JPS6157058B2 - - Google Patents

Info

Publication number
JPS6157058B2
JPS6157058B2 JP56071188A JP7118881A JPS6157058B2 JP S6157058 B2 JPS6157058 B2 JP S6157058B2 JP 56071188 A JP56071188 A JP 56071188A JP 7118881 A JP7118881 A JP 7118881A JP S6157058 B2 JPS6157058 B2 JP S6157058B2
Authority
JP
Japan
Prior art keywords
controller
output
fluid
sulfur
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56071188A
Other languages
Japanese (ja)
Other versions
JPS57187025A (en
Inventor
Shinji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP56071188A priority Critical patent/JPS57187025A/en
Publication of JPS57187025A publication Critical patent/JPS57187025A/en
Publication of JPS6157058B2 publication Critical patent/JPS6157058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices

Description

【発明の詳細な説明】 この発明は複数の入流路よりの流体を混合し
て、例えばローリー車へ出荷し、又は他のタンク
へ移送したりする場合に用いられる流体混合装置
に関し、特にその混合流体の性状に応じて入流路
の流体の混合比率を制御するようにした装置に係
わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid mixing device used for mixing fluids from a plurality of inlet channels and shipping the mixture to a lorry or transferring it to another tank, and particularly relates to The present invention relates to a device that controls the mixing ratio of fluids in an inlet channel according to the properties of the fluids.

例えば複数種類の石油を混合し、その混合した
石油の硫黄分を一定に保持するように、その入流
路の石油の混合比を自動的に変更することが提案
されている。この従来提案されているものにおい
ては、混合石油中の硫黄分を検出し、この値と各
入流路の流体の流量及びその硫黄比率とから電子
計算機により各入流路の比率設定用調節計に対す
る設定比率を演算している。このような制御は正
確に行うことができるが、電子計算機を用いるた
め高価なものとなる。流量と検出硫黄との積を積
分とした値と、流量と硫黄目標値との積を積分し
た値とを比較し、その偏差に応じて入流路の流量
比率を制御する積算偏差制御方式も提案されてい
る。この方式は積分値制御であるため時定数が大
きくなり、よつてハンチングを起し易い欠点があ
る。更にサンプリング制御方式も提案されている
が、この方式は流量変更、比率変更のたびにサン
プリング周期を変更する必要があり、その変更は
厄介なものとなる。
For example, it has been proposed to mix multiple types of petroleum and automatically change the mixing ratio of the petroleum in the inflow passage so as to maintain the sulfur content of the mixed petroleum at a constant level. In this conventionally proposed method, the sulfur content in the mixed petroleum is detected, and based on this value, the flow rate of the fluid in each inlet channel, and its sulfur ratio, a computer is used to set the ratio setting controller for each inlet channel. Calculating the ratio. Although such control can be performed accurately, it is expensive because it uses an electronic computer. We also proposed an integral deviation control method that compares the integral product of the flow rate and detected sulfur with the integral product of the flow rate and the target sulfur value, and controls the flow rate ratio of the inflow channel according to the deviation. has been done. Since this method is based on integral value control, the time constant is large, and this method has the disadvantage that hunting is likely to occur. Furthermore, a sampling control method has been proposed, but this method requires changing the sampling period every time the flow rate or ratio is changed, making the change cumbersome.

この発明の目的は比較的安価に構成することが
でき、ハンチングが起き難く、取扱いが容易な流
体混合装置を提供することにある。
An object of the present invention is to provide a fluid mixing device that can be constructed at a relatively low cost, is less prone to hunting, and is easy to handle.

