JPS6039134A - Melting method of titanium group metal alloy - Google Patents

Melting method of titanium group metal alloy

Info

Publication number
JPS6039134A
JPS6039134A JP14845783A JP14845783A JPS6039134A JP S6039134 A JPS6039134 A JP S6039134A JP 14845783 A JP14845783 A JP 14845783A JP 14845783 A JP14845783 A JP 14845783A JP S6039134 A JPS6039134 A JP S6039134A
Authority
JP
Japan
Prior art keywords
melting
compact
alloy
group metal
titanium group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14845783A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ichihashi
市橋 弘行
Ryuka Ikeda
池田 隆果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14845783A priority Critical patent/JPS6039134A/en
Publication of JPS6039134A publication Critical patent/JPS6039134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy product of titanium group metals free of defect and having a regulated carbon concn. by using a compact contg. tin added with dispersed low-melting-point carbide consisting essentially of cementite as a concumable electrode, and melting in a vacuum electric arc furnace. CONSTITUTION:The starting material consisting of sponge titanium, alloying components, etc. is mixed by a mixer 1 and pressed into a compact 3 in a pressing stage 2. A rod-shaped compact obtained by linking many compacts together at a welding stage 3 is used as a consumable electrode 71 which is melted in the primary vacuum electric arc furnace 61 to obtain the melt 9 which is molded into an ingot with a mold 8. An electrode 72 of the secondary vacuum electric arc furnace 62 is obtained by linking plural said ingots together. The electrode is melted and molded into the product with a mold 82. In the above-mentioned melting method of the titanium group metal alloy, a compact, added with dispersed low-melting-point carbide consisting essentially of cementite, or consisting of Cr7C3 or Cr3C2, is used to constitute the consumable electrode 71. The carbon concn. in the alloy is regulated in this way, and the generation of the defects in the product due to the remaining unmelted substance of the added carbonaceous agent can be prevented.

Description

【発明の詳細な説明】 この発明は消耗電極式真空アーク炉(以下MARという
)方式によるチタン族金属合金の溶解における強度調整
用炭素の添加方法の改良に係り、詳しくは強度調整用炭
素を熔解し易いセメンタイト、クロムカーバイド等の低
融点炭化物の形態でコンパクトに分散添加し、添加炭素
1,11の未溶融残存物に基く成品欠陥発生の防止を図
ったチタン族金属合金の溶解法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the method of adding carbon for strength adjustment in melting titanium group metal alloys using a consumable electrode vacuum arc furnace (hereinafter referred to as MAR) method. This invention relates to a method for melting titanium group metal alloys, which is compactly dispersed in the form of low melting point carbides such as cementite and chromium carbide, which are easy to melt, and which aims to prevent product defects due to unmelted residuals of added carbon 1 and 11.

チタン族金属合金の溶解法としては、一般に第1図の工
程図に示す如くにVAR方式により2回繰返して熔解・
鋳込を行う方法が採用8れている。
Generally, the method for melting titanium group metal alloys is to repeat the melting process twice using the VAR method as shown in the process diagram in Figure 1.
A method of casting has been adopted8.

