 1]
Figure 0004574801
[0045]
Propane (a), butane (b) and dimethyl ether (c) are stored in the respective storage tanks 1a, 1b and 1c, and are pressurized to 1.1 MPa by the liquid feeding means 2a, 2b and 2c, and are individually piped ILa. , ILb and ILc, and the recycling means Ra, Rb and Rc were recycled. At this time, the flow rate controllers 5a, 5b, and 5c attached to the flow control valves 4a, 4b, and 4c are inputted with set values so that each liquefied gas has the above-mentioned weight%, and the mass flow rate measuring devices 3a, 3b The flow rate of each liquefied gas was controlled so that the measured value of each liquefied gas measured by 3c (manufactured by Oval, Micro Motion flow meter) was equal to the above set value. The pressures of the recycling means Ra, Rb, Rc were set to 1.05 MPa by the pressure regulators 8a, 8b, 8c, respectively.
[0046]
After the recycling was performed for 2 minutes, when the measured value of the mass flow rate of each liquefied gas became equal to the set value, the flow of each liquefied gas flowing through the recycle piping RLa, RLb, RLc was switched to the common piping CL. The switching instruction was given by a timer, and the on-off valves 6a, 6b, 6c were simultaneously closed, and the on-off valves 7a, 7b, 7c were simultaneously opened to introduce three types of liquefied gas into the common pipe CL.
[0047]
Each liquefied gas was first mixed in the first mixer 9 and then further mixed in the second mixer 10. As the second mixer 10, a static mixer (manufactured by Noritake Company Limited, Noritake Static Mixer) was used. The mixed liquefied gas mixed by the first mixer 9 and the second mixer 10, supplied to the common pipe CL, and mixed was stored in the storage unit 11. The storage means 11 was held at a constant pressure of 1 MPa with nitrogen gas.
[0048]
On the other hand, when the mixed liquefied gas was stored in the storage means 11, the mixed liquefied gas was sampled from the outlet of the second mixer 10, and each component was analyzed by gas chromatography. The measured values shown in Table 2 were as follows. Obtained.
[0049]
[Table 2]
Figure 0004574801
[0050]
From this result, by carrying out the present onset bright, a batchwise components in a pressure vessel, charged were weighed one by one component in ascending order of vapor pressure, shaking, almost to the conventional method of stirring, liquefied same accuracy It became clear that gas could be mixed.
[0051]
【The invention's effect】
As described above, according to the present invention, mixing of the liquefied gas can be performed on-site and in a compact amount by a necessary amount when necessary. As a result, for example, it has become possible to eliminate the waste of equipment and space, such as mixing a conventional aerosol propellant batchwise with several types of liquefied gas for each formulation and storing them in each tank.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first embodiment of the present invention.
FIG. 2 is a flowchart showing a second embodiment of the present invention.
FIG. 3 is a flowchart showing a third embodiment of the present invention.
[Explanation of symbols]
1a, 1b, 1c Liquefied gas storage tank (supply source)
2a, 2b, 2c Liquid feeding means 3a, 3b, 3c Mass flow meter 4a, 4b, 4c Mass flow control valve 5a, 5b, 5c Flow controller 6a, 6b, 6c Open / close valve 7a, 7b, 7c Open / close valve 8a, 8b, 8c Pressure regulator 9 First mixer 10 Second mixer 11 Storage means 12 Liquid level detectors 13, 14 Pressure control valve 15 Pressure regulator 16 Shut-off valve 17, 18 Pressurization means 19, 20 Switching valve ILa, ILb, ILc Individual piping CL Common piping RLa, RLb, RLc Recycling piping Ra, Rb, Rc Recycling means

Claims (7)