この発明によれば入流路にはそれぞれその流体
の流量を制御する比率設定調節計が設けられ、一
方混合流路を流れる流体の硫黄、オクタン価、粘
土などの性状が検出され、その検出値は瞬時動作
する性状調節計により設定値との調節演算が行わ
れ、その調節計出力とマスタパルスとが乗算器で
乗算され、その乗算出力が入流路の比率設定調節
計にマスタパルスとして供給される。このように
して高価な電子計算機を用いることなく、瞬時動
作調節計を用いるため、制御時定数が比較的小さ
いためハンチングを起さず、更に混合流体の流量
変更、性状の設定値変更をする場合の操作が容易
である。
According to this invention, each inlet flow path is provided with a ratio setting controller that controls the flow rate of the fluid, and the properties of the fluid flowing through the mixing flow path, such as sulfur, octane number, and clay, are detected, and the detected values are instantaneously transmitted. The operating property controller performs adjustment calculations with the set value, the controller output and the master pulse are multiplied by a multiplier, and the multiplication output is supplied to the ratio setting controller in the input flow path as the master pulse. In this way, since an instantaneous action controller is used without using an expensive electronic computer, hunting does not occur because the control time constant is relatively small, and furthermore, when changing the flow rate of mixed fluid or changing the set value of properties. Easy to operate.

次に図面を参照してこの発明による流体混合装
置の実施例を説明しよう。
Next, an embodiment of the fluid mixing device according to the present invention will be described with reference to the drawings.

第1図は5つの成分の流体を混合する場合で、
入流路11〜15にそれぞれの流体が供給され、
この入流路11〜15の各流体は共通の混合流路
16へ供給されて互に混合される。各入流路11
〜15にはそれぞれ流量計17〜21が設けら
れ、その流路を流れる流体の流量が検出され、そ
の各検出流量は比率設定調節計22〜26へ入力
される。各調節計22〜26には切替スイツチ2
7〜31よりマスタパルスが入力され、そのパル
スに対し各調節計22〜26に設定された比率設
定値が掛算され、この掛算された出力パルスと対
応する流量計からの流量信号とが調節演算され、
その各演算結果により、入流路11〜15に挿入
された制御弁32〜36が制御され、入流路11
〜15より混合流路16に供給される流体は設定
比率で混合される。
Figure 1 shows the case of mixing five component fluids.
Each fluid is supplied to the inlet channels 11 to 15,
The fluids in the inlet channels 11 to 15 are supplied to a common mixing channel 16 and mixed with each other. Each inlet channel 11
-15 are provided with flow meters 17-21, respectively, to detect the flow rate of the fluid flowing through the flow path, and each detected flow rate is input to ratio setting controllers 22-26. Each controller 22 to 26 has a changeover switch 2.
A master pulse is input from 7 to 31, the pulse is multiplied by the ratio setting value set to each controller 22 to 26, and the multiplied output pulse and the flow rate signal from the corresponding flow meter are used for adjustment calculation. is,
Based on the calculation results, the control valves 32 to 36 inserted into the inlet channels 11 to 15 are controlled, and the inlet channels 11 to 15 are controlled.
15 to the mixing channel 16 are mixed at a set ratio.

この実施例では石油を混合し、混合流路16の
混合流体の性状として硫黄成分を検出する場合で
流路16に硫黄検出器37が取付けられ、その検
出出力は演算器38で単位流量中の硫黄の量が演
算される。この演算された硫黄の量は性状調節計
39で端子41からの硫黄設定値と調節演算が行
われる。この性状調節計39は少なくとも瞬時動
作をするものである。
In this embodiment, when petroleum is mixed and a sulfur component is detected as a property of the mixed fluid in the mixing channel 16, a sulfur detector 37 is attached to the channel 16, and its detection output is detected by a calculator 38. The amount of sulfur is calculated. This calculated amount of sulfur is adjusted and calculated in the property controller 39 with the sulfur set value from the terminal 41. This property controller 39 operates at least instantaneously.

更にこの実施例では混合流路16における硫黄
検出系の無駄時間が比較的大きい時は、むだ時間
補償回路42により調節計39に対する補償演算
が行われる。
Furthermore, in this embodiment, when the dead time of the sulfur detection system in the mixing flow path 16 is relatively large, the dead time compensation circuit 42 performs compensation calculation for the controller 39.