すなわち、例えば成分調整したヌボンジチタン、チタン
ヌクラップ、合金成分等からなる原料を混合機(1)で
混合した後プレス工程(2Jでコンパクト(3)と称す
る圧着成型物にプレスした後溶接工程(4)Kで前記コ
ンパクト(3)を多数つなぎ合せた棒状コンパクト(5
)を製造する。次に一次真空アーク炉(6/)において
、前記棒状コンパクト(5)を消耗電極(7/〕として
用い、該電極(7/)と鋳型(8/)内の溶湯(9)と
の間にアークを発生させてそのアーク熱により電極(7
/)を融解δせて鋳型(8/)に85込んで一次インコ
ットとする。次いで、さらにこの−次インゴットを複数
個つなぎ合せて二次真空アーク炉(6,2)の電極(7
2)として用い、上記同様に電極(72)を鋳型(8り
に鋳込んで二次インゴット(インゴット成品)とする。
That is, for example, raw materials consisting of adjusted compositions of nubondititanium, titanium nuclapp, alloy components, etc. are mixed in a mixer (1) and then pressed into a crimped molded product called compact (3) in 2J, followed by a welding process (4). ) A rod-shaped compact (5) made by connecting many of the compacts (3)
) is manufactured. Next, in the primary vacuum arc furnace (6/), the rod-shaped compact (5) is used as a consumable electrode (7/) between the electrode (7/) and the molten metal (9) in the mold (8/). An arc is generated and the arc heat causes the electrode (7
/) is melted and poured into a mold (8/) to obtain a primary incot. Next, a plurality of these secondary ingots are joined together to form an electrode (7, 7) of a secondary vacuum arc furnace (6, 2).
2), and the electrode (72) is cast into a mold (8) in the same manner as above to form a secondary ingot (ingot product).

上述の如きチタン族金属合金の溶解においては、成品の
基本成分は規格でその範囲が決められている。これらの
基本成分の濃度は原料を適当に選択して規格に合致させ
ることは容易であるが、成品の機械的性質、特に引張強
度を指定値に合致させることは可成りむづかしい。そこ
で通常は引張強度が指定値に対【−で若干不足するよう
な場合、夕景の添加で強度の著しい向上が得られる強化
元素を用いて強度を調整して指定値に合致δせる方法が
行われており、このような強度調整用元素としては強度
向上能力の極めて大きい炭素が最も有効な元素として知
られている。そうして上記炭素の最高濃度は規格で指定
ちれているが、例えばT1−e A/!、−4’V合M
T高々11000J)I)程uのtiめで少量である。
When melting titanium group metal alloys as described above, the range of the basic components of the product is determined by standards. Although it is easy to make the concentrations of these basic components meet the specifications by appropriately selecting raw materials, it is quite difficult to make the mechanical properties of the finished product, especially the tensile strength, meet the specified values. Therefore, if the tensile strength is slightly insufficient compared to the specified value, the method of adjusting the strength to meet the specified value δ is to use a reinforcing element that can significantly improve the strength by adding Sunset. Carbon, which has an extremely high ability to improve strength, is known as the most effective element for strength adjustment. The maximum concentration of carbon mentioned above is specified by the standard, but for example, T1-e A/! , -4'V combined M
T at most 11,000 J) I) It is a small amount at about ti of u.

しかしこの炭素は一般に低融点のものが多く、溶解過程
での溶は残りが成品品質の欠陥につながるので、実用化
が1章めで困φ[[とされていた。すなわち、まず第一
に、そもそもVARによる溶解では、プレスされたコン
パクトからなる電極がアーク炉内で層状に熔解し、次い
で水冷銅鋳型内で層になって凝固するので、通常の朗火
物芥器内での溶解に比べて溶湯状態にある時間が楔めで
短がい。
However, this carbon generally has a low melting point, and any residue that remains during the melting process will lead to defects in the quality of the finished product, so it was said that it would be difficult to put it into practical use in the first chapter. First of all, in melting by VAR, an electrode made of pressed compacts is melted in layers in an arc furnace, and then solidified in layers in a water-cooled copper mold, so it cannot be used as normal refractory waste. Compared to melting in the vessel, the time spent in the molten state is wedge-like and short.

従って一般に添加する合金元素の性質とl−て第一に具
備すべき条件は溶解l−易いということである。
Therefore, in general, the first condition that should be met regarding the properties of the alloying element to be added is that it be easily soluble.

そこで一般に添加する元素が高融点元素である場合には
、低融点の母合金と称する目的の合金を構成する元素と
の合金を予め作っておいて、これを代りに用いることが
多い。例えばTi−6At−4V合金の熔解においては
■は高融点であるため代シにAt、−V2O:50の低
融点の母合金を使用している。
Therefore, generally when the element to be added is a high melting point element, an alloy with the elements constituting the target alloy, called a low melting point master alloy, is often prepared in advance and used instead. For example, in melting a Ti-6At-4V alloy, since (1) has a high melting point, a low melting point master alloy of At, -V2O:50 is used as a substitute for (2).

