JPS63177955A - Method for producing titanium alloy cast block - Google Patents

Method for producing titanium alloy cast block

Info

Publication number
JPS63177955A
JPS63177955A JP1093187A JP1093187A JPS63177955A JP S63177955 A JPS63177955 A JP S63177955A JP 1093187 A JP1093187 A JP 1093187A JP 1093187 A JP1093187 A JP 1093187A JP S63177955 A JPS63177955 A JP S63177955A
Authority
JP
Japan
Prior art keywords
melting
melted
core material
alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093187A
Other languages
Japanese (ja)
Inventor
Akihiro Yamanaka
章裕 山中
Hiroyuki Ichihashi
市橋 弘行
Ryoji Baba
良治 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1093187A priority Critical patent/JPS63177955A/en
Publication of JPS63177955A publication Critical patent/JPS63177955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To execute addition of a little quantity of a component under high yield by using green compact blending additional element to sponge titanium or powdered titanium as core material, melting by heating cylindrical body winding a thin sheet of main element on the outside from one end, and solidifying by dropping the drips into the mold. CONSTITUTION:The green compact 1 blending a little quantity of the additional element to the sponge titanium, etc., is made to the core material, and melting raw material 4 is made by winding alternately Ti-made thin sheet 2 and Nb- made thin sheet 3 on this core material. The melting raw material 4 arranged in a vacuum room 5 of electron beam furnace is irradiated by electron beam through an electron gun 6 from the lower part thereof while rotating and descending the raw material. In this way, Ti, etc., in the material 4 is melted without any loss, and is made to the drip and solidified in the metal pool 8 in the water cooled copper mold 7, to draw from the mold 7 as the Nb-Ti series alloy cast block 9. Thus, the material having high melting point is not remained to melt and Nb-Ti series alloy casting block for super conductivity material having uniform composition is stably produced at comparatively few number of process.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、主要元素以外の少量成分の添加が高い歩留
りで効率良〈実施でき、かつ成分分布の均一な製品を安
定して得られるチタン合金鋳塊の製造方法に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> This invention provides a titanium alloy that can be efficiently implemented with a high yield by adding small amounts of components other than the main elements, and that can stably obtain products with a uniform component distribution. The present invention relates to a method for manufacturing an alloy ingot.

〈従来技術とその問題点〉 近年、超伝導応用技術の開発に伴ってNb−Ti合金等
の超伝導材料の需要が急増してきたが、Nb−Ti合金
のような高融点金属からなる合金は通常の溶製方法では
製造が不可能なため、一般には、アークやエネルギービ
ーム(電子ビームやプラズマビーム等)を加熱源として
消耗電極等の溶解素材を溶解し、その液滴を下方に配置
した水冷銅モールド内へ連続的に滴下・混合して積層凝
固させる“ドリップ溶解法”が採用されている。そして
、より均質な合金を製造すべく、これまで特にその溶解
素材の形態に様々な工夫が凝らされてきた。
<Prior art and its problems> In recent years, with the development of superconducting application technology, the demand for superconducting materials such as Nb-Ti alloys has increased rapidly. Since it is impossible to manufacture using normal melting methods, in general, melting materials such as consumable electrodes are melted using an arc or energy beam (electron beam, plasma beam, etc.) as a heating source, and the resulting droplets are placed below. The "drip melting method" is used to continuously drip and mix into a water-cooled copper mold and solidify in layers. In order to produce more homogeneous alloys, various efforts have been made to date, particularly in the form of the melted material.

ところが、現在、実用手段として採用されているものを
大別すると、合金を構成する各金属の粉末を混合・圧縮
して成形された消耗電極を真空アーク溶解する方法と、
合金を構成する各金属からなる板を交互に張り合わせて
製作した複合消耗電極を真空アーク溶解する方法(特公
昭55−6089号)の2つに集約されているのが実情
であった。
However, the methods currently in use as practical methods can be roughly divided into two methods: vacuum arc melting of a consumable electrode formed by mixing and compressing powders of the various metals that make up the alloy;
In reality, the current situation has been focused on two methods: vacuum arc melting of a composite consumable electrode made by laminating plates of each metal constituting the alloy alternately (Japanese Patent Publication No. 55-6089).