性状調節計39の出力と端子43からのマスタ
パルスとが乗算器44,45で乗算される。この
実施例では入流路11〜15の1つ乃至複数に対
し選択的に帰還制御をすることができ、かつ各種
制御を選択できるようにした場合である。即ちス
イツチ27〜31の各切替端子aは端子43に接
続され、この端子aに接続されると、帰還制御が
全く行われない通常の比率混合装置として動作す
る。端子27〜31の切替端子bは乗算器45の
出力側に接続され、この端子に接続されると乗算
器45の出力パルスがマスタパルスとして各調節
計22〜26へ供給される。スイツチ27〜31
の切替端子cは乗算器44の出力側に接続され、
また切替端子dは加算回路47の出力側に接続さ
れる。加算回路47には流量計17〜21の各検
出流量信号が入力され、その和と比例したパルス
が出力される。従つてスイツチ27〜31が端子
dに接続されると実際の流量に対し、設定した比
率で混合される。スイツチ27〜31はそれぞれ
独立してその各切替端子a〜dの任意のものに設
定することができる。また加算回路47の出力は
バツチ制御器48にも供給される。この制御器4
8はバツチシーケンサ49により制御されてマス
タパルスを端子43へ送出し、設定した一定量だ
け出荷することができるようにされる。
The output of the property controller 39 and the master pulse from the terminal 43 are multiplied by multipliers 44 and 45. In this embodiment, feedback control can be selectively performed on one or more of the inlet channels 11 to 15, and various types of control can be selected. That is, each switching terminal a of the switches 27 to 31 is connected to the terminal 43, and when connected to this terminal a, the switch operates as a normal ratio mixing device without any feedback control. The switching terminal b of the terminals 27-31 is connected to the output side of the multiplier 45, and when connected to this terminal, the output pulse of the multiplier 45 is supplied to each controller 22-26 as a master pulse. Switch 27-31
The switching terminal c is connected to the output side of the multiplier 44,
Further, the switching terminal d is connected to the output side of the adding circuit 47. Each detected flow rate signal from the flowmeters 17 to 21 is inputted to the adding circuit 47, and a pulse proportional to the sum thereof is outputted. Therefore, when the switches 27 to 31 are connected to the terminal d, the mixture is mixed at the set ratio with respect to the actual flow rate. The switches 27 to 31 can be independently set to any of the switching terminals a to d. The output of the adder circuit 47 is also supplied to a batch controller 48. This controller 4
8 is controlled by a batch sequencer 49 to send a master pulse to a terminal 43 so that only a predetermined amount can be shipped.

混合流路16にはその流体の圧力が圧力計51
で検出され、その検出圧力は圧力調節計52に入
力され、設定した圧力と調節演算され、その調節
計52の出力は電流パルス変換器53でパルス信
号に変換される。スイツチ54により端子43を
バツチ制御器48からパルス変換器53側に切替
え、かつスイツチ27〜31を端子aに接続する
と、混合流路16の圧力に応じて入流路11〜1
5の流量を設定した混合比を保つて制御するよう
になる。
The pressure of the fluid is measured by a pressure gauge 51 in the mixing flow path 16.
The detected pressure is input to a pressure regulator 52 and adjusted and calculated with the set pressure, and the output of the regulator 52 is converted into a pulse signal by a current pulse converter 53. When the terminal 43 is switched from the batch controller 48 to the pulse converter 53 side by the switch 54 and the switches 27 to 31 are connected to the terminal a, the inlet channels 11 to 1
The flow rate of 5 is controlled to maintain the set mixing ratio.

むだ時間補償回路42は公知のものを用いるこ
とができる。例えば第2図に示すように端子55
から一次遅れ(時定数)Tが0〜2分の間に設定
されて入力され、端子56から流路及び制御ルー
プの全体を含む無駄時間Lが0〜10分の間に設定
されて入力され、端子57から補償係数(感度)
K1が0〜2分の間で設定されて入力される。更
に調節計39の出力MV、調節計39の設定値
(硫黄目標値)SPが入力され、E=1−e〓/1+TS
(Sは ラブラス演算子)の演算と、SP′=SP−K1Eの演
算が行われ、その結果SP′が補償値として調節計
39に入力され、このSP′を設定値として調節演
算が行われる。
As the dead time compensation circuit 42, a known one can be used. For example, as shown in FIG.
A first-order lag (time constant) T is set between 0 and 2 minutes and inputted from the terminal 56, and a dead time L including the entire flow path and control loop is set and inputted between 0 and 10 minutes. , compensation coefficient (sensitivity) from terminal 57
K1 is set and input between 0 and 2 minutes. Furthermore, the output MV of the controller 39 and the set value (sulfur target value) SP of the controller 39 are input, and E=1−e〓/1+TS
(S is a Labrasian operator) and SP' = SP - K 1 E are performed, and as a result, SP' is input to the controller 39 as a compensation value, and an adjustment calculation is performed using this SP' as a set value. It will be done.