しかし炭素の場合には上記のような目的の合金を173
成する元素との合金で低融点の母合金が見当らないので
、従来は一般に、黒鉛またばT1合金ではTic、Zr
合金ではZrC等が用いられていた。
However, in the case of carbon, the above-mentioned target alloy is 173
Conventionally, graphite or T1 alloys were generally used with Tic, Zr, etc.
ZrC and the like were used as alloys.

そうしてこれらTic、 ZrCを微粉にするが、黒鉛
を微粉にして7ポンジにまぶすがして、溶解し易い形態
として用いるしか方法がなかった。しかしコh ラTi
−C,ZrC,C等Hいずれも融点が3000”c以」
二の高融点炭化物であるため、たとえ目的とする合金へ
の添加目標a度がその飽和溶解度のh00程度で十分と
いう緩やかな条件であるとはいえ、上述の如き短時間の
滞留では十分に熔解が完了しないで一部が未溶融で残存
し、この残存物が疵等の原因につながり、成品での欠陥
となるのである。
These Tic and ZrC were then made into fine powders, but the only way to do so was to make them into fine powders of graphite, sprinkle them on a 7-pound tube, and use them in an easily soluble form. But this time
-C, ZrC, C, etc. H all have melting points of 3000"c or higher"
Since it is a carbide with a high melting point, even if the target a degree of addition to the target alloy is a relaxed condition that the saturated solubility of h00 is sufficient, it will be sufficiently melted in the short stay as mentioned above. When the melting process is not completed, a portion remains unmelted, and this residue can cause scratches and other defects, resulting in defects in the finished product.

このように、炭素添加による強度向上の有効性について
は十分に周知されているにも拘らず、実用化となると問
題点があって実際には利用されていないというのが実情
であった。
As described above, although the effectiveness of carbon addition in improving strength is well known, the reality is that it has not been used in practice due to problems when put into practical use.

本発明は上記に鑑み、VARによるチタン族金属合金の
溶解において、強度調整用炭素を低融点炭化物の形態で
添加して炭化物の未溶融残存物に基く成品の欠陥発生を
可及的に低減し、強度調整用炭素の利用を容易にしたチ
タン族金属合金の溶解法を提供しようとするものである
・ 本発明者らUVARによるチタン族金属合金の熔解にお
いて実用可能な低融点炭化物について種々調査研究を行
った。その結果、次の事丈を知見した。すなわちまず第
一に炭素はセメンタイト(Fe3C)の形態とすること
によって1225℃の低融点を得ることができる。そう
して前記Fe5Cは純度の高いものは極めて不安定で実
用的に適当ではなイ2)E、Fe5CIc Mn ’f
x VrしCrを0%ごえ〜30%の範囲に含有させる
ことにより実用的に支障ない程度の安定性が得られ、ま
た強度向上能力も従来のT1−C,ZrC等と略同等で
、また合金成分濃度の点からも規格に外れることなく収
拾し得るという事実を知見した。
In view of the above, the present invention adds strength-adjusting carbon in the form of a low melting point carbide to the melting of titanium group metal alloys by VAR to reduce as much as possible the occurrence of defects in products due to unmelted carbide residues. This is an attempt to provide a method for melting titanium group metal alloys that facilitates the use of carbon for strength adjustment. The present inventors have conducted various research studies on low melting point carbides that can be practically used in melting titanium group metal alloys by UVAR. I did it. As a result, we discovered the following facts. That is, first of all, by forming carbon in the form of cementite (Fe3C), a low melting point of 1225°C can be obtained. Therefore, the Fe5C with high purity is extremely unstable and is not suitable for practical use.2) E, Fe5CIc Mn 'f
x Vr and by containing Cr in the range of 0% to 30%, stability to the extent that it does not cause any practical problems can be obtained, and the strength improvement ability is almost the same as that of conventional T1-C, ZrC, etc. It was also discovered that the concentration of alloy components could be controlled without exceeding the specifications.

