JP2645112B2 - Gain adaptive control device - Google Patents

Gain adaptive control device

Info

Publication number
JP2645112B2
JP2645112B2 JP63265354A JP26535488A JP2645112B2 JP 2645112 B2 JP2645112 B2 JP 2645112B2 JP 63265354 A JP63265354 A JP 63265354A JP 26535488 A JP26535488 A JP 26535488A JP 2645112 B2 JP2645112 B2 JP 2645112B2
Authority
JP
Japan
Prior art keywords
signal
type
speed
calculating means
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63265354A
Other languages
Japanese (ja)
Other versions
JPH02112001A (en
Inventor
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63265354A priority Critical patent/JP2645112B2/en
Publication of JPH02112001A publication Critical patent/JPH02112001A/en
Application granted granted Critical
Publication of JP2645112B2 publication Critical patent/JP2645112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、プロセス計装制御システム等を利用するゲ
イン適応形制御装置に係わり、特に外乱変化,プロセス
特性変化等に対応して制御対象を安定に制御するゲイン
適応形制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Field of Industrial Application) The present invention relates to a gain adaptive control device using a process instrumentation control system or the like, and in particular, responds to disturbance changes, process characteristic changes, and the like. The present invention relates to a gain adaptive control device that stably controls an object to be controlled.

(従来の技術) 近年,需要の多様な変化に応じて生産量,負荷等の変
動を伴うが,この変動の影響をいかに高速,高精度かつ
安定に抑制するかが1つの大きなテーマとなっている。
特に,今後,生産量はもとより、品種,品質などの変化
に柔軟に追従しうる本格的なフレキシブルオートメーシ
ョンの出現を強く要望されてくることが考えられる。
(Prior art) In recent years, fluctuations in production volume, load, and the like are accompanied by various changes in demand. One of the major themes is how to suppress the effects of these fluctuations at high speed, high accuracy, and stably. I have.
In particular, in the future, it is thought that there will be a strong demand for the emergence of full-scale flexible automation that can flexibly follow changes in product type, quality, etc., in addition to production volume.

このため上記要望に対処するためには、フィードバッ
ク(以下,FBと略称する)制御系のほかに、生産量,負
荷などの外乱を検出しこの外乱の影響を打ち消す信号を
先まわりして与えるフィードフォワード(以下,FFと略
称する)制御系を組合せた,いわゆるFF/FB制御系を有
効に活用することが重要になってきている。
Therefore, in order to respond to the above demands, in addition to a feedback (hereinafter abbreviated as FB) control system, a feed system that detects a disturbance such as a production amount and a load and gives a signal for canceling the influence of the disturbance in advance. It has become important to effectively utilize a so-called FF / FB control system that combines a forward (hereinafter abbreviated as FF) control system.

しかし、このFF/FB制御系においても、外乱の変化に
対して操作量をいくら変化させるかの関係を表わすFFゲ
インは常に一定でなく、例えば化学用加熱炉などでは燃
料の単位発熱量が変化すると、それに伴ってFFゲインが
変化する。従って、常にFF/FB制御系を最適な条件で実
行するためには、外乱等の変化に対応してFFゲイン,FB
ゲインを常に最適となるように自動修正する必要があ
る。
However, even in this FF / FB control system, the FF gain, which indicates how much the manipulated variable is changed with respect to the change in disturbance, is not always constant. Then, the FF gain changes accordingly. Therefore, in order to always execute the FF / FB control system under optimal conditions, the FF gain, FB
It is necessary to automatically correct the gain so that it is always optimal.

ところで、一般にFB制御系においては、P(比例)+
I(積分)演算制御が中心であり、D(微分)演算制御
は補助的に付加されるので、以下,FB制御の場合にはPI
演算制御として説明する。
By the way, in general, in an FB control system, P (proportional) +
Since I (integral) operation control is mainly performed and D (differential) operation control is added as an auxiliary function, hereinafter, in the case of FB control, PI
Description will be given as arithmetic control.

今,アナログ制御方式におけるFB制御の基本的なPI演
算式は、 MV=kp{e+(1/TI)∫edt}+MV0 ……(1) で表される。ここで、MVは操作量,eは偏差,kpは比例ゲ
イン,TIは積分時間,MV0は操作量の初期値である。
Now, the basic PI calculation formula of the FB control in the analog control method is represented by MV = kpke + (1 / T I ) ∫edt} + MV 0 (1) Here, MV is the manipulated variable, e is the deviation, kp is the proportional gain, T I is the integration time, and MV 0 is the initial value of the manipulated variable.

ところで、上記(1)式で表されるPI演算式を用いて
ディジタル制御方式で実行する場合、予めサンプリング
周期τが定められ、このサンプリング周期τごとに各デ
ータを取込んで演算を行うことになる。従って、現サン
プリング時点をnτ(nは整数)とし、その1つ前のサ
ンプリング時点を(n−1)τとすれば、制御系から得
られる現サンプリング時点の偏差はen、前回サンプリ
ング時点の偏差はe n−1で表すことができる。
By the way, in the case of executing the digital control method using the PI operation expression represented by the above expression (1), a sampling period τ is determined in advance, and each data is taken in every sampling period τ to perform the operation. Become. Therefore, if the current sampling time is nτ (n is an integer) and the immediately preceding sampling time is (n-1) τ, the deviation of the current sampling time obtained from the control system is en, and the deviation of the previous sampling time is en Can be represented by en-1.