この性状調節計39はその入力、つまり検出硫
黄の量が目標値と一致している場合は、例えば調
節計39の出力変化範囲における中心が出力され
る。つまり4〜20mAの出力の場合は入力が目標
値と一致している場合は12mAを出力し、これに
対し、正側にも負側にも50%ずつ変化できるよう
にされる。
When the input, that is, the amount of detected sulfur, matches the target value, the property controller 39 outputs, for example, the center of the output change range of the controller 39. In other words, in the case of an output of 4 to 20 mA, if the input matches the target value, it will output 12 mA, and on the other hand, it can be changed by 50% to the positive side or to the negative side.

乗算器44,45においては調節計39の出力
iが12mA、つまり50%の時は入出力パルスは
1:1とされ、乗算器44,45の各入力マスタ
パルスP0に対し、各出力パルスP1,P2は次のよう
に設定される。
In the multipliers 44 and 45, when the output i of the controller 39 is 12 mA, that is, 50%, the input and output pulses are 1:1, and for each input master pulse P 0 of the multipliers 44 and 45, each output pulse P 1 and P 2 are set as follows.

P1=P0{100+1(i−50)} =P0(i+50) P2=P0{100+1(i−50)} =P0(150−i) 目標値SPが測定値PVより小さい時に調節計出
力iが増大する場合はi>50となり、P1>P2とな
る。逆にSP>PVでiが減少する場合はi<50と
なり、P1<P2となる。よつてSP<PVとなると、
低硫黄の石油を多くし、高硫黄の石油を少くすれ
ばよいから、乗算器44の出力P1を低硫黄濃度石
油のマスタパルスとしてこの低硫黄濃度石油を多
く流し、乗算器45の出力P2を高硫黄濃度石油の
マスタパルスとして高硫黄濃度石油を少なく流す
ようになる。このようにしてSP=PVとなり、i
=50となるように制御される。このように乗算器
44,45によりマスタパルスを逆に制御しして
低硫黄濃度石油と、高硫黄濃度石油との両者を同
時に制御すると、高速度に目標値にすることがで
きるが、乗算器44,45を一方のみ設けて、そ
の一方の制御のみとしてもよい。何れにしても性
状調節計39は瞬時動作のものであり、積算制御
ではないため、時定数が小さく、遅れることなく
動作し、ハンチングが生じるおそれがない。
P 1 = P 0 {100+1(i-50)} = P 0 (i+50) P 2 = P 0 {100+1(i-50)} = P 0 (150-i) When the target value SP is smaller than the measured value PV When the controller output i increases, i>50 and P 1 >P 2 . Conversely, when SP>PV and i decreases, i<50 and P 1 <P 2 . Therefore, when SP<PV,
Since it is sufficient to increase the amount of low-sulfur oil and decrease the amount of high-sulfur oil, the output P1 of the multiplier 44 is used as a master pulse for low-sulfur concentration oil, and a large amount of this low-sulfur concentration oil is flowed, and the output P of the multiplier 45 is increased. 2 is used as a master pulse for high sulfur concentration oil to flow less high sulfur concentration oil. In this way, SP=PV, and i
=50. In this way, if the master pulses are reversely controlled by the multipliers 44 and 45 and both low sulfur concentration oil and high sulfur concentration oil are controlled simultaneously, the target value can be reached at a high speed, but the multiplier Only one of 44 and 45 may be provided and only one of them may be controlled. In any case, the property controller 39 operates instantaneously and does not perform integral control, so it has a small time constant, operates without delay, and there is no risk of hunting.