また炭素はクロムカーバイドの形態をとることにより低
融点炭化物となし得るが、特にCr7C3は融点1”1
780’j:、Cr3C,2(d1890℃で適当であ
り、またこのようなCr量の少ないクロムカーバイドで
あれば、C濃度調整のために添加した場合でもCr量が
少ないのでCrアップの度合は小8く、合金配合中のO
r濃度の規格を越える上昇は回避できるので、強度調整
用炭素剤として十分に有効で[Lまた前記のF(3jC
と同様に合金成分濃度の点からもJ↓シ格に合格し得る
ことが判明した。
Also, carbon can be made into a low melting point carbide by taking the form of chromium carbide, but in particular Cr7C3 has a melting point of 1"1.
780'j:, Cr3C,2 (d1890℃ is suitable, and if chromium carbide has such a small amount of Cr, even if it is added to adjust the C concentration, the amount of Cr will be small, so the degree of Cr increase will be 8th grade, O in alloy formulation
Since an increase in r concentration exceeding the standard can be avoided, it is sufficiently effective as a carbon agent for strength adjustment [L and the above F(3jC
Similarly, it was found that it could pass J↓ from the point of view of alloy component concentration as well.

−また上記Fe5C,Cr7C3,Cr3C2の粒度と
しては、いずれも05問以下に粉砕した微粉とすること
によって、溶解し易さが大巾に向上し、VA−Fにおけ
る電極の溶解の如@極めて短時間の浴湯内滞留における
熔解においても完全な溶解が得られ、未溶部分が残存j
−ないという41実も知見した。
- Also, as for the particle size of Fe5C, Cr7C3, and Cr3C2, by pulverizing all of them into fine powders of 0.05 or less, the ease of dissolution is greatly improved, and the dissolution of the electrode in VA-F is extremely short. Complete dissolution is obtained even during melting while staying in the bath water for hours, and undissolved portions remain.
- We also found 41 cases where there was no such thing.

本発明は上記知見に甚いてなされたものであって、その
要旨とするところは、 (1)消耗電極式真空アーク炉によるチタン族金属合金
の溶解において、消耗電極にセメンタイトを主成分とす
る低融点炭化物を分散添加せしめたコンパクトを使用し
て合金中の炭素濃度を調整することを特徴とするチタン
族金属合金の溶解法(2)消耗電極式真空アーク炉によ
るチタン族金属合金の溶解において、消耗電極VCCr
7C3またはC]TJC,2およびこれらの混合物から
なる低融点炭化物を分散添加せしめたコンパクトを使用
して谷金中の炭素濃度を調整することを特徴とするチタ
ン族金属合金の溶解法 にある。
The present invention has been made based on the above findings, and its gist is as follows: (1) In the melting of titanium group metal alloys in a consumable electrode type vacuum arc furnace, A method for melting titanium group metal alloys characterized by adjusting the carbon concentration in the alloy using a compact to which melting point carbides are dispersed (2) Melting titanium group metal alloys using a consumable electrode type vacuum arc furnace, Consumable electrode VCCr
A method for melting a titanium group metal alloy, which is characterized by adjusting the carbon concentration in the valley metal using a compact to which a low melting point carbide consisting of 7C3 or C]TJC,2 and a mixture thereof is dispersed.

次に本発明のチタン族金属合金の溶解法を図面に基いて
説明する。
Next, a method for melting a titanium group metal alloy according to the present invention will be explained based on the drawings.

例えば第1図に示した工程による溶解において強度調整
用元素として炭素を使用する場合、炭素の添加は次のよ
うに行われる。
For example, when carbon is used as a strength-adjusting element in the melting process shown in FIG. 1, carbon is added as follows.