2種以上の液化ガスを混合する装置であって、
上記各液化ガスの供給源と、
上記各供給源に接続された個別配管と、
上記各個別配管に設けられて、各供給源からの液化ガスをその飽和蒸気圧以上の圧力で液相にて供給するための送液手段と、
上記各個別配管に設けられて、当該個別配管を流れる液化ガスの流量を制御するための流量制御手段と、
上記各個別配管に接続された共通配管と、を備え
上記各個別配管は、上記各流量制御手段よりも下流側においてリサイクル手段に接続されており、上記リサイクル手段は上記各個別配管を流れる液化ガスの流量が所定の定常状態になるまで各液化ガスを上記各供給源にリサイクルさせることを特徴とする、液化ガスの混合装置。
An apparatus for mixing two or more liquefied gases,
A supply source of each of the above liquefied gases;
Individual piping connected to each of the above supply sources;
A liquid sending means provided in each of the individual pipes for supplying the liquefied gas from each supply source in a liquid phase at a pressure equal to or higher than its saturated vapor pressure;
A flow rate control means for controlling the flow rate of the liquefied gas flowing through the individual pipes provided in each of the individual pipes;
A common pipe connected to each individual pipe ,
Each individual pipe is connected to a recycle means downstream of each flow control means, and the recycle means supplies each liquefied gas until the flow rate of the liquefied gas flowing through each individual pipe reaches a predetermined steady state. An apparatus for mixing a liquefied gas, wherein the above-mentioned supply sources are recycled .
上記共通配管は上記各個別配管から供給された液化ガスを混合するための第1の混合器を備えている、請求項に記載の液化ガスの混合装置。The liquefied gas mixing apparatus according to claim 1 , wherein the common pipe includes a first mixer for mixing the liquefied gas supplied from the individual pipes. 上記共通配管は上記第1の混合器にて混合された液化ガスをさらに混合するための第2の混合器を備えている、請求項に記載の液化ガスの混合装置。The liquefied gas mixing apparatus according to claim 2 , wherein the common pipe includes a second mixer for further mixing the liquefied gas mixed in the first mixer. さらに上記共通配管に接続された貯留手段を備える、請求項1〜3のいずれか1項に記載の液化ガスの混合装置。The liquefied gas mixing apparatus according to any one of claims 1 to 3 , further comprising a storage unit connected to the common pipe. 上記貯留手段の内部の圧力を上記液化ガスのうち最も蒸気圧の高い成分が示す飽和蒸気圧以上の圧力に保持するための加圧手段を備える、請求項に記載の液化ガスの混合装置。The liquefied gas mixing apparatus according to claim 4 , further comprising a pressurizing means for maintaining the pressure inside the storage means at a pressure equal to or higher than a saturated vapor pressure indicated by a component having the highest vapor pressure in the liquefied gas. 上記加圧手段は、不活性ガス又は上記液化ガスのうちの最も蒸気圧の高い成分を加圧ガスとして供給するようになっている、請求項に記載の液化ガスの混合装置。The liquefied gas mixing device according to claim 5 , wherein the pressurizing means supplies an inert gas or a component having the highest vapor pressure of the liquefied gas as the pressurized gas. 上記各流量制御手段は質量流量測定器と流量制御弁とを含む、請求項1〜6のいずれか1項に記載の液化ガスの混合装置。Each said flow control means is a liquefied gas mixing apparatus of any one of Claims 1-6 containing a mass flow measuring device and a flow control valve.
JP2000159412A 1999-08-27 2000-05-30 Liquefied gas mixing equipment Expired - Fee Related JP4574801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159412A JP4574801B2 (en) 1999-08-27 2000-05-30 Liquefied gas mixing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-241393 1999-08-27
JP24139399 1999-08-27
JP2000159412A JP4574801B2 (en) 1999-08-27 2000-05-30 Liquefied gas mixing equipment

Publications (3)

Publication Number Publication Date
JP2001141193A JP2001141193A (en) 2001-05-25
JP2001141193A5 JP2001141193A5 (en) 2007-05-31
JP4574801B2 true JP4574801B2 (en) 2010-11-04

Family

ID=26535233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159412A Expired - Fee Related JP4574801B2 (en) 1999-08-27 2000-05-30 Liquefied gas mixing equipment

Country Status (1)