なお起動時には性状調節計39の出力を、タイ
マ手段により一定時間、前記例では12mA(i=
50)に保持し、混合流路16内の流体が定常状態
になつた時に新らたな設定値に対する調節計39
の出力が正常に動作するようにすることが好まし
い。
At startup, the output of the property controller 39 is controlled by the timer means for a certain period of time, 12 mA (i=
50), and when the fluid in the mixing flow path 16 reaches a steady state, the controller 39 adjusts to the new set value.
It is preferable that the output of

硫黄濃度を瞬時制御することにより遅れを伴う
ことなくハンチングも生じない制御が可能となる
が、更に硫黄の積算値も一定に保持したい場合は
例えば第3図に示すように演算器38よりの硫黄
測定値と端子41からの硫黄目標値とがそれぞれ
乗算器61,62へ供給されて、端子63からの
マスタパルスとの乗算が行われ、これら測定値及
び目標値に比例した数のパルスが得られ、これら
パルスは積算偏差検出回路64で、その両パルス
の積算値の差が検出され、その積算値の差のアナ
ログ値が補正演算回路65へ供給され、端子41
からの硫黄目標値に対する補正演算が行われ、そ
の出力が調節計39へ設定値として供給される。
By instantaneously controlling the sulfur concentration, it is possible to control the sulfur concentration without delay or hunting, but if you also want to keep the integrated value of sulfur constant, for example, as shown in FIG. The measured value and the sulfur target value from terminal 41 are supplied to multipliers 61 and 62, respectively, and multiplied by the master pulse from terminal 63, resulting in a number of pulses proportional to these measured values and the target value. These pulses are detected by the integrated deviation detection circuit 64, which detects the difference between the integrated values of both pulses, and the analog value of the difference between the integrated values is supplied to the correction arithmetic circuit 65, and the terminal 41
A correction calculation is performed on the sulfur target value from , and the output thereof is supplied to the controller 39 as a set value.

以上述べたようにこの発明によれば、通常の比
率制御をしている混合装置において、混合流体の
性状を検出し、これと目標値とを瞬時値制御調節
計に加え、その出力により上記比率制御に対する
マスタパルスを増減制御するため、応答性の速
く、ハンチングをしない。サンプリング制御の場
合は1回の出荷又は移送ごとに、混合比率を変更
し、つまり硫黄濃度を変更したり、流量を変更す
る場合には、その変更ごとにサンプリング周期を
変更する必要があり取扱いが厄介である。しかし
この発明ではそのような変更に影響されず、例え
ば流速を変更してもそのまゝ硫黄濃度が保持され
る。また前記実施例のように構成すれば、起動時
又は切替え時に性状調節計の出力を測定値が目標
値と一致した時の値とするか、又は切替スイツチ
27〜31を端子aに切替えれば通常の混合装置
として動作する。
As described above, according to the present invention, in a mixing device that performs normal ratio control, the properties of the mixed fluid are detected, this and the target value are added to the instantaneous value control controller, and the output is used to determine the ratio. Since the master pulse is increased/decreased for control, the response is fast and hunting does not occur. In the case of sampling control, when changing the mixing ratio, that is, changing the sulfur concentration or changing the flow rate, for each shipment or transfer, it is necessary to change the sampling cycle for each change, making handling difficult. It's troublesome. However, the present invention is not affected by such changes; for example, even if the flow rate is changed, the sulfur concentration remains the same. Furthermore, if configured as in the above embodiment, the output of the property controller at startup or switching is set to the value when the measured value matches the target value, or the changeover switches 27 to 31 are switched to terminal a. Works as a normal mixing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による流体混合装置の一例を
示すブロツク図、第2図はそのむだ時間補償回路
の例を示す図、第3図は性状調節計に積算偏差制
御を加えた例を示すブロツク図である。 11〜15:入流路、16:混合流路、17〜
21:流量計、22〜26:比率調節計、32〜
36:制御弁、37:性状検出器、39:瞬時値
動作性状調節計、42:むだ時間補償回路、4
3:マスタパルス端子、44,45:乗算器。
Fig. 1 is a block diagram showing an example of a fluid mixing device according to the present invention, Fig. 2 is a block diagram showing an example of its dead time compensation circuit, and Fig. 3 is a block diagram showing an example in which integrated deviation control is added to a property controller. It is a diagram. 11~15: Inlet flow path, 16: Mixing flow path, 17~
21: Flowmeter, 22-26: Ratio controller, 32-
36: Control valve, 37: Property detector, 39: Instantaneous value operation property controller, 42: Dead time compensation circuit, 4
3: Master pulse terminal, 44, 45: Multiplier.