しかしながら、これら実用手段を採用したとしても、 (a)  高融点側の金属の溶は残りが生じ易い、(′
b)溶製準備作業等に起因した不純物汚染が生じ易い、 (C1溶製作業の安定性が悪い、 等の問題が未解決であって、所望の高品位均質合金を安
定製造することは非常に困難だったのである。
However, even if these practical measures are adopted, (a) melting of metals on the high melting point side tends to leave residue;
b) Problems such as impurity contamination caused by melting preparation work, etc. (poor stability of C1 melting work) remain unresolved, and it is extremely difficult to stably produce the desired high-quality homogeneous alloy. It was difficult.

そこで、本発明者等は上述のような状況を踏まえた上で
、先に、合金を構成する各金属からなる薄板を重ね合わ
せて多層円柱体状に巻き取り、これを溶解素材としてド
リップ溶解する方法を提案した(特開昭61−1974
3号)。先に提案した上記方法によると、高融点成分の
溶は残りがなく、不純物による汚染も少なく、しかも溶
解素材の作成が容易で、安定した溶解状況の下で十分に
満足できる均質鋳塊が得られることから、該方法は高融
点金属から成る合金の溶製法として画期的なものとも言
えるものであった。
Therefore, based on the above-mentioned situation, the inventors of the present invention first stacked thin plates made of each metal constituting the alloy, wound them into a multilayer cylinder, and drip-melted this as a melting material. proposed a method (Japanese Patent Application Laid-Open No. 1974-1974)
No. 3). According to the above-mentioned method proposed earlier, there is no residual melt of high melting point components, there is little contamination by impurities, the melted material is easy to prepare, and a sufficiently homogeneous ingot can be obtained under stable melting conditions. Therefore, this method could be called an epoch-making method for producing alloys made of high-melting point metals.

ところが、昨今、Nb  Ti合金等の高融点金属の合
金系にW、Mo或いはSi等の元素を少量添加・調整し
て成る合金が要求され始めてきた。
However, recently, there has been a demand for alloys made by adding and adjusting small amounts of elements such as W, Mo, or Si to alloys of high melting point metals such as NbTi alloys.

そのため、このような合金をも本発明者等が先に提案し
た上記方法で製造しようとしたが、この場合W、Mo又
はSi等の添加量が極めて少量であることや融点の関係
で、十分な均質性を確保するためには個々の主要成分金
属の薄板材又はこれを巻き付ける芯材として既に所定の
少量添加元素を含んだものを準備せざるを得ないことが
明らかとなった。しかし、上記少量元素を含む板材とし
て市販のものを利用しようとしても添加成分が多種にな
る時には限度があり、また、事前に所定の成分系となる
ように鋳塊を溶製して板材や棒材を製造するにはコスト
的な負担が大き過ぎる上、製造経験のない合金成分系と
なる可能性もあって鋳塊がら板材や棒材に加工するのが
難しいことも考えられるなど、実際上回避し難い問題点
の存在することが分った。
Therefore, the present inventors attempted to manufacture such an alloy by the above-mentioned method proposed earlier, but in this case, the amount of added W, Mo, or Si, etc. was extremely small, and due to the melting point, it was difficult to manufacture the alloy sufficiently. It has become clear that in order to ensure uniformity, it is necessary to prepare a thin plate material of each main component metal or a core material around which it is wrapped, which already contains a predetermined small amount of additive elements. However, even if you try to use commercially available plate materials containing the above-mentioned small amounts of elements, there is a limit when the number of additives varies, and it is also necessary to melt an ingot to have a predetermined composition system in advance to produce plates or rods. In practice, it is difficult to process ingots into plates or bars because the cost burden is too great to manufacture the material, and there is a possibility that the alloy composition will be based on an alloy composition that we have no experience in manufacturing. It turns out that there are problems that cannot be avoided.