そして、このディジタル制御方式には2通りの演算方
式があり、その1つはサンプリング時点ごとに全体の操
作量MVnを求める位置形演算方式であり、他の1つは今
回のサンプリング時点で変化量△MVnのみを求め、この
変化量を前回の操作量MV n−1に加えて今回の操作量MV
nとする速度形演算方式である。
The digital control method has two operation methods, one of which is a position-type operation method for obtaining the total manipulated variable MVn at each sampling time, and the other is the change amount at the current sampling time. ΔMVn alone is obtained, and this change amount is added to the previous operation amount MV n−1 to obtain the current operation amount MV.
This is a speed type calculation method with n.

ここで、前者の位置形演算方式は、 で表され、一方、後者の速度形演算方式は、 △MVn =kp{(en−e n−1)+(τ/TI)・en}……(3) MVn=MV n−1+△MVn ……(3′) で表され、これらの方式にはそれぞれ特質を持ってい
る。
Here, the former position type calculation method is as follows. On the other hand, the latter velocity type calculation method is as follows: ΔMVn = kp {(en−en−1) + (τ / T I ) · en} (3) MVn = MVn−1 + △ MVn .. (3 '), each of which has its own characteristics.

さらに、プロセス制御系では、常にFF制御系が最適状
態にあるためには、FB制御出力=0,つまり動的成分はむ
しろ有害なのでこれを除いて考えると、 静的FF制御出力(FFn)=操作出力(MVn) ……(4) の関係になるようにゲイン修正して行けばよいことにな
る。
Furthermore, in the process control system, if the FF control system is always in the optimum state, the FB control output = 0, that is, the dynamic component is rather harmful. Operation output (MVn) ... It is only necessary to correct the gain so as to satisfy the relationship of (4).

そこで、以上の関係からゲイン修正係数を求める場合
には、第3図に示すように(n−1)時点でFF制御出力
信号FF n−1を操作出力信号MV n−1(=(n−1)時
点の最適修正出力信号X n−1)に等しくするためのゲ
イン最適修正係数をk n−1とすると、 MV n−1=k n−1・FF n−1 k n−1=(MV n−1)/(FF n−1) ……(5) によって求めることができる。
Therefore, when obtaining the gain correction coefficient from the above relationship, as shown in FIG. 3, the FF control output signal FF n-1 is changed to the operation output signal MV n-1 (= (n- 1) Assuming that a gain optimum correction coefficient for making equal to the optimum correction output signal Xn-1) at the time is kn-1, MVn-1 = kn-1.FF n-1 kn-1 = (MVn- 1) / (FF n-1) (5)

次に、FF制御出力信号FF n−1→FFnに変化したとき
のFF制御最適出力信号Xnは、 Xn=k n−1(n−1時点の最適修正係数) ・FFn(n時点のFF制御出力信号) =(MV n−1/FF n−1)・FFn ……(6) となる。この(6)式は位置形演算方式であるので、こ
れを速度形演算方式に変換すると、 Xn=X n−1+△Xn △Xn=Xn−X n−1 となる。ここで、上記(6)式および第3図に示すX n
−1=MV n−1から △Xn=(MV n−1/FF n−1)・FFn−MV n−1 =(MV n−1/FF n−1)・(FFn−FF n−1) =(MV n−1/FF n−1)・△FFn ……(7) が得られる。
Next, when the FF control output signal FFn-1 changes to FFn, the FF control optimum output signal Xn is given by: Xn = kn-1 (optimum correction coefficient at the time point n-1) FFn (FF control output at the time point n) Signal) = (MV n−1 / FF n−1) · FFn (6) Since this equation (6) is a position-type operation method, if it is converted into a speed-type operation method, Xn = Xn-1 + △ Xn △ Xn = Xn-Xn-1. Here, X n shown in the above equation (6) and FIG.
-1 = MV n-1 to △ Xn = (MV n−1 / FF n−1) · FFn−MV n−1 = (MV n−1 / FF n−1) · (FFn−FF n−1) = (MV n−1 / FF n−1) · △ FFn (7) is obtained.