強度調整用炭素添加剤としてセメンタイトを使用する場
合は、Fe2C中にMnかいしOrを0歯ごえ〜30%
含有せしめて調整したセメンタイI・を用い、またクロ
ムカーバイドを使用する場合は0r7C3またはCr3
C,およびCI”7CJ、 Cr5Cx (D混合物を
用い、これらの各添加剤はいずれも粒度をQ、 5 龍
以下とすることが必要である。
When using cementite as a carbon additive for strength adjustment, add Mn or or from 0 to 30% in Fe2C.
When using cementite I, which has been adjusted by adding chromium carbide, use 0r7C3 or Cr3.
C, and CI''7CJ, Cr5Cx (D mixtures are used, and it is necessary for each of these additives to have a particle size of Q, 5 or less.

添加方法は、第1図のブレス工程(2)においてプレス
によって原料からコンパクト(3)を製造する際に、コ
ンパクト(3)の中段に調整用要素剤を分散δせて装入
してもよいし、また混合イ幾(1)中に原料と調整用要
素剤とを共に装入して混合し原料中に調整用/!1il
l!素剤を均一に分散添加した後、ひきつづいてプレス
工程に送給してもよく、特に添加方法を限定するもので
はないが、調整用炭素剤が−か所に集中して添加てれる
と真空アーク溶解における短時間の滞留時間内での融解
に支障をきたすおそれがあるので、炭素剤は適当に分散
して添加することが特に望まれる。
As for the addition method, when producing the compact (3) from raw materials by pressing in the pressing step (2) in Figure 1, the adjusting element may be dispersed and charged in the middle stage of the compact (3). In addition, the raw material and the adjusting element are charged and mixed together in the mixing step (1), and the raw material is mixed with the adjusting agent. 1il
l! After uniformly dispersing and adding the base material, it may be continuously fed to the press process, and the method of addition is not particularly limited. Since there is a possibility that melting within a short residence time during arc melting may be hindered, it is particularly desirable that the carbon agent be added in an appropriately dispersed manner.

次に実施例を掲げて本発明の詳細な説明する。Next, the present invention will be described in detail with reference to Examples.

実施例1 表IK示す目標成分(7) Ti −6At−4V合金
の400酊fX150011111tのインゴットを、
第1図に示したVARを用いて溶製するに際して、不発
明方法に基いて目標値の炭素量を得るための強度調整用
炭素剤として用いたセメンタイト、Cr7C3,Cr3
C,2および目標値のTi、 At、 V成分を得るた
めのヌポンジTj−1AI−V合金、純At板等をそれ
ぞれ表2−1.表2−TI、表2−■「に示す配合割合
で調整シテコンパクト材料とした。
Example 1 Target composition (7) shown in Table IK An ingot of 400mm x 150011111t of Ti-6At-4V alloy was
Cementite, Cr7C3, Cr3 was used as a carbon agent for strength adjustment to obtain a target value of carbon content based on an uninvented method when melting using the VAR shown in Figure 1.
Table 2-1 shows Nuponji Tj-1 AI-V alloy, pure At plate, etc. for obtaining C, 2 and target values of Ti, At, and V components. A shite compact material was prepared using the compounding ratios shown in Table 2-TI and Table 2-■.

表2−I 表2−M 表 2−m 」二H已各コンパクトをアーク溶解してそれぞれ表3−
I、表3−π、表s−mに示す成分の本発明例のインゴ
ット供試材を得た。
Table 2-I Table 2-M Table 2-m Each compact was arc melted and Table 3-
Ingot test materials of the present invention examples having the components shown in Table I, Table 3-π, and Table s-m were obtained.

また比較のため、セメンタイトを含まないほかは上記表
2−Iと同様のコンパクト材料を用いて溶解を行い表4
に示す成分の比較例のインゴット供試材を得た。
For comparison, melting was performed using the same compact material as in Table 2-I above, except that it did not contain cementite.
An ingot sample material of a comparative example with the components shown in was obtained.