く問題点を解決するための手段〉 本発明者等は、上述のような観点から、高融点成分の溶
は残りや不純物による汚染を生じることがなく、また、
溶解素材作成の容易性や熔解作業の安定性確保は勿論の
こと、加えて主要成分以外の少量成分の添加が効率良く
高い添加歩留りで実施でき、かつ鋳塊内で均一な分布と
なるようなチタン合金鋳塊の製造手段を提供すべく、種
々の実験・検討を繰り返しながら研究を行ったところ、
[まず、スポンジチタン又は粉末状チタンと少量添加元
素の所要量とを配合した圧粉体(コンパクト)を作ると
共に、その周囲に先に提案した方法(特開昭61−19
743号)における如くに主要成分金属の薄板を交互に
巻き付けて円柱状の溶解素材を作成してこれをドリップ
溶解すれば、少量合金元素の添加歩留りは殆んど100
%に近くなり、また得られる鋳塊での成分分布も安定し
てほぼ均一となる」との知見を得るに至ったのである。
Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have discovered that the melting of high melting point components does not cause contamination due to residue or impurities, and that
Not only does it make it easier to create melted materials and ensure the stability of the melting process, but it also makes it possible to add small amounts of components other than the main components efficiently with a high addition yield, and to ensure uniform distribution within the ingot. In order to provide a means of manufacturing titanium alloy ingots, we conducted research through repeated experiments and studies, and found that
[First, a compact is made by blending sponge titanium or powdered titanium with the required amount of small amounts of added elements, and the surrounding area is coated with the method previously proposed (Japanese Patent Application Laid-Open No. 61-1989).
No. 743), if thin plates of the main component metals are wound alternately to create a cylindrical melted material and this is drip melted, the addition yield of small amounts of alloying elements will be approximately 100%.
%, and the component distribution in the resulting ingot is stable and almost uniform.''

この発明は、上記知見に基づいてなされたものであり、 スポンジチタン又は粉末状チタンに主要元素以外の少量
添加元素(例えばW、 Mo、 Si等)を配合した圧
粉体を芯材とし、その外側に主要元素(Ti及び例えば
Nb等)の薄板を巻きつけて円柱状溶解素材を作成する
と共に、この溶解素材をドリップ法等により一端から連
続的に加熱・溶解してその液滴を鋳型内に落下させ凝固
することによって、少量元素の添加歩留を高い値に確保
しつつ均質なチタン合金鋳塊を安定して製造し得るよう
にした点、 に特徴を有するものである。
This invention was made based on the above findings, and uses a compacted powder body made of sponge titanium or powdered titanium mixed with a small amount of added elements other than the main elements (for example, W, Mo, Si, etc.) as a core material. A thin plate of main elements (Ti and Nb, etc.) is wrapped around the outside to create a cylindrical melted material, and this melted material is continuously heated and melted from one end using a drip method etc., and the droplets are poured into the mold. By dropping the titanium alloy ingot into solidification, it is possible to stably produce a homogeneous titanium alloy ingot while ensuring a high addition yield of small amounts of elements.

第1図は、この発明の方法に従って少量の添加元素を含
有したNb−Ti合金を溶製する際に使用される溶解素
材の1例を示す概略模式図であり、第1図(alはその
斜視図を、そして第1図(blは縦断面図をそれぞれ示
している。第1図において、符号1はスポンジチタン又
は粉末状チタンに少量添加元素を所定割合で配合した円
柱状の圧粉体(コンパクト)であり、該圧粉体(コンパ
クト)1の数個力q容接等により連結されて溶解素材の
芯材を成している。そして、溶解素材4は上記芯材にT
i製薄板2及びNb製薄板3を交互に巻き付けて構成さ
れる。
FIG. 1 is a schematic diagram showing an example of a melted material used when melting a Nb-Ti alloy containing a small amount of additive elements according to the method of the present invention. A perspective view is shown in FIG. (compact), and several pieces of the green compact (compact) 1 are connected by force q displacement etc. to form the core material of the melted material.The melted material 4 is then
It is constructed by alternately winding thin plates 2 made of i and thin plates 3 made of Nb.

このような形態に溶解素材4が作成されると、該溶解素
材4は消耗電極として真空アーク溶解されるか、或いは
エネルギービーム炉等で溶解されてNb−Ti系合金と
されるが、エレクトロンビーム炉にて連続的に溶解・凝
固されてNb−Ti系台金鋳塊が製造される様子を第2
図で模式的に示した。
When the melted material 4 is created in such a form, the melted material 4 is either vacuum arc melted as a consumable electrode or melted in an energy beam furnace or the like to form a Nb-Ti alloy. The second example shows how a Nb-Ti base metal ingot is manufactured by continuously melting and solidifying in a furnace.
This is shown schematically in the figure.

第2図において、エレクトロンビーム炉の真空室5内に
配置された溶解素材4は、ゆっくりと回転・下降せしめ
られながら下端より電子銃6からのエレクトロンビーム
照射を受ける。これによって、溶解素材4中のTi等は
他の元素と合金化しながら溶は残りや少量元素の逸散を
生じることなく下端から順次溶解し、液滴となって水冷
銅鋳型7内に形成されたメタルプール8に受は止められ
て凝固し、Nb−Ti系合金鋳塊9として連続的に水冷
銅鋳型7から引き抜かれる。
In FIG. 2, a melted material 4 placed in a vacuum chamber 5 of an electron beam furnace is irradiated with an electron beam from an electron gun 6 from its lower end while being slowly rotated and lowered. As a result, the Ti, etc. in the melted material 4 is alloyed with other elements, and the melt is sequentially melted from the bottom without leaving any residue or escaping small amounts of elements, forming droplets in the water-cooled copper mold 7. The receiver is fixed in a metal pool 8 and solidified, and is continuously pulled out from the water-cooled copper mold 7 as an Nb-Ti alloy ingot 9.

このように、この発明の方法においては、事前に少量の
所定成分を含む棒材や板材を製造して置く工程が不要で
、しかも主要成分の溶解と同時に少量成分の添加を極め
て安定かつ歩留り良〈実施することが出来る。
As described above, the method of the present invention does not require the step of manufacturing bars or plates containing a small amount of a specified component in advance, and can add a small amount of the component simultaneously with the melting of the main component in an extremely stable and high-yield manner. <It can be implemented.

なお、上述のようにして得られた合金鋳塊9を2次溶解
素材とし、同様手段或いは他の溶解手段にて再溶解する
ことはより一層均質な合金を得る上で好ましいことであ
る。
Note that it is preferable to use the alloy ingot 9 obtained as described above as a secondary melting material and remelt it by the same means or other melting means in order to obtain a more homogeneous alloy.

次に、この発明を実施例によって説明する。Next, the present invention will be explained by examples.

〈実施例〉 実施例 1 第1表に示すような成分組成(0,5%のMoを含む)
を目標としたNb−Ti合金の溶製を行った。
<Example> Example 1 Ingredient composition as shown in Table 1 (including 0.5% Mo)
An Nb-Ti alloy was produced with the aim of achieving this goal.

第   1   表 合金の溶製に際しては、まず0.5インチル20メツシ
ユのスポンジチタンと200μm以下の粉末状線Moと
を所定の濃度となるように配合し、これを圧縮成形して
円柱状のコンパクトを得、その複数個を溶接により連結
して所定長さの芯材とした後、純Nb板(0,3顛厚)
と純Ti板(0,3龍厚)とを交互に巻き付けて、第1
図に示されるような溶解素材を作成した。このとき使用
した純Nb板、純Ti板並びにスポンジチタンの成分組
成を第2表に示す。
When melting the alloy shown in Table 1, first, sponge titanium of 0.5 inch 20 meshes and powdered wire Mo of 200 μm or less are mixed to a predetermined concentration, and this is compression molded to form a cylindrical compact. After connecting multiple pieces by welding to form a core material of a predetermined length, a pure Nb plate (0.3 thickness) was obtained.
and pure Ti plate (0.3 dragon thickness) alternately,
A melted material as shown in the figure was prepared. Table 2 shows the compositions of the pure Nb plate, pure Ti plate, and titanium sponge used at this time.

第   2   表 なお、コンパクト芯材の直径、純Nb板の巻き付は厚み
及び純Ti板の巻き付は厚みは、それぞれ第1表に示す
目的成分組成に合わせて調整した。
Table 2 The diameter of the compact core material, the thickness of the pure Nb plate, and the thickness of the pure Ti plate were adjusted according to the target component composition shown in Table 1.

更に、比較のため、従来の如く150メツシユ以下のN
b粉末と粒径Aインチ以下のスポンジチタンと100メ
ツシユ以下のMO粉末とを均一に混合し圧縮成形して、
円柱状の溶解素材(ブリケット)を作成した。
Furthermore, for comparison, N of 150 meshes or less as in the past
B powder, sponge titanium with a particle size of A inch or less, and MO powder with a particle size of 100 mesh or less are uniformly mixed and compression molded,
A cylindrical melted material (briquette) was created.