ところで、従来のこの種の制御装置は、以上のような
種々の条件および演算式を踏まえて第4図のように構成
されている。制御対象1の出力側にプロセス量検出器2
が設けられ、このプロセス量検出器2で検出したプロセ
ス量PVnと目標量設定部3からの目標量SVnとを偏差演算
手段4に導入し、ここでen=SVn−PVnなる演算を行っ
て偏差enを求めて速度形PI調節演算手段5へ送出す
る。ここで、速度形PI調節演算手段5は(3)式に従っ
て演算を行って今回の操作量変化分△Cnを求めた後、こ
の△Cnを加算手段6へ導入する。そして、この加算手段
6の出力△MVnを速度形−位置形信号変換手段7に導
き、ここで(3′)式に従って演算を行って位置形操作
信号MVnに変換し制御対象1へ印加する,いわゆるFB制
御系を構成し、さらにこのFB制御系にFF制御系を組合せ
るものである。
By the way, this type of conventional control device is configured as shown in FIG. 4 based on the above various conditions and arithmetic expressions. Process amount detector 2 on the output side of control target 1
The process quantity PVn detected by the process quantity detector 2 and the target quantity SVn from the target quantity setting unit 3 are introduced into the deviation calculating means 4, where the calculation of en = SVn-PVn is performed to calculate the deviation. The en is obtained and sent to the speed type PI adjustment calculating means 5. Here, the speed-type PI adjustment calculating means 5 calculates according to the equation (3) to obtain the current manipulated variable change ΔCn, and then introduces this ΔCn into the adding means 6. Then, the output △ MVn of the adding means 6 is guided to the speed-position-type signal converting means 7, where it is operated according to the equation (3 ') to be converted into the position-type operation signal MVn and applied to the control target 1. It constitutes a so-called FB control system, and further combines this FB control system with an FF control system.

このFF制御系は、外乱量検出器10で生産量とか負荷等
の外乱信号Dnを検出し、これを係数手段11に入れて係数
を乗ずることにより静的FF制御信号FFnを得た後、位置
形−速度形信号変換手段12に供給する。この変換手段12
では前回値と今回値から差分の速度形信号△FFn=FFn−
FF n−1を求め、この差分の速度形信号△FFを乗算手段
13に導入する。
In this FF control system, a disturbance signal Dn such as a production amount or a load is detected by a disturbance amount detector 10, and the disturbance signal Dn is input to a coefficient means 11 to multiply a coefficient to obtain a static FF control signal FFn. It is supplied to the shape-speed signal conversion means 12. This conversion means 12
Then, the speed type signal of the difference from the previous value and the current value △ FFn = FFn-
FF n−1 is obtained and multiplied by the speed type signal △ FF of the difference.
Introduce to 13.

一方、静的FF制御出力信号は操作信号と共にゲイン修
正係数演算手段14に送られ、ここで(7)式に示すゲイ
ン修正係数k n−1=MV n−1/FF n−1,つまりタイミン
グとしては今回の最適値を求めるには前回のゲイン修正
係数K n−1を求め、これを乗算手段13に導入して先に
求めた静的FF制御出力信号の変化分△FFnに乗じてk n−
1・△FFnを求め、さらにこれを加算手段6にてFB制御
出力信号△Cnと加算合成することにより、FB制御系にFF
制御を組合せて制御対象1を制御する構成となってい
る。
On the other hand, the static FF control output signal is sent to the gain correction coefficient calculating means 14 together with the operation signal, where the gain correction coefficient kn-1 shown in the equation (7) = MV n−1 / FF n−1, that is, the timing To find the optimum value this time, find the previous gain correction coefficient Kn-1 and introduce it to the multiplying means 13 to multiply the previously obtained change 静 的 FFn of the static FF control output signal to obtain kn−
1 · △ FFn is obtained and further added and synthesized by the adding means 6 with the FB control output signal 加 算 Cn, so that the FB control system
The control target 1 is controlled by combining the controls.

(発明が解決しようとする課題) しかし、以上のような制御装置には次のような様々な
問題がある。
(Problems to be Solved by the Invention) However, the above-described control device has the following various problems.

(a)、その1つは、操作信号MVは第5図の(イ)に示
すようにFB制御系のP成分とI成分が含んでおり、その
うちP成分はkp・enとなるので、偏差の有無によって
第5図(イ)のように激しく変動する。なお、同図
(ロ)はI成分を示す。従って、第5図(イ)のように
激しく変動すると、これに対応してゲイン修正係数k n
−1が大きく変動し、そのため正確かつ安定なゲイン修
正ができない。この点では、特に目標量がステップ的に
変化したときに大きな影響が現われる。
(A) One of them is that the operation signal MV includes a P component and an I component of the FB control system as shown in FIG. 5A, and among them, the P component becomes kp · en. Fluctuates drastically as shown in FIG. FIG. 2B shows the I component. Accordingly, when the frequency fluctuates as shown in FIG. 5 (a), the gain correction coefficient kn is correspondingly changed.
-1 greatly fluctuates, so that accurate and stable gain correction cannot be performed. In this respect, a great effect appears particularly when the target amount changes stepwise.

(b)、他の1つは、PIとも速度形演算としたとき、操
作信号MVが積分動作によって徐々に増加し、速度形−位
置形信号変換手段7に付加される上下限リミット機能に
引っかかったとき、操作信号の切捨が発生するので、再
度回復したときにその切捨てにより制御性を低下させ
る。このとき、特に変動性の強いP成分が切捨てられる
ので、P成分は偏差零のとき,零となるというP制御の
本質が歪曲され、P成分が零にならなくなり、制御性や
安定性が低下する。このためPおよびIとも速度形演算
とする方式は工業用としては適当でない。
(B) Another is that when the PI is also a speed type operation, the operation signal MV gradually increases due to the integration operation and is caught by the upper / lower limit function added to the speed type-position type signal conversion means 7. In such a case, the operation signal is truncated, so that when the data is recovered again, the truncation reduces controllability. At this time, since the P component, which has particularly high variability, is discarded, the essence of the P control that the P component becomes zero when the deviation is zero is distorted, and the P component does not become zero, and the controllability and stability deteriorate. I do. For this reason, a method in which both P and I are speed-type calculations is not suitable for industrial use.

本発明は上記実情に鑑みてなされたもので、常に正確
で安定なゲイン修正が可能であり、かつ、PI制御の特質
を生かして制御性および安定性を高めうるゲイン適応形
制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a gain adaptive control device that can always accurately and stably correct a gain, and that can enhance controllability and stability by utilizing characteristics of PI control. The purpose is to:

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために、プロセス量と目
標値とを用いて偏差演算手段で偏差を求めた後、この偏
差に基づいてPI(P:比例,I:積分)演算を行って操作量
を求めて制御対象を制御するフィードバック制御系にフ
ィードフォワード制御系を付加してなる制御装置におい
て、前記偏差に基づいて速度系積分演算を行う速度形積
分調節演算手段と、この速度形節分調節演算手段から分
離して設けられ、前記偏差に基づいて位置形比例演算を
行う位置形比例調節演算手段と、外乱量にフィードフォ
ワード係数を乗じて静的フィードフォワード制御信号を
得、かつ、この制御信号を差分である速度形信号に変換
する第1の信号変換手段と、前記速度形積分調節演算手
段の出力を第2の信号変換手段で変換した位置形信号と
前記静的フィードフォワード制御信号とを用いてゲイン
修正係数を求めるゲイン修正係数演算手段と、この演算
手段によって求めたゲイン修正係数を前記差分である速
度形信号に乗算して得られた静特性補償信号を前記速度
形積分調節演算手段の出力に加えて外乱補償を行う補償
手段と、この補償手段よって補償された信号を前記第2
の信号変換手段で変換された位置形操作量と前記位置形
比例調節演算手段の出力とを加算して制御対象への操作
量信号を得る操作量取得手段とを備えたゲイン適応形制
御装置である。
[Configuration of the Invention] (Means for Solving the Problems) In order to achieve the above object, according to the present invention, after a deviation is calculated by a deviation calculating means using a process amount and a target value, a PI is calculated based on the deviation. (P: proportional, I: integral) In a control device in which a feedforward control system is added to a feedback control system that obtains an operation amount to control a controlled object by performing an operation, a speed system integration operation is performed based on the deviation. Speed-type integral adjustment calculating means, a position-type proportional adjustment calculating means, which is provided separately from the speed-type nodal adjustment calculating means, and performs a position-type proportional calculation based on the deviation, and multiplies a disturbance amount by a feedforward coefficient. A first signal converting means for obtaining a static feedforward control signal and converting the control signal into a speed-type signal which is a difference; and outputting the output of the speed-type integral adjustment calculating means to a second signal converting means. Gain correction coefficient calculating means for obtaining a gain correction coefficient using the converted position type signal and the static feedforward control signal; and multiplying the speed type signal as the difference by the gain correction coefficient obtained by the calculation means. Compensating means for performing disturbance compensation by adding the obtained static characteristic compensation signal to the output of the speed-type integral adjustment calculating means; and converting the signal compensated by the compensating means to the second signal.
A gain adaptive control device comprising an operation amount obtaining unit that adds an output of the position type operation amount converted by the signal conversion unit and an output of the position type proportional adjustment operation unit to obtain an operation amount signal to a control target. is there.

また、本発明は前記偏差演算手段と速度形積分調節演
算手段との間に乗算手段を設け、偏差にゲイン修正係数
を乗じてFB制御形のゲイン修正を行う構成である。
Further, the present invention has a configuration in which a multiplying means is provided between the deviation calculating means and the speed-type integral adjustment calculating means, and the deviation is multiplied by a gain correction coefficient to perform FB control type gain correction.

(作用) 従って、本発明は以上のような手段を講じたことによ
り、PI演算を速度形積分(I)調節演算と位置形比例
(P)調節演算に分離すると共にこの速度形積分調節演
算出力を位置形信号に変換して得た信号と前記位置形比
例(P)調節演算出力とを加算して操作信号とすること
により、操作信号が上下限リミット値を越えた後回復し
ても制御性を確保でき、また速度形積分調節演算手段の
出力,つまり変動性のない平均的信号をゲイン修正係数
演算手段に導入し、ここで求めたゲイン修正係数を用い
てFFゲインを修正することにより、常に安定でかつ正確
なゲイン修正を行うことができる。
(Operation) Accordingly, the present invention, by taking the above-described means, separates the PI operation into a speed-type integral (I) adjustment operation and a position-type proportional (P) adjustment operation and outputs the speed-type integral adjustment operation output. Is converted into a position-type signal and the position-type proportional (P) adjustment calculation output is added to generate an operation signal, so that control can be performed even if the operation signal recovers after exceeding the upper and lower limit values. The output of the speed-type integral adjustment operation means, that is, the average signal without fluctuation, is introduced into the gain correction coefficient operation means, and the FF gain is corrected using the gain correction coefficient obtained here. Thus, a stable and accurate gain correction can always be performed.

(実施例) 以下、本発明装置の一実施例について第1図を参照し
て説明する。この装置はFF制御のゲインのみを修正する
ブロック構成であって、例えば流量,圧力,レベル等を
制御する場合に用いられる。同図において21はプロセス
量検出器、22は目標量設定部、23はプロセス量検出器21
からの検出プロセス量と目標量との偏差を求める偏差演
算手段であって、ここで得られた偏差は2分岐されてそ
の一方が速度形積分調節演算手段24に、他方が位置形比
例調節演算手段25に導入される。この速度形積分調節演
算手段24は偏差演算手段23から出力された偏差を前記
(3)式に基づいて速度形積分演算を行う。一方、位置
形比例調節演算手段25は偏差に比例ゲインを乗算する比
例演算を行う。26は演算手段24の出力とFF制御出力とを
加算する加算手段であって、この加算出力は上記
(3′)式に基づいて位置形信号に変換する速度形−位
置形信号変換手段27に導入される。28は加算手段、29は
制御対象である。従って、以上の要素をもってFB制御系
を構成することになる。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIG. This device has a block configuration for correcting only the gain of the FF control, and is used for controlling, for example, a flow rate, a pressure, a level, and the like. In the figure, 21 is a process amount detector, 22 is a target amount setting unit, and 23 is a process amount detector 21.
A deviation calculating means for calculating a deviation between a detection process amount and a target amount from the above. The obtained deviation is divided into two, one of which is provided to a speed-type integral adjustment calculating means 24 and the other is provided for a position-type proportional adjustment calculation. Introduced into means 25. The speed-type integral adjustment calculating means 24 performs a speed-type integral calculation on the deviation output from the deviation calculating means 23 based on the above equation (3). On the other hand, the position type proportional adjustment calculating means 25 performs a proportional calculation of multiplying the deviation by a proportional gain. 26 is an adding means for adding the output of the calculating means 24 and the FF control output, and this added output is sent to a speed-position-type signal converting means 27 for converting into a position-type signal based on the above equation (3 '). be introduced. 28 is an adding means, and 29 is a control target. Therefore, the FB control system is constituted by the above elements.

次に、このFB制御系にFF制御系を組合せるが、このFF
制御系は次のように構成されている。すなわち、生産量
とか負荷等の外乱を検出する外乱量検出器30を有し、こ
の検出器30の出力側に係数手段31を設けて静的FF制御信
号を得る。32は静的FF制御信号の今回値と前回値との差
分である速度形信号に変換する位置形−速度形信号変換
手段、33は乗算手段であって、ここでは信号変換手段32
からの差分信号にゲイン修正係数演算手段34で上記
(7)式により求めたゲイン修正係数を乗じてFFゲイン
を修正し、この修正ゲインを前記加算手段26へ加算する
構成である。
Next, the FB control system is combined with the FF control system.
The control system is configured as follows. That is, a disturbance amount detector 30 for detecting disturbances such as a production amount and a load is provided, and a coefficient means 31 is provided on an output side of the detector 30 to obtain a static FF control signal. Numeral 32 is a position type-speed type signal converting means for converting into a speed type signal which is a difference between the current value and the previous value of the static FF control signal, and 33 is a multiplying means.
The FF gain is corrected by multiplying the difference signal from the gain correction coefficient calculation means 34 by the gain correction coefficient obtained by the above equation (7), and the corrected gain is added to the addition means 26.

次に、以上のように構成された装置の動作について説
明する。制御対象29からのプロセス量PVnをプロセス量
検出器21で検出して偏差演算手段23に導入する。この偏
差演算手段23では目標量設定部22からの目標量SVnとプ
ロセス量PVnとを用いて、 en=SVn−PVn なる演算を行って偏差enを求めた後、この偏差enを速
度形積分調節演算手段24に導入し、ここで上記(3)式
に基づいて演算を行って速度形操作変化分 を求める。
Next, the operation of the device configured as described above will be described. The process amount PVn from the control target 29 is detected by the process amount detector 21 and introduced into the deviation calculating means 23. The deviation calculating means 23 calculates the deviation en by using the target amount SVn and the process amount PVn from the target amount setting unit 22 to obtain the deviation en, and then calculates the deviation en by speed-type integral adjustment. Introduced to the calculating means 24, where the calculation is performed based on the above equation (3), and Ask for.

しかる後、この演算手段24で求めた速度形操作変化分 を加算手段26に供給し、ここでFF制御系からのゲイン修
正信号と加算して速度形−位置形信号変換手段27に導入
する。この速度形−位置形信号変換手段27は上記
(3′)式に基づき、 なる積分演算による位置形操作量M を求め、これをゲイン修正係数演算手段34および加算手
段28へ送出する。つまり、ここでは変化の激しいP成分
を除いてI成分の演算を行って得た操作量 をゲイン修正係数演算手段34へのゲイン修正に用いる。
Thereafter, the speed-type operation change amount obtained by the calculation means 24 is calculated. Is supplied to the adding means 26, where it is added to the gain correction signal from the FF control system, and is added to the speed-position type signal converting means 27. The speed-position type signal conversion means 27 is based on the above equation (3 '). Position type manipulated variable M by integral operation And sends it to the gain correction coefficient calculating means 34 and the adding means 28. That is, here, the manipulated variable obtained by performing the calculation of the I component excluding the P component that changes rapidly Is used for the gain correction to the gain correction coefficient calculating means.

一方、FF制御系においては、外乱量検出器30で生産量
とか負荷等の変化による外乱信号Dnを検出して係数手段
31に導き、ここで係数kを用いて、 FFn=Dn・k なる演算により静的FF制御信号FFnを求めた後、この制
御信号FFnを位置形−速度形信号変換手段32およびゲイ
ン修正係数演算手段34へそれぞれ供給する。この位置形
−速度信号変換手段32では静的FF制御信号の今回値から
前回値との差分,つまり △FFn=FFn−FF n−1 なる速度形信号を求めて乗算手段33に供給し、一方、ゲ
イン修正係数演算手段34では前記P成分操作量 と静的FF制御信号FFnを用いて上記(7)式に基づい
て、 なる演算を行うことによりゲイン修正係数k n−1を求
め、これを乗算手段33に導入し、ここで、 k n−1・△FFn による乗算を行ってゲイン修正量を求めて前記加算手段
26に導入し、FB制御系のP演算によるゲイン修正を行
う。
On the other hand, in the FF control system, the disturbance amount detector 30 detects a disturbance signal Dn due to a change in a production amount, a load, or the like, and calculates a coefficient means.
After calculating the static FF control signal FFn by the calculation of FFn = Dn · k using the coefficient k, the control signal FFn is converted to the position-speed signal conversion means 32 and the gain correction coefficient calculation. To the means 34 respectively. The position type-speed signal converting means 32 obtains a difference between the current value and the previous value of the static FF control signal, that is, a speed type signal of ΔFFn = FFn-FFn−1, and supplies it to the multiplying means 33. The gain correction coefficient calculating means 34 calculates the P component operation amount And the static FF control signal FFn, based on the above equation (7), By performing the following calculation, a gain correction coefficient kn-1 is obtained and introduced into the multiplication means 33. Here, the multiplication by kn-1 · △ FFn is performed to obtain the gain correction amount, and
Introduced to 26, gain correction by P calculation of FB control system.

そして、以上のように外乱変化に伴うゲイン修正を行
った速度形操作変化分 を速度形−位置形信号変換手段27で位置形操作量MVを求
めて加算手段28へ供給する。このとき、加算手段28には
位置形比例調節演算手段25から偏差enおよび比例ゲイ
ンkpを用いて、 en・kp なる位置形比例演算出力が入力されているので、この演
算手段25の出力と信号変換手段27の出力とを加算し、こ
れを本来の操作量として制御対象29に印加して制御す
る。
Then, as described above, the speed-type operation change Is calculated by the speed-position-type signal conversion means 27 and supplied to the addition means 28. At this time, the position type proportional operation output of en · kp is input to the adding unit 28 using the deviation en and the proportional gain kp from the position type proportional adjustment operation unit 25, so that the output of the operation unit 25 and the signal The output of the conversion means 27 is added, and the result is applied to the control target 29 as an original operation amount for control.

次に、第2図は本発明装置の他の実施例を示す図であ
って、これはFF制御系とFB制御系の双方のゲイン修正を
行うもので、例えばボイラ蒸気圧力,蒸気流量,温度,
濃度などのように量を中心としながらも質の変化も関与
するプロセスに用いられる。具体的には偏差演算手段23
と速度形積分調節演算手段24との間に乗算手段40を設
け、前記ゲイン修正演算手段34で求めたゲイン修正係数
k n−1を乗算手段33のみでなく、前記乗算手段40にも
送出し、偏差enにゲイン修正係数k n−1を乗じてFB制
御系のゲインも修正する。
Next, FIG. 2 is a diagram showing another embodiment of the apparatus of the present invention, in which the gain of both the FF control system and the FB control system is corrected. For example, the boiler steam pressure, steam flow rate, temperature ,
It is used for processes that involve changes in quality, such as concentration, while focusing on quantity. Specifically, the deviation calculating means 23
A multiplication means 40 is provided between the control means 24 and the speed-type integral adjustment calculation means 24, and the gain correction coefficient obtained by the gain correction calculation means 34 is provided.
kn-1 is sent not only to the multiplying means 33 but also to the multiplying means 40, and the gain of the FB control system is corrected by multiplying the deviation en by a gain correction coefficient kn-1.

従って、以上のような実施例の構成によれば、PI制御
においてP成分調節演算とI成分調節演算とを分離する
と共にI成分演算を速度形演算とし、P成分演算を位置
形演算で構成することによりPI制御の本質を尊守しつつ
FB制御系とFF制御系を組合せながら速度形のメリットを
生かすことができ、しかも有害な変動成分を持つP成分
を除いてI成分を用いて外乱の変化等によるゲイン修正
を行うので、外乱変化,プロセス特性変化に充分対処し
て高速応答,高精度、かつ、安定な制御を実行できる。
Therefore, according to the configuration of the above-described embodiment, the P component adjustment operation and the I component adjustment operation are separated in the PI control, the I component operation is a speed type operation, and the P component operation is a position type operation. While respecting the essence of PI control
The advantage of the velocity type can be used while combining the FB control system and the FF control system, and the gain is corrected by the disturbance change using the I component except for the P component which has harmful fluctuation components, so that the disturbance change High-speed response, high-accuracy, and stable control can be executed by sufficiently coping with changes in process characteristics.

なお、上記実施例では、FB制御系から微分調節演算を
除いているが、これを付加してもよい。また、FF制御系
に静的性補償だけでなく、動特性補償も付加してもよ
い。その他、本発明はその要旨を逸脱しない範囲で種々
変形して実施できる。
In the above embodiment, the differential adjustment operation is excluded from the FB control system, but may be added. Further, not only staticity compensation but also dynamic characteristic compensation may be added to the FF control system. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.

[発明の効果] 以上詳記したように本発明によれば、次のような種々
の効果を奏する。
[Effects of the Invention] As described above in detail, the present invention has the following various effects.

先ず、請求項第(1)項については、P調節演算とI
調節演算とを分離すると共にI調節演算を速度形演算,P
調節演算を位置形演算とすることにより、操作量が上下
限リミット値を越えた後回復しても制御性および安定性
を充分確保でき、また有害な変動成分を除いて変動成分
のない平均的信号を用いてゲイン修正係数を得るように
したので、高速、かつ、高精度なゲイン修正を行うこと
ができる。
First, with respect to claim (1), the P adjustment operation and I
Separate the adjustment operation from the I operation and perform the I
By making the adjustment calculation a position-type calculation, sufficient controllability and stability can be ensured even when the operation amount recovers after exceeding the upper and lower limit values, and there is no fluctuation component except for harmful fluctuation components. Since the gain correction coefficient is obtained using the signal, high-speed and high-precision gain correction can be performed.