表8−I 表3−I[ 表a−m 上記本発明例と比較例の比較から次のことが確認δれた
。すなわち、比較例の表4は強度調整用炭素の添加を行
わなかったのでインゴット中の0分に0.01%にとど
まって目標値の0.02Xに得られなかった。これに対
し本発明例の表8−I、表3−II、表a−mの供試材
はいずれもCが目標値の0.02%を達成しており、ま
た表3−■、表3−■、表3−■に示す如くインゴット
の高さ方向における成分のバラツキは殆ど見られなかっ
た。
Table 8-I Table 3-I [Tables a-m From the comparison between the invention example and the comparative example, the following was confirmed δ. That is, in Table 4 of the comparative example, since no strength-adjusting carbon was added, the carbon content remained at 0.01% at 0 minutes in the ingot, failing to reach the target value of 0.02X. On the other hand, the sample materials shown in Table 8-I, Table 3-II, and Tables a-m of the present invention examples all achieved the target value of C of 0.02%, and Table 3-■, Table As shown in Table 3-■ and Table 3-■, there was almost no variation in the components in the height direction of the ingot.

また上記本発明のインゴットを10On$のビレットに
鍛造し、各ビレットにおいて1mピッチで100111
長δの縦断面のC#を調査したところ、Cの偏析は皆無
であり、本発明方法によって目標成分値ならびに所望の
引張強度値を満足する極めて健全なTi−13At−4
V合金のインゴット成品を得ることができた。
In addition, the above ingot of the present invention was forged into a 10 On$ billet, and each billet had 100111 parts at a pitch of 1 m.
When the C# of the longitudinal section of length δ was investigated, there was no segregation of C, and the method of the present invention produced extremely healthy Ti-13At-4 that satisfied the target component value and the desired tensile strength value.
An ingot product of V alloy could be obtained.

以上記述した如く、本発明のチタン族金属合金の溶解法
は、VAR方式によるチタン族金属合金の製造において
、強度調整用炭素を溶解し易い低融点化合物の形態で添
加することによって、強度調整用炭素の添加に係る未溶
融残存物に基く成品品質の欠陥発生を回避することを可
能としたので、チタン族金属合金の溶解における品質、
特に引張強度の向上に大きな効果を発揮する。
As described above, the method for melting titanium group metal alloys of the present invention is such that carbon for strength adjustment is added in the form of a low melting point compound that is easily soluble in the production of titanium group metal alloys by the VAR method. This has made it possible to avoid defects in product quality due to unmelted residues due to the addition of carbon, improving the quality of melting titanium group metal alloys.
It is particularly effective in improving tensile strength.

【図面の簡単な説明】 第1図はVAR方式によるチタン族金属合金の溶解工程
図である。 ■=混合機、2:プレス工程、3:コンパクト、4:溶
接工程、5:棒状コンパクト、6/ニ一次真空アーク炉
、6コ:二次真空アーク炉、7/、7.2:電極、8/
、8J:鋳型第 1 図 −211−
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a process diagram of melting a titanium group metal alloy using the VAR method. ■ = mixer, 2: press process, 3: compact, 4: welding process, 5: rod-shaped compact, 6/2 primary vacuum arc furnace, 6: secondary vacuum arc furnace, 7/, 7.2: electrode, 8/
, 8J: Mold No. 1 Figure-211-

Claims (2)