続いて、上述のように作成された各溶解素材を消耗電極
として、第3表に示す条件で常法通りに真空アーク溶解
を行い、生成した液滴を順次水冷銅鋳型に受けて凝固さ
せることによりNb−Ti系合金鋳塊を連続的に製造し
た。なお、溶解は何れも2次溶解まで実施した。
Next, using each of the melted materials created as described above as a consumable electrode, vacuum arc melting is performed in the usual manner under the conditions shown in Table 3, and the generated droplets are sequentially received in a water-cooled copper mold and solidified. Nb-Ti based alloy ingots were continuously produced. In addition, all dissolutions were carried out up to the secondary dissolution.

第   3   表 このようにして得られたNb−Ti系合金の二次鋳塊中
心部の成分分布を比較して第3図に示した。
Table 3 A comparison of the component distribution in the center of the secondary ingot of the Nb-Ti alloy thus obtained is shown in FIG.

第3図に示される結果からも明らかな如く、従来のよう
に各成分の粉末を圧縮成形したのみの溶解素材を使用し
た場合にはMo濃度はほぼ目標値に近いものの、Nbの
濃度分布は全体にバラツキが大きくなっているのに対し
て、本発明に係る溶解素材を用いた場合には何れの成分
も均一な分布となっていることが分かる。なお、従来法
によって得られた鋳塊の中心軸面部の組織を調査したと
ころ多数の未溶融のNbが見られ、これが成分バラツキ
の原因となっていることが確認された。
As is clear from the results shown in Figure 3, when using a melted material made by compression molding the powder of each component as in the past, the Mo concentration is almost close to the target value, but the Nb concentration distribution is It can be seen that, while there is large variation overall, when the melted material according to the present invention is used, all components have a uniform distribution. In addition, when the structure of the central axis surface of the ingot obtained by the conventional method was investigated, a large amount of unmelted Nb was found, and it was confirmed that this was the cause of the component variation.

また、ここでは二次鋳塊の成分分布のみを紹介したが、
−次鋳塊においても本発明法によるものは従来法に比し
て均一な成分分布を示していたことは言うまでもない。
In addition, only the component distribution of the secondary ingot was introduced here;
- It goes without saying that the ingot produced by the method of the present invention showed a more uniform component distribution than the conventional method.

実施例 2 この例では、第4表に示すような成分組成(2,0%の
Wを含む)を目標としたA/!−Ti合金の溶製を行っ
た。
Example 2 In this example, the A/! component composition (including 2.0% W) as shown in Table 4 was targeted. - A Ti alloy was melted.

第   4   表 合金の溶製に際しては、まず20メツシユ以下のスポン
ジチタンと100μm以下の粉末状線Wとを所定の濃度
となるように配合し、これを圧縮成形して円柱状のコン
パクトを得、その複数個を溶接により連結して所定長さ
の芯材とした後、純i板(0,4m厚)と純Ti板(0
、3111厚)とを交互に巻き付けて、第1図に示され
るような溶解素材を作成した。このとき使用した純i板
、純Ti板並びにスポンジチタンの成分組成を第5表に
示す。
When melting the alloy shown in Table 4, first, sponge titanium of 20 meshes or less and powder wire W of 100 μm or less are mixed to a predetermined concentration, and this is compression molded to obtain a cylindrical compact. After connecting multiple pieces by welding to make a core material of a predetermined length, pure I plate (0.4 m thick) and pure Ti plate (0.4 m thick)
, 3111 thickness) were wound alternately to create a melted material as shown in FIG. Table 5 shows the compositions of the pure I plate, pure Ti plate, and titanium sponge used at this time.

注)ACTi及びWは〔%〕で、O,N、H及びFeは
(ppm)で表示した。
Note) ACTi and W are expressed in [%], and O, N, H and Fe are expressed in (ppm).

なお、コンパクト芯材の直径、純Al板の巻き付は厚み
及び純Ti板の巻き付は厚みは、それぞれ第4表に示す
目的成分組成に合わせて調整した。
The diameter of the compact core material, the winding thickness of the pure Al plate, and the winding thickness of the pure Ti plate were each adjusted according to the target component composition shown in Table 4.