次に、請求項(2)項については、FF制御系およびFB
制御系の双方を変動成分のない平均的信号から得られた
ゲイン修正係数を用いてゲイン修正するので、量的,質
的向上を図って制御対象を制御できる。
Next, regarding claim (2), the FF control system and the FB
Since the gain of both the control system is corrected using the gain correction coefficient obtained from the average signal having no fluctuation component, it is possible to control the control object with improvement in quantity and quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置の第1の実施例を示すブロック構成
図、第2図は本発明装置の第2の実施例を示すブロック
構成図、第3図はゲイン修正係数を求めるためのFF出力
と操作量との関係を示す図、第4図は従来装置のブロッ
ク図、第5図はPI制御出力の中のI成分とP+I成分の
関係を示す図である。 21……プラント量検出器、22……目標量設定部、23……
偏差演算手段、24……速度形調節演算手段、25……位置
形比例調節演算手段、26……加算手段、27……速度形−
位置形信号変換手段、28……加算手段、29……制御対
象、30……外乱量検出器、31……係数手段、32……位置
形−速度信号変換手段、33……乗算手段、34……ゲイン
修正係数演算手段、40……乗算手段。
FIG. 1 is a block diagram showing a first embodiment of the device of the present invention, FIG. 2 is a block diagram showing a second embodiment of the device of the present invention, and FIG. 3 is an FF for obtaining a gain correction coefficient. FIG. 4 is a block diagram of a conventional device, and FIG. 5 is a diagram showing a relationship between an I component and a P + I component in a PI control output. 21 ... Plant quantity detector, 22 ... Target quantity setting unit, 23 ...
Deviation calculation means, 24 Speed-type adjustment calculation means, 25 Position-proportional adjustment calculation means, 26 Addition means, 27 Speed-
Position-type signal conversion means, 28 addition means, 29 control object, 30 disturbance amount detector, 31 coefficient means, 32 position-speed signal conversion means, 33 multiplication means, 34 ... Gain correction coefficient calculation means, 40... Multiplication means.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プロセス量と目標量とを用いて偏差演算手
段で偏差を求めた後、この偏差に基づいてPI(P:比例,
I:積分)演算を行って操作量を求めて制御対象を制御す
るフィードバック制御系にフィードフォワード制御系を
付加してなる制御装置において、 前記偏差に基づいて速度形積分演算を行う速度形積分調
節演算手段と、 この速度形積分調節演算手段から分離して設けられ、前
記偏差に基づいて位置形比例演算を行う位置形比例調節
演算手段と、 外乱量にフィードフォワード係数を乗じて静的フィード
フォワード制御信号をを得、かつ、この制御信号を差分
である速度形信号に変換する第1の信号変換手段と、 前記速度形積分調節演算手段の出力を第2の信号変換手
段で変換した位置形信号と前記静的フィードフォワード
制御信号とを用いてゲイン修正係数を求めるゲイン修正
係数演算手段と、 このゲイン修正係数演算手段によって求めたゲイン修正
係数を前記差分である速度形信号に乗算して得られる静
特性補償信号を前記速度形積分調節演算手段の出力に加
えて外乱補償を行う補償手段と、 この補償手段によって補償された信号を前記第2の信号
変換変換手段で変換された位置形操作量と前記位置形比
例調節演算手段の出力とを加算して制御対象への操作量
信号を得る操作量取得手段と、 を備えたことを特徴とするゲイン適応形制御装置。
1. After a deviation is obtained by a deviation calculating means using a process amount and a target amount, a PI (P: proportional,
I: Integral) A control device in which a feedforward control system is added to a feedback control system that obtains an operation amount to control a controlled object by performing an operation, and performs a speed-type integral adjustment based on the deviation. Calculating means; a position-type proportional adjustment calculating means which is provided separately from the speed-type integral adjusting calculating means and performs a position-type proportional calculation based on the deviation; and a static feed-forward by multiplying a disturbance amount by a feed-forward coefficient. A first signal converting means for obtaining a control signal and converting the control signal into a speed-type signal which is a difference; and a position-type signal obtained by converting the output of the speed-type integral adjustment calculating means by a second signal converting means. Gain correction coefficient calculating means for calculating a gain correction coefficient using the signal and the static feedforward control signal; Compensating means for performing disturbance compensation by adding a static characteristic compensation signal obtained by multiplying the speed-form signal as the difference by the speed-correction coefficient to the output of the speed-form integral adjustment calculating means; and a signal compensated by the compensating means. Operation amount obtaining means for obtaining an operation amount signal for a control object by adding the position-type operation amount converted by the second signal conversion conversion means and the output of the position-type proportional adjustment operation means. A gain adaptive control device characterized by the above-mentioned.
【請求項2】請求項第(1)項記載の前記偏差演算手段
と前記速度形積分調節演算手段との間に乗算手段を付加
し、前記ゲイン修正係数演算手段からのゲイン修正係数
を前記偏差に乗じてフィードバックゲインを修正するこ
とを特徴とするゲイン適応形制御装置。
2. A method according to claim 1, further comprising adding a multiplying means between said deviation calculating means and said speed-type integral adjustment calculating means, and applying a gain correction coefficient from said gain correction coefficient calculating means to said deviation. A gain adaptive control device characterized in that a feedback gain is corrected by multiplying by.
JP63265354A 1988-10-21 1988-10-21 Gain adaptive control device Expired - Lifetime JP2645112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265354A JP2645112B2 (en) 1988-10-21 1988-10-21 Gain adaptive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265354A JP2645112B2 (en) 1988-10-21 1988-10-21 Gain adaptive control device

Publications (2)

Publication Number Publication Date
JPH02112001A JPH02112001A (en) 1990-04-24
JP2645112B2 true JP2645112B2 (en) 1997-08-25

Family

ID=17416011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265354A Expired - Lifetime JP2645112B2 (en) 1988-10-21 1988-10-21 Gain adaptive control device

Country Status (1)

Country Link
JP (1) JP2645112B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460666A (en) * 1977-10-24 1979-05-16 Yokogawa Hokushin Electric Corp Process control unit
JPH0695282B2 (en) * 1983-01-13 1994-11-24 株式会社東芝 Process control equipment

Also Published As

Publication number Publication date
JPH02112001A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4621927A (en) Mixture control apparatus and mixture control method
EP0296638B1 (en) Process control having improved combination of feedforward feedback control
JP2772106B2 (en) 2-DOF adjustment device
EP0192245A2 (en) Process controller having an adjustment system with two degrees of freedom
KR0135586B1 (en) Gain adaptive control device
JPH06119001A (en) Controller
JP2645112B2 (en) Gain adaptive control device
JP2507613B2 (en) Feedforward controller
JPS6121505A (en) Process controller
JP2885544B2 (en) Dead time compensation controller
JPH0721724B2 (en) Automatic control device
JP2766395B2 (en) Control device
JPH0769723B2 (en) Process control equipment
JPS631604B2 (en)
JPS61198302A (en) Regulator
JP2635754B2 (en) Process control equipment
JPS59128602A (en) Process control device
JPS59128603A (en) Process control device
JPH02219482A (en) Servomotor controller
JPH09179602A (en) Desired value filter type 2-degrees-of-freedom pid controller
JPH07311601A (en) Two-degree-of-freedom pid adjusting device
JP3124169B2 (en) 2-DOF adjustment device
JP2809849B2 (en) 2-DOF adjustment device
SU1341616A1 (en) Automatic control system
SU1173390A1 (en) Self-adjusting system of automatic control of lagging objects

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12