【特許請求の範囲】[Claims] (1)消耗電極式真空アーク炉によるチタン族金属合金
の溶解法において、消耗電極にセメンタイトを主成分と
する低融点炭化物を分散添加したコンパクトを用いて溶
解し、合金中の炭素濃度を調整することを特徴とするチ
タン族金属合金の溶解法。
(1) In a method for melting titanium group metal alloys using a consumable electrode type vacuum arc furnace, the carbon concentration in the alloy is adjusted by melting using a compact in which a low melting point carbide whose main component is cementite is added to the consumable electrode. A method for melting titanium group metal alloys.
(2)消耗電極式真空アーク炬によるチタン族金属合金
の溶解法において、消耗電極にCr7C,yまたはCr
3C,2およびこれらの混合物からなる低融点炭化物を
分散添加したコンパクトを用いて溶解し、合金中の炭素
濃度を調整することを特徴とするチタン族金属合金の溶
解法。
(2) In the method of melting titanium group metal alloys using a consumable electrode type vacuum arc kettle, the consumable electrode is made of Cr7C,y or Cr.
1. A method for melting a titanium group metal alloy, which comprises melting using a compact to which a low melting point carbide consisting of 3C, 2 and a mixture thereof is added in a dispersed manner to adjust the carbon concentration in the alloy.
JP14845783A 1983-08-12 1983-08-12 Melting method of titanium group metal alloy Pending JPS6039134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14845783A JPS6039134A (en) 1983-08-12 1983-08-12 Melting method of titanium group metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14845783A JPS6039134A (en) 1983-08-12 1983-08-12 Melting method of titanium group metal alloy

Publications (1)

Publication Number Publication Date
JPS6039134A true JPS6039134A (en) 1985-02-28

Family

ID=15453186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14845783A Pending JPS6039134A (en) 1983-08-12 1983-08-12 Melting method of titanium group metal alloy

Country Status (1)

Country Link
JP (1) JPS6039134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268477A (en) * 1994-03-29 1995-10-17 Kyoei Seiko Kk Tunnel furnace for heating and heat-insulating slab
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
CN101906498A (en) * 2010-08-25 2010-12-08 武钢集团昆明钢铁股份有限公司 Method for comprehensively smelting sefstromite
JP2021028410A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Melting raw material, melting material, and manufacturing method of ingot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US5874684A (en) * 1993-07-27 1999-02-23 Nanophase Technologies Corporation Nanocrystalline materials
JPH07268477A (en) * 1994-03-29 1995-10-17 Kyoei Seiko Kk Tunnel furnace for heating and heat-insulating slab
CN101906498A (en) * 2010-08-25 2010-12-08 武钢集团昆明钢铁股份有限公司 Method for comprehensively smelting sefstromite
JP2021028410A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Melting raw material, melting material, and manufacturing method of ingot

Similar Documents

Publication Publication Date Title
US4373970A (en) Copper base spinodal alloy strip and process for its preparation
US5679182A (en) Semi-solid processing of beryllium-containing alloys of magnesium
DE2137996A1 (en) Method for introducing a solid metal into a molten metal
US5422069A (en) Master alloys for beta 21S titanium-based alloys and method of making same
JPS6039134A (en) Melting method of titanium group metal alloy
US4171215A (en) Alloying addition for alloying manganese to aluminum
JPS61264143A (en) Manufacture of aluminum-vanadium mother alloy for use in manufacture of titanium alloy
US4880462A (en) Rapidly dissolving additive for molten metal method of making and method of using
US4179287A (en) Method for adding manganese to a molten magnesium bath
JP2787617B2 (en) Nickel alloy for hydrogen storage battery electrode
JPH01184239A (en) Titanium alloy consumable electrode containing high melting metal
DE3538044A1 (en) Process for the manufacture of refractory aluminium oxynitride
US3203781A (en) Method of producing dispersion-hardened metal alloys
JP2000129316A (en) Production of alloy powder
US4581069A (en) Master alloy compacted mass containing non-spherical aluminum particulate
JP3161224B2 (en) Consumable electrode for producing nitrogen-containing titanium alloy ingot and method for producing nitrogen-containing titanium alloy ingot using this consumable electrode
SU1650746A1 (en) Method of producing alloying compositions for aluminium alloys
SU1514817A1 (en) Alloying composition for producing copper-based sintered alloys
JPH0252681B2 (en)
JP3903829B2 (en) Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent
JP2862677B2 (en) Copper alloy melting and casting methods
JP2002193607A (en) Method of producing high purity trichromium dicarbide
JPH0665660A (en) Manufacture of hot forged member made of al-si base alloy excellent in toughness
JPH01136948A (en) Predetermined of powder metallurgical product
JPS63192829A (en) Manufacture of ti-15v-3al-3cr-3sn alloy