更に、比較のため、上記純Ti板に代えて、所定のW濃
度と成るようなTi−W母合金鋳塊から圧延製造したT
i−W母合金板を用い、これと純Al板とを純Tiから
成る芯材に交互に巻き付けて溶解素材とした。
Furthermore, for comparison, instead of the pure Ti plate mentioned above, a T plate manufactured by rolling from a Ti-W master alloy ingot with a predetermined W concentration was used.
Using an i-W master alloy plate, this and a pure Al plate were alternately wound around a core material made of pure Ti to obtain a melted material.

続いて、上述のように作成された各溶解素材を消耗電極
として、前記第3表に示す条件で常法通りに真空アーク
溶解を行い、生成した液滴を順次水冷銅鋳型に受けて凝
固させることによりAj2−Ti系合金鋳塊を連続的に
製造した。なお、溶解は何れも2次溶解まで実施した。
Next, vacuum arc melting is performed in the usual manner under the conditions shown in Table 3 using each of the melted materials created as described above as a consumable electrode, and the generated droplets are sequentially received in a water-cooled copper mold and solidified. In this way, Aj2-Ti alloy ingots were continuously manufactured. In addition, all dissolutions were carried out up to the secondary dissolution.

このようにして得られたAβ−Ti系合金の二次鋳塊中
心部の成分分布を比較して第4図に示した。
FIG. 4 shows a comparison of the component distribution in the center of the secondary ingot of the Aβ-Ti alloy thus obtained.

第4図に示される結果からも明らかな如く、本発明の方
法に従って溶製されたA/!−Ti系合金鋳塊は、比較
例の〔母合金の溶製−圧延一一次溶解一二次溶解〕と言
う多工程に比べて〔−次溶解一二次溶解〕と工程数が少
ないにも係わらず、比較例で得られた鋳塊とAj2及び
Wの分布が同レベルの物となっていることが分かる。
As is clear from the results shown in FIG. 4, A/! was melted according to the method of the present invention! -The Ti-based alloy ingot requires fewer steps (-thin melting, first-second melting) compared to the comparative example, which involves multiple steps of [melting of the master alloy - rolling, first melting, and second melting]. Nevertheless, it can be seen that the distribution of Aj2 and W is on the same level as the ingot obtained in the comparative example.

〈効果の総括〉 以上に説明した如く、この発明によれば、高融点成分の
溶は残り等を生じることがなく、また少量成分の添加を
高い添加歩留りで効率良〈実施でき、しかも比較的少な
い工程数で均一成分のチタン合金鋳塊を安定して製造す
ることが可能となるなど、産業状有用な効果がもたらさ
れるのである。
<Summary of Effects> As explained above, according to the present invention, high melting point components are dissolved without leaving any residue, and addition of small amounts of components can be carried out efficiently with high addition yields, and relatively easily. This brings about industrially useful effects, such as making it possible to stably produce titanium alloy ingots with uniform composition in a small number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法において使用される溶解素材
の1例を示す概略模式図であって、第1図(a)はその
斜視図を、そして第1図(b)は縦断面図をそれぞれ示
しており、 第2図は、本発明に係る溶解素材がエレクトロンビーム
炉にて連続的に溶解・凝固されてチタン合金鋳塊が製造
される様子を示す概略模式図、第3図は、実施例1にお
いて得られたNb  Ti合金鋳塊における成分元素の
濃度と分布を示すグラフ、 第4図は、実施例2において得られたAg −Ti合金
鋳塊における成分元素の濃度と分布を示すグラフである
。 図面において、 1・・・圧粉体(コンパクト)、2・・・Ti製薄板、
3・・・Nb製薄板、    4・・・溶解素材、5・
・・真空室、    6・・・電子銃、7・・・水冷銅
鋳型、  8・・・メタルプール、9・・・合金鋳塊、
10・・・エレクトロンビーム。
FIG. 1 is a schematic diagram showing an example of a melting material used in the method of the present invention, FIG. 1(a) is a perspective view thereof, and FIG. 1(b) is a longitudinal cross-sectional view thereof. FIG. 2 is a schematic diagram showing how a titanium alloy ingot is manufactured by continuously melting and solidifying the melted material according to the present invention in an electron beam furnace, and FIG. , a graph showing the concentration and distribution of component elements in the Nb-Ti alloy ingot obtained in Example 1, and FIG. 4 shows the concentration and distribution of component elements in the Ag-Ti alloy ingot obtained in Example 2. This is a graph showing. In the drawings, 1... Green compact (compact), 2... Ti thin plate,
3... Nb thin plate, 4... Melting material, 5...
...Vacuum chamber, 6.Electron gun, 7.Water-cooled copper mold, 8.Metal pool, 9.Alloy ingot,
10...Electron beam.

Claims (1)

【特許請求の範囲】[Claims] スポンジチタン又は粉末状チタンに主要元素以外の添加
元素を配合した圧粉体を芯材とし、その外側に主要元素
の薄板を巻きつけて作成した円柱体を一端から連続的に
加熱・溶解すると共に、その液滴を鋳型内に落下させて
凝固することを特徴とする、チタン合金鋳塊の製造方法
A cylindrical body made of sponge titanium or powdered titanium mixed with additive elements other than the main elements is used as the core material, and a thin plate of the main element is wrapped around the outside of the core material.The cylinder is continuously heated and melted from one end. , a method for producing a titanium alloy ingot, characterized in that the droplets are allowed to fall into a mold and solidify.
JP1093187A 1987-01-20 1987-01-20 Method for producing titanium alloy cast block Pending JPS63177955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093187A JPS63177955A (en) 1987-01-20 1987-01-20 Method for producing titanium alloy cast block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093187A JPS63177955A (en) 1987-01-20 1987-01-20 Method for producing titanium alloy cast block

Publications (1)

Publication Number Publication Date
JPS63177955A true JPS63177955A (en) 1988-07-22

Family

ID=11763976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093187A Pending JPS63177955A (en) 1987-01-20 1987-01-20 Method for producing titanium alloy cast block

Country Status (1)

Country Link
JP (1) JPS63177955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224534A (en) * 1990-09-21 1993-07-06 Nippon Mining And Metals Company, Limited Method of producing refractory metal or alloy materials
KR20160147998A (en) 2014-09-25 2016-12-23 신닛테츠스미킨 카부시키카이샤 Process for producing ru-containing corrosion-resistant titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224534A (en) * 1990-09-21 1993-07-06 Nippon Mining And Metals Company, Limited Method of producing refractory metal or alloy materials
KR20160147998A (en) 2014-09-25 2016-12-23 신닛테츠스미킨 카부시키카이샤 Process for producing ru-containing corrosion-resistant titanium alloy

Similar Documents

Publication Publication Date Title
US20210276099A1 (en) Process for manufacturing aluminium alloy parts
CN108326427A (en) A kind of method of high-entropy alloy twin arc fuse collaboration increasing material manufacturing
US11692240B2 (en) Process for manufacturing an aluminum alloy part
US20210269896A1 (en) Process for manufacturing an aluminum alloy part
DE102010018303B4 (en) A method of making an inclusion-free Ta base alloy for an implantable medical device
CN112191856A (en) Preparation method of in-situ synthesized particle reinforced titanium-based composite material powder
EP1444065B1 (en) Method for producing alloy ingots
JP2009293108A (en) METHOD FOR PRODUCING Al-BASED ALLOY SPUTTERING TARGET MATERIAL
DE1558507A1 (en) New nickel alloy and process for its manufacture
TW201103999A (en) Method for manufacturing nickel alloy target
DE112015004141B4 (en) Method of making a platinum group alloy
DE3324181A1 (en) ELECTRICAL CONTACT MATERIAL
US8778262B2 (en) Alloy having reduced inclusions
JPS63177955A (en) Method for producing titanium alloy cast block
CA1049268A (en) Leech alloying
JP5793278B2 (en) Method for producing Cr-containing copper alloy wire
US8414679B2 (en) Producing an alloy with a powder metallurgical pre-material
JP3067318B2 (en) Manufacturing method of electrode material
CN107252889B (en) A kind of preparation method of titanium alloy large-sized casting ingot consutrode
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPS6039134A (en) Melting method of titanium group metal alloy
JPH04131332A (en) Production of nb-ti alloy
JPH04131333A (en) Production of refractory metal-base alloy ingot
JPH07136740A (en) Casting method of ti alloy
CN116511429A (en) Preparation method of large-size casting defect-free high-entropy alloy ingot with uniform components