Claims (1)

【特許請求の範囲】 1 複数の入流路よりの流体を混合流路へ供給し
て流体を混合する流体混合装置において、 上記各入流路にそれぞれ設けられ、その流体流
量を制御する比率設定調節計と、 上記混合流路の流体の性状を検出する手段と、 その検出値が入力され、設定値との調節演算を
して出力する少なくも瞬時動作をする性状調節計
と、 その性状調節計の出力と、マスタパルスとを乗
算してパルスレートが互に逆に制御されたパルス
を出力し、これらを上記比率設定調節計の異なる
ものにそれぞれマスタパルスとして供給する第
1、第2乗算器とを具備する流体混合装置。
[Claims] 1. In a fluid mixing device that supplies fluids from a plurality of inlet channels to a mixing channel to mix the fluids, a ratio setting controller is provided in each of the inlet channels and controls the fluid flow rate. and a means for detecting the properties of the fluid in the mixing flow path; a property controller that operates at least instantaneously, into which the detected value is input, performs adjustment calculations with the set value, and outputs the property controller; first and second multipliers that multiply the output by the master pulse to output pulses whose pulse rates are controlled inversely to each other, and supply these to different ratio setting controllers as master pulses, respectively; A fluid mixing device comprising:
JP56071188A 1981-05-11 1981-05-11 Fluid mixing device Granted JPS57187025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56071188A JPS57187025A (en) 1981-05-11 1981-05-11 Fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56071188A JPS57187025A (en) 1981-05-11 1981-05-11 Fluid mixing device

Publications (2)

Publication Number Publication Date
JPS57187025A JPS57187025A (en) 1982-11-17
JPS6157058B2 true JPS6157058B2 (en) 1986-12-05

Family

ID=13453427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56071188A Granted JPS57187025A (en) 1981-05-11 1981-05-11 Fluid mixing device

Country Status (1)

Country Link
JP (1) JPS57187025A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873859A (en) * 1971-12-31 1973-10-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52160876U (en) * 1976-05-31 1977-12-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873859A (en) * 1971-12-31 1973-10-05

Also Published As

Publication number Publication date
JPS57187025A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
US6752166B2 (en) Method and apparatus for providing a determined ratio of process fluids
CN101839737B (en) Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same
WO2009084422A1 (en) Flow rate ratio controlling apparatus
US20050058548A1 (en) Method of controlling fluid flow
US3474815A (en) Fluid proportioning and blending system
KR20170135708A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
US4031912A (en) Reactants addition and concentration control system
WO2020209806A1 (en) Calibration method for liquid flowmeter
CN107512754B (en) Automatic powder activated carbon dosing control system for water treatment
JPS6348550B2 (en)
US3342199A (en) Digital blend system
JP3865813B2 (en) Fluid mixing device
FI88343B (en) FOLLOWING ORGANIZATION FOR THE CONDUCT OF A VARIABLE VOLUME WITH A FLOWED VID REGLERING OF A GENOMSTROEMNINGSPROCESSER
US5754452A (en) Method and apparatus for increasing update rates in measurement instruments
CN108607462B (en) Liquid mixing device and liquid flow control method
US4979091A (en) Control of a blending system
CN202469489U (en) Tobacco processing proportion control system based on pneumatic control valve
JPS6157058B2 (en)
RU2473050C1 (en) Apparatus for feeding floatation agents
JPH0132525B2 (en)
US3761690A (en) Computer control of a physical system in which the magnitude and frequency of corrections are system dependent
US20030195650A1 (en) Change-and-wait controller
US20130215704A1 (en) Gas Mixer
SU485746A1 (en) Device for automatic control of the rectification process
JPS63178306A (en) Injection control device