Country Link
JP (1) JP4574801B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028939A (en) * 2005-07-25 2007-02-08 Koike Sanso Kogyo Co Ltd Method and apparatus for producing whipped cream
JP2009213945A (en) * 2006-06-27 2009-09-24 Duerr Japan Kk Coating feeding system
JP4808675B2 (en) * 2007-05-14 2011-11-02 大陽日酸株式会社 Method for producing mixed liquid
JP5036625B2 (en) * 2008-05-21 2012-09-26 旭有機材工業株式会社 Static mixer element, static mixer and valve using the same, and fluid mixing device
JP5364329B2 (en) * 2008-09-30 2013-12-11 独立行政法人石油天然ガス・金属鉱物資源機構 Liquid fuel mixing system, liquid fuel synthesizing system, and liquid fuel mixing method
US8407897B2 (en) 2008-10-28 2013-04-02 Bridgestone Corporation Method of manufacturing a vibration isolator
KR101049151B1 (en) * 2008-12-10 2011-07-14 한국가스공사연구개발원 Liquefied gas mixing device
WO2010146671A1 (en) * 2009-06-17 2010-12-23 三菱重工業株式会社 System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
US7901645B2 (en) 2009-07-06 2011-03-08 Mitsubishi Heavy Industries, Ltd. Mercury reduction system and mercury reduction method of flue gas containing mercury
GB201102691D0 (en) * 2011-02-16 2011-03-30 Mexichem Amanco Holding Sa Method for handling zeotropic refrigerant mixtures
EP3636982B1 (en) * 2018-10-09 2021-08-04 Weiss Technik GmbH Method and device for providing zeotropic coolant
FR3088406B1 (en) * 2018-11-12 2021-05-07 Naval Group Control method for a cryogenic tank, corresponding cryogenic tank and underwater building

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163426A (en) * 1982-03-19 1983-09-28 Toray Eng Co Ltd Method for supplying liquid
JPS6196300A (en) * 1984-10-15 1986-05-14 Nippon Kokan Kk <Nkk> Prevention of gas generation in liquefied-gas coldness preservative circulation system
JPH0364396A (en) * 1989-08-02 1991-03-19 Tokyo Gas Co Ltd Method and mechanism for calory control of generated gas
JPH10259898A (en) * 1997-01-14 1998-09-29 Daikin Ind Ltd Method for transferring and filling liquefied gas

Also Published As

Publication number Publication date
JP2001141193A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP4574801B2 (en) Liquefied gas mixing equipment
US5375634A (en) Variable mass flow rate fluid dispensing control
AU634190B2 (en) Flow discharge valve
US4089206A (en) Method and apparatus for measuring the proportion of undissolved gas in a liquid component for the production of foam materials
EP0933583B2 (en) Cryogenic fluid cylinder filling system
EP0877196B1 (en) Constant composition gas mixture streams
EP0605137A1 (en) Method and apparatus for forming and dispensing coating material containing multiple components
US20110014384A1 (en) Bladder-based apparatus and method for dispensing coatings
JPH04359024A (en) Equipment and method for incorporating foaming agent into liquid material for manufacturing polymer foam
US6516824B2 (en) Apparatus and method for metering delivery quantity of ultra-low temperature liquefied gas
EP0142346B1 (en) Method and apparatus for filling vessels
US20230417368A1 (en) Method and conveying device
RU99124755A (en) METHOD AND DEVICE FOR FILLING TARE
WO2011041306A2 (en) Apparatus and method for controlling or adding material to one or more units
CN109203342B (en) For diffusing a gas such as CO in at least one reactive resin 2 In the field of the invention
US7297371B2 (en) Direct pressure apparatus and method for dispensing coatings
US20090000546A1 (en) Dispensing system and method of use
US3273348A (en) Process and apparatus for preparing gaseous mixtures
JP2010001355A (en) System for controlling calorie of natural gas and method for controlling calorie
KR20190132983A (en) Methods and systems for filling inhibitor containers
JPH09157668A (en) Method fo controlling calorific value of natural gas and apparatus therefor
US3232324A (en) Method and apparatus for filling aerosol dispensers
CN115917721A (en) Apparatus and method for dispensing a gas mixture
US11498705B1 (en) On orbit fluid propellant dispensing systems and methods
CN100411775C (en) Molten metal treating agent, method of treating molten metal, apparatus and method for supplying covering gas for molten